
Design and Management of DOT:
A Distributed OpenFlow Testbed

Arup Raton Roy, Md. Faizul Bari, Mohamed Faten Zhani, Reaz Ahmed, and Raouf Boutaba
David R. Cheriton School of Computer Science, University of Waterloo

Email: {ar3roy, mfbari, mfzhani, r5ahmed, rboutaba}@uwaterloo.ca

Abstract—With the growing adoption of Software Defined
Networking (SDN), there is a compelling need for SDN emulators
that facilitate experimenting with new SDN-based technologies.
Unfortunately, Mininet [1], the de facto standard emulator for
software defined networks, fails to scale with network size and
traffic volume. The aim of this paper is to fill the void in this
space by presenting a low cost and scalable network emulator
called Distributed OpenFlow Testbed (DOT). It can emulate large
SDN deployments by distributing the workload over a cluster
of compute nodes. Through extensive experiments, we show that
DOT can overcome the limitations of Mininet and emulate larger
networks. We also demonstrate the effectiveness of DOT on
four Rocketfuel topologies. DOT is available for public use and
community-driven development at dothub.org.

I. INTRODUCTION

Software Defined Networking (SDN) has gained a lot of
attention from industry and academia in the last few years.
To simplify the network operation and management, SDN
separates the control plane from the forwarding devices and
moves it to a conceptually centralized controller [2].. The
centralized control of SDN introduces immense scope of
innovation in the way networks are programmed and managed.
By maintaining a global view of the network, the controller
allows to easily implement and deploy innumerable control
applications (e.g., routing, firewalls, traffic shaping).

With the growing adoption of SDN solutions, there is
a compelling need for SDN emulators that facilitate experi-
menting with new SDN-based technologies. In this context,
Mininet [1] has been proposed as a software emulator for
prototyping a network on a single machine. It allows users to
create, control and customize an emulated network on which
then can run and test new control applications like SDN-
based routing and traffic engineering schemes. Unfortunately,
Mininet emulates the entire network on a single machine, and
thus fails to scale for large emulated networks and traffic
volumes as we shall show in the next section.

To address these limitations, in this paper we propose
Distributed OpenFlow Testbed (DOT), a highly scalable emu-
lator for SDN. DOT provisions the emulated network across a
cluster of machines. Unlike Mininet, DOT provides guaranteed
compute and network resources for the emulated components
(i.e., switches, hosts and links). By distributing the emulated
network components across multiple machines, DOT can
easily scale with network size and traffic volume, allowing
to emulate large datacenters and wide-area networks. Re-
searchers can use DOT for testing and evaluating new control

applications, SDN-based policy enforcement platforms and
monitoring frameworks [3]–[5].

Our main contributions in this paper are summarized as
follows:

• DOT management architecture: we propose a dis-
tributed management architecture that manages the
deployment of an emulated network over a cluster
of machines. We also propose technical solutions to
emulate network components (i.e., virtual switches,
virtual machines and virtual links) and to guarantee
the requested performance.

• Emulated network embedding: we address the prob-
lem of optimizing the embedding of the emulated
network into a physical infrastructure. We formulate
the problem as an Integer Linear Program (ILP). We
then propose a heuristic algorithm that minimizes both
the number of virtual links crossing the network and
the required number of physical machines.

• Experimental evaluation: we compare the performance
obtained with DOT to that of Mininet. We also
evaluate the performance of the proposed embedding
algorithm and compare it with the First Fit (FF)
algorithm.

The rest of this paper is organized as follows. In Section II,
we present the background and motivation behind DOT. De-
tails on DOT architecture are presented in Section III. The
problem formulation of emulated network embedding problem
as well as the proposed heuristic algorithm are then provided
in Section IV. Evaluation results are described in Section V.
Finally, we conclude in Section VI.

II. BACKGROUND AND MOTIVATION

Mininet [1] is the state-of-the-art OpenFlow based network
emulator. It emulates an OpenFlow network in a single server
by running all virtual nodes (virtual hosts and switches) in
separate network namespaces. Each node runs as a system
process, which consumes small system resources. This allows
Mininet to emulate a large network. However, the amount
of traffic Mininet can simulate depends on the hardware
configuration of the physical server. For example, a dual quad-
core 2.4GHz Intel Xeon E5620 processor (12-GB RAM) server
can simulate 2.2Gbps traffic, whereas a dual-core 2.1GHz Intel
i5 processor (8-GB RAM) laptop can simulate up to 976Mbps
traffic only.

