740 research outputs found
Compositional dependence of the giant magnoresistance in FexRh1-x thin films
In this article we report on the magnetic and transport properties of FexRh1-x thin films, prepared by evaporation in high vacuum, in the composition range 0.4
Element-Specific Depth Profile of Magnetism and Stoichiometry at the La0.67Sr0.33MnO3/BiFeO3 Interface
Depth-sensitive magnetic, structural and chemical characterization is
important in the understanding and optimization of novel physical phenomena
emerging at interfaces of transition metal oxide heterostructures. In a
simultaneous approach we have used polarized neutron and resonant X-ray
reflectometry to determine the magnetic profile across atomically sharp
interfaces of ferromagnetic La0.67Sr0.33MnO3 / multiferroic BiFeO3 bi-layers
with sub-nanometer resolution. In particular, the X-ray resonant magnetic
reflectivity measurements at the Fe and Mn resonance edges allowed us to
determine the element specific depth profile of the ferromagnetic moments in
both the La0.67Sr0.33MnO3 and BiFeO3 layers. Our measurements indicate a
magnetically diluted interface layer within the La0.67Sr0.33MnO3 layer, in
contrast to previous observations on inversely deposited layers. Additional
resonant X-ray reflection measurements indicate a region of an altered Mn- and
O-content at the interface, with a thickness matching that of the magnetic
diluted layer, as origin of the reduction of the magnetic moment.Comment: 13 pages, 4 figures, supplemental material include
Machine Learning of Bone Marrow Histopathology Identifies Genetic and Clinical Determinants in Patients with MDS
Publisher Copyright: ©2021 American Association for Cancer Research.In myelodysplastic syndrome (MDS) and myeloproliferative neoplasm (MPN), bone marrow (BM) histopathology is assessed to identify dysplastic cellular morphology, cellularity, and blast excess. Yet, other morphologic findings may elude the human eye. We used convolutional neural networks to extract morphologic features from 236 MDS, 87 MDS/MPN, and 11 control BM biopsies. These features predicted genetic and cytogenetic aberrations, prognosis, age, and gender in multivariate regression models. Highest prediction accuracy was found for TET2 [area under the receiver operating curve (AUROC) = 0.94] and spliceosome mutations (0.89) and chromosome 7 monosomy (0.89). Mutation prediction probability correlated with variant allele frequency and number of affected genes per pathway, demonstrating the algorithms' ability to identify relevant morphologic patterns. By converting regression models to texture and cellular composition, we reproduced the classical del(5q) MDS morphology consisting of hypolobulated megakaryocytes. In summary, this study highlights the potential of linking deep BM histopathology with genetics and clinical variables. SIGNIFICANCE: Histopathology is elementary in the diagnostics of patients with MDS, but its high-dimensional data are underused. By elucidating the association of morphologic features with clinical variables and molecular genetics, this study highlights the vast potential of convolutional neural networks in understanding MDS pathology and how genetics is reflected in BM morphology.See related commentary by Elemento, p. 195.Peer reviewe
Towards a comprehensive understanding of the structural dynamics of a bacterial diterpene synthase during catalysis
Terpenes constitute the largest and structurally most diverse natural product family. Most terpenoids exhibit a stereochemically complex macrocyclic core, which is generated by C–C bond forming of aliphatic oligo-prenyl precursors. This reaction is catalysed by terpene synthases (TPSs), which are capable of chaperoning highly reactive carbocation intermediates through an enzyme-specific reaction. Due to the instability of carbocation intermediates, the proteins’ structural dynamics and enzyme:substrate interactions during TPS catalysis remain elusive. Here, we present the structure of the diterpene synthase CotB2, in complex with an in crystallo cyclised abrupt reaction product and a substrate-derived diphosphate. We captured additional snapshots of the reaction to gain an overview of CotB2’s catalytic mechanism. To enhance insights into catalysis, structural information is augmented with multiscale molecular dynamic simulations. Our data represent fundamental TPS structure dynamics during catalysis, which ultimately enable rational engineering towards tailored terpene macrocycles that are inaccessible by conventional chemical synthesis
Lessons from Love-Locks: The archaeology of a contemporary assemblage
This document is the Accepted Manuscript version. The final, definitive version of this paper has been published in Journal of Material Culture, November 2017, published by SAGE Publishing, All rights reserved.Loss of context is a challenge, if not the bane, of the ritual archaeologist’s craft. Those who research ritual frequently encounter difficulties in the interpretation of its often tantalisingly incomplete material record. Careful analysis of material remains may afford us glimpses into past ritual activity, but our often vast chronological separation from the ritual practitioners themselves prevent us from seeing the whole picture. The archaeologist engaging with structured deposits, for instance, is often forced to study ritual assemblages post-accumulation. Many nuances of its formation, therefore, may be lost in interpretation. This paper considers what insights an archaeologist could gain into the place, people, pace, and purpose of deposition by recording an accumulation of structured deposits during its formation, rather than after. To answer this, the paper will focus on a contemporary depositional practice: the love-lock. This custom involves the inscribing of names/initials onto a padlock, its attachment to a bridge or other public structure, and the deposition of the corresponding key into the water below; a ritual often enacted by a couple as a statement of their romantic commitment. Drawing on empirical data from a three-year diachronic site-specific investigation into a love-lock bridge in Manchester, UK, the author demonstrates the value of contemporary archaeology in engaging with the often enigmatic material culture of ritual accumulations.Peer reviewe
Moment evolution across the ferromagnetic phase transition of giant magnetocaloric (Mn,Fe)2(P,Si,B) compounds
A strong electronic reconstruction resulting in a quenching of the Fe
magnetic moments has recently been predicted to be at the origin of the giant
magnetocaloric effect displayed by Fe2Pbased materials. To verify this
scenario, X-ray Magnetic Circular Dichroism experiments have been carried out
at the L edges of Mn and Fe for two typical compositions of the
(Mn,Fe)2(P,Si,B) system. The dichroic absorption spectra of Mn and Fe have been
measured element specific in the vicinity of the first-order ferromagnetic
transition. The experimental spectra are compared with first-principle
calculations and charge-transfer multiplet simulations in order to derive the
magnetic moments. Even though signatures of a metamagnetic behaviour are
observed either as a function of the temperature or the magnetic field, the
similarity of the Mn and Fe moment evolution suggests that the quenching of the
Fe moment is weaker than previously predicted
- …