93 research outputs found

    QoS Performance Analysis of Cognitive Radio-Based Virtual Wireless Networks

    Get PDF

    Anomaly Detection and Localization in NFV Systems: an Unsupervised Learning Approach

    Get PDF
    Due to the scarcity of labeled faulty data, Unsupervised Learning (UL) methods have gained great traction for anomaly detection and localization in Network Functions Virtualization (NFV) systems. In a UL approach, training is performed on only normal data for learning normal data patterns, and deviation from the norm is considered as an anomaly. However, it has been shown that even small percentages of anomalous samples in the training data (referred to as contamination) can significantly degrade the performance of UL methods. To address this issue, we propose an anomaly-detection approach based on the Noisy-Student technique, which was originally introduced for leveraging unlabeled datasets in computer-vision classification problems. Our approach not only provides robustness against training-data contamination, but also can leverage this contamination to improve anomaly-detection accuracy. Moreover, after an anomaly is detected, localization of the anomalous virtualized network functions in an unsupervised manner is a challenging task in the absence of labeled data. For anomaly localization in NFV systems, we propose to exploit existing local AI-explainability methods to achieve a high localization performance and propose our own novel AI-explainability method, specifically designed for the anomaly-localization problem in NFV, to improve the performance further. We perform a comprehensive experimental analysis on two datasets collected on different NFV testbeds and show that our proposed solutions outperform the existing methods by up to 22% in anomaly detection and up to 19% in anomaly localization in terms of F1-score

    On the probability of finding non-interfering paths in wireless multihop networks

    Get PDF
    Abstract. Multipath routing can improve system performance of capacity-limited wireless networks through load balancing. However, even with a single source and destination, intra-flow and inter-flow interference can void any performance improvement. In this paper, we show that establishing non-interfering paths can, in theory, leverage this issue. In practice however, finding non-interfering paths can be quite complex. In fact, we demonstrate that the problem of finding two non-interfering paths for a single source-destination pair is NP-complete. Therefore, an interesting problem is to determine if, given a network topology, non-interfering multipath routing is appropriate. To address this issue, we provide an analytic approximation of the probability of finding two non-interfering paths. The correctness of the analysis is verified by simulations

    Gateway Placement Optimization in Wireless Mesh Networks With QoS Constraints

    Full text link

    Dynamic service placement in geographically distributed clouds

    Get PDF
    Abstract-Large-scale online service providers have been increasingly relying on geographically distributed cloud infrastructures for service hosting and delivery. In this context, a key challenge faced by service providers is to determine the locations where service applications should be placed such that the hosting cost is minimized while key performance requirements (e.g. response time) are assured. Furthermore, the dynamic nature of both demand pattern and infrastructure cost favors a dynamic solution to this problem. Currently most of the existing solutions for service placement have either ignored dynamics, or provided inadequate solutions that achieve both objectives at the same time. In this paper, we present a framework for dynamic service placement problems based on control-and game-theoretic models. In particular, we present a solution that optimizes the desired objective dynamically over time according to both demand and resource price fluctuations. We further consider the case where multiple service providers compete for resource in a dynamic manner, and show that there is a Nash equilibrium solution which is socially optimal. Using simulations based on realistic topologies, demand and resource prices, we demonstrate the effectiveness of our solution in realistic settings

    Design and Management of DOT: A Distributed OpenFlow Testbed

    Get PDF
    Abstract-With the growing adoption of Software Defined Networking (SDN), there is a compelling need for SDN emulators that facilitate experimenting with new SDN-based technologies. Unfortunately, Mininet [1], the de facto standard emulator for software defined networks, fails to scale with network size and traffic volume. The aim of this paper is to fill the void in this space by presenting a low cost and scalable network emulator called Distributed OpenFlow Testbed (DOT). It can emulate large SDN deployments by distributing the workload over a cluster of compute nodes. Through extensive experiments, we show that DOT can overcome the limitations of Mininet and emulate larger networks. We also demonstrate the effectiveness of DOT on four Rocketfuel topologies. DOT is available for public use and community-driven development at dothub.org

    The meta-policy information base

    No full text
    • …
    corecore