We simulated a fat-tree topology (generated by us-
ing the Mininet command mn --topo tree,depth=2,978-1-4799-0913-1/14/$31.00 c© 2014 IEEE

C SUsed for generating background traffic

(a) Network topology

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Background traffic (Mbps)

Ideal Case
Mininet

(b) Impact of background traffic

Fig. 1. Limitation of Mininet

fanout=4) as shown in Fig. 1(a) with 16 hosts and 5
switches. We started an UDP iperf server on host S and an
UDP iperf client on host C, generating traffic at 1000 Mbps
rate. Then we started 7 iperf client-server pairs in the other 14
hosts uniformly at random to introduce background traffic and
measured the throughput of the foreground traffic between S
and C. Fig. 1(b) reports the result of this experiment. We can
see in the figure that the foreground traffic initially stays at
the desired value and gradually decreases with increase in the
background traffic. This issue severely limits the applicability
of Mininet. Another point to be noted is that, during this
experiment the accumulated traffic is always within the maxi-
mum switching capacity of the physical machine (2.2 Gbps),
but the foreground traffic keeps decreasing with increase in
background traffic.

Traffic can be scaled down to overcome the aforementioned
limitation. However, arbitrarily shrinking a network and its
traffic to fit into available resources has problems of its own.
More specifically, such an approach can show poor network
behavior that is manifested only during emulation. On the
other hand, a real deployment could suffer from issues that
may not be apparent in the emulator. These limitations have
also been identified and explained in detail by Arjun Roy et
al. in [6]. Apart from emulators, there are also large scale
dedicated OpenFlow testbeds, e.g., GENI [7] and OFELIA [8].
The difference between DOT and these testbeds is the basic
distinction between a testbed and an emulator. A user can
deploy a large number of OpenFlow switches with arbitrary
topologies in DOT, which is not possible within a testbed,
where users are bounded by the physical span and hardware
capacities of the testbed.

In DOT, we provide guaranteed bandwidth between
switches and hosts of an emulated network. Moreover, we can
distribute the load over multiple machines to scale dynamically

with network size and traffic volume. We have used various
software libraries and components for host, switch and link
virtualization. Next we explain some of these libraries and
components.

Open Virtual Switch (OVS) [9], [10] is a production
quality, multi-layer, virtual switch that supports numerous
management protocols and interfaces along with OpenFlow.
We use OVS to emulate switches. Hosts are emulated by
deploying user supplied VMs. We use the add ip link
Linux command to emulate a link having both endpoints (i.e.,
switch or host) within the same physical machine. On the
other hand, we use Generic Routing Encapsulation (GRE) [11]
tunnel if the endpoints of a link reside in different physical
machines.

We use the Linux tc command to configure traffic char-
acteristics in Linux kernel. The traffic SHAPING argument of
the tc command is used to cap transmission rate between
virtual nodes and thereby simulate a specific link bandwidth.
Furthermore, we use the netem kernel component in conjunc-
tion with the tc command to simulate propagation delay in a
physical link.

In the last few years, a good number of OpenFlow con-
trollers have been developed. There exists single core [12],
single threaded [13] controller implementations for research
purposes. While multi-core, multi-threaded [14], [15] high
yield controller implementations are available for industrial
usage. Controllers have also been developed with a wide
variety of programming languages like python, Java and
C/C++. DOT does not impose any requirements on the type
of controller. So, a user can deploy any OpenFlow controller.
DOT provides a user with general purpose VMs where he can
run any program supported by the VM’s operating system.

III. DOT: DISTRIBUTED OPENFLOW TESTBED

In this section, we provide an overview of the proposed
Distributed OpenFlow Testbed (DOT). Virtual switches and
VMs are distributed over a physical network. Hence, we de-
veloped a distributed management framework for instantiating,
configuring and monitoring the emulated components. We
describe this framework in Section III-A. Then we explain
the software stack at each physical machine in Section III-B.
Finally, we explain the technical approaches for resource
provision and configuration in DOT (Section III-C).

A. DOT Management Architecture

The DOT management architecture (Fig. 2) consists of two
types of components, namely the central DOT manager and
the DOT node manager (located at each physical machine). In
what follows, we provide more details about these components.

1) DOT Central Manager. The DOT Central Manager is
responsible for allocating resources for the emulated network
as specified by a DOT user. It has two modules, namely the
provisioning module and the statistics collection module. The
Provisioning Module is responsible for running an embedding
algorithm that maps the emulated network components to
physical resources (e.g., servers and networks). Once the
placement of the virtual components is determined, the in-
formation is conveyed to the concerned nodes. The Statistics

DOT Central Manager

Provisioning

Module

Statistics

Collection Module

DOT User

DOT Node Manager 1

Host Provisioning Module

Logging Module

DOT Node Manager 2

Host Provisioning Module

Logging Module

DOT Node Manager n

Host Provisioning Module

Logging Module

Emulated Network

specification

Information

Database

Fig. 2. DOT management architecture

Collection Module gathers diverse types of information from
logging modules installed on each of the nodes. Finally, the
Information Database stores testbed management information
including the current utilization of the cluster, virtual to
physical resource mapping as well as collected statistics.

2) DOT Node Manager. A DOT Node Manager is installed
on each physical machine and has two modules: Host Provi-
sioning module and Logging module. The Host Provisioning
module is responsible for allocating and configuring the re-
quired resources (e.g., instantiation of virtual switches, links,
VMs and tunnels). The Logging module, on the other hand,
collects multiple local statistics including resource utilization,
packet rate, throughput, delay, packet loss and OpenFlow
messages.

B. DOT Software Stack

Host OS

Hypervisor

VM

GS

VM VM

VS VS

Fig. 3. Software stack of a DOT node

A DOT node (i.e., a physical machine) contains virtual
switches and virtual machines that are responsible for emulat-
ing an OpenFlow network. As shown in Fig. 3, these virtual
components along with the hypervisor, and host operating sys-
tem compose the software stack of a DOT node. Specifically,
a DOT node contains the following components:

• Hypervisor: This layer facilitates provisioning multi-
ple VMs in a single physical machine. It also allows
to connect VMs to virtual switches using virtual
interfaces.

• Virtual Machine (VM): Virtual machines are put
under users’ control. A user can can deploy Open-
Flow controllers or applications (e.g., traffic genera-
tion scripts for testing purposes, web servers etc.) on
these VMs.

• Virtual Switch (VS): Virtual switches are used for
emulating OpenFlow switches that belong to the em-
ulated network. Their forwarding rules are filled by
the user (or possibly by a controller deployed by the
user).

• Gateway Switch (GS): Gateway Switch is a special
switch created in each physical machine. Its role is
to forward packets between virtual switches located
at different physical machines. It is worth noting that
the gateway switches are completely transparent to a
DOT user.

C. DOT Resource Provisioning and Configuration

In the following, we provide more details on the configura-
tion, interconnection and provisioning of the emulated network
components. Specifically, we focus on the method of allocating
virtual switches and VMs across the available machines.

A virtual switch and the VMs connected to that switch are
collocated at the same physical machine. Two cases may arise
while mapping a virtual link between two virtual switches. The
first case arises when a virtual link connects a pair of virtual
switches residing on the same physical machine. Consequently,
it is totally provisioned inside one physical machine, and hence
we call it an intra-host virtual link. The second case appears
when the virtual link connects two virtual switches located at
different hosts (hereafter called a cross-host virtual link). As
a result, it should be mapped onto a path that passes through
the network and connects the two ends.

Fig. 4(a) shows an example of an emulated network con-
sisting of 8 virtual switches, 11 virtual links, 2 VMs, and 1
SDN controller. This topology is embedded into 3 physical
hosts (Fig. 4(b)). Specifically, virtual switches A, B, and C
are allocated in machine 1; F , G, H in machine 2; and D,
E in machine 3. Virtual links (A,B) and (B,C) are examples
of intra-host virtual links, whereas links (B,F) and (B,D) are
cross-host virtual links.

In what follows, we describe how the different types of
virtual links are provisioned and emulated.

- Intra-host virtual link. This type of link is emulated by
instantiating two virtual Ethernet interfaces (veth s) within
the same machine (using Linux add ip link command).
The virtual link bandwidth and delay are emulated using
commands tc and netem, respectively.

- Cross-host virtual link. Provisioning this type of link
requires creating multiple segments forming a path between
the two end points of the link. However, since traffic is sent
outside the physical machines, we create a particular switch
called the Gateway Switch (GS) in each physical node for
forwarding inward and outward traffic. It is worth noting
that this particular switch is completely transparent to the
DOT users. The emulated network controller(s) are only aware
of the logical topology. The partitioning scheme and GSs
are completely transparent to the controllers. The process of
embedding a cross-host virtual link goes through three steps
that are explained below:

1) We create virtual ip links (with the Linux command add
ip link) to attach each virtual switch with the gateway
switch. In Fig. 4, for the cross-host link d, a segment d′
is created between virtual switch B and GS1 in physical
host PH1 and another segment d′′ is created between
virtual switch F and GS2 in physical host PH2.

2) Next, a GRE tunnel is created between the physical
hosts. A unique identifier is assigned to each cross-host

A

B

C

F

G

H

v

A

B

C

F

D

G

H

VM

2VM

1

Tunnel

Network

(a) Example of an

emulated network

VM1
VM2

VM2

VM1 SDN Controller

v

v Forwarding path

E

D

E

GS1 GS2

GS3
Segment

a b

d′(#2)
d″(#2)

c′(#1)

c″(#1)

f′(#3)

f″(#3)

e

g′(#4)

g″(#4)

h
i

tunnel 1

tunnel 2
tunnel 3

Physical Machine 1

#2 PktPkt Pkt
Pkt

Pkt

Pkt

Pkt

#2 Pkt
Encapsulated Packet

with link id 2

Virtual Switch

Virtual link

Virtual Machine

Physical Machine 3

Physical Machine 2

Physical Machine

(b) Example of mapping

an emulated network

Mapping

Gateway switch

Fig. 4. Emulated network embedding and traffic forwarding in DOT

virtual link. In the figure, for cross-host virtual link d the
identifier 2 is assigned. The GRE tunnel tags every packet
forwarded through it with the corresponding identifier.
This allows the GS at the other end of the tunnel to
uniquely identify the virtual switch that sent the packet.

3) After setting up the tunnels, static flow-entries are created
in the GSs at the physical hosts to knit the segments of
d together.

For example, if a packet is sent from VM2 to VM1 through
the path H → F → B → A, then switch H first receives
the packet and forwards it to F . Now, F forwards the packet
through port p thinking that it will go to switch B. Here, we
have connected the cross-host-segment d′′ at exactly the same
port p. So, the packet goes through d′′ and reaches GS2. Now,
GS2 inserts the cross-host virtual link identifier for d (here 2)
in the key field of the GRE header and forwards the packet
through tunnel 1. Next, GS1 receives this packet from tunnel
1, looks at the key field in the GRE header and based on the
value forwards the packet through the link d′ towards switch
B. Switch B perceives this packet to be received from switch
F directly. The tunneling scheme is completely hidden from
the virtual switches. Next, B forwards the packet to A and
then A delivers it to VM1.

IV. NETWORK EMBEDDING

In this section, we address the problem of finding the
optimal mapping of an emulated network onto the physical
infrastructure. We first formally define emulated network em-
bedding problem as an Integer Linear Program (ILP). Then we
propose a heuristic algorithm that minimizes both translation
overhead and number of active servers.

A. Problem Formulation

Let Ñ denote the set of physical hosts and R = {1..d}
the set of resource types (i.e., CPU, memory and disk) offered
by each of them. Each physical host p ∈ Ñ has a capacity c̃rp
for resource type r ∈ R. We denote by b̃p the bandwidth
of the network interface of physical host p ∈ Ñ . Let δ̃pq
denote the propagation delay between physical hosts p and
q. In our model, we assume that the physical infrastructure
has full bisection bandwidth (e.g., VL2 [16]) and that there is
a single path between each pair of nodes. This simplifies the
virtual link embedding process, i.e., in order to check whether
it is possible to embed a virtual link into a path between two
physical hosts p and q, it suffices to check whether there is
enough residual bandwidth at the server level. In other words,
we don’t need to check the available bandwidth at the upper

layers of the data center network topology (since the network
has full bisection bandwidth).

We model the emulated network as an undirected graph
G = (N,E) where N is the set of virtual switches and E
is the set of virtual links connecting them. A virtual switch
i ∈ N has a requirement cri for each resource type r ∈ R.
Every virtual link e ∈ E is characterized by its bandwidth be
and propagation delay δe. We define zei as a Boolean variable
that indicates whether virtual switch i is one of the ends of
link e.

Furthermore, we define H as the set of VMs, and vhi as
a Boolean variable that indicates whether or not VM h is
attached to virtual switch i. We denote by grh the resource
requirement of VM h ∈ H for each resource type r ∈ R.

The problem of emulated network embedding boils down
to finding an assignment matrix X = [xip]|N |×|Ñ | and a
binary vector Y = 〈yp〉p∈Ñ , where xip and yp are Boolean
variables. The variable xip is equal to 1 if virtual switch i is
assigned to physical host p. The variable yp indicates whether
or not physical host p is active (i.e., hosting at least one of the
emulated network components). In the following, we focus on
computing the resources that has to be allocated in order to
accommodate the emulated network to be embedded.

- Resources required by virtual switches

The amount of resources (i.e., cpu, memory, disk) required
to accommodate a virtual switch depends on many factors
including number and capacity of virtual links connected to
it, number of forwarding rules and the amount of traffic it
carries. According to the experiments we have conducted, we
noticed that, among those factors, the most determining one
is the amount of traffic crossing the virtual switch. Hence, we
consider the virtual switch requirements to be proportional to
the sum of bandwidth capacities of all virtual links connected
to it. Hence, the required resources can be expressed as:

cri =
∑
e∈E

zei beρr (1)

where ρr is determined empirically through experiments. It
is worth noting that it is part of our future work to develop
more sophisticated models to capture the relationship between
virtual resource requirements and the amount of physical
resources to be allocated. It is then straightforward to update
our formulation by replacing Eq. 1 with the new model.

Furthermore, we should also consider resources required
for running the VMs attached to the virtual switches. Indeed, a
VM has to reside in the same physical host as the virtual switch
to which it is attached. Therefore, we must ensure that there
is enough resources in the physical machine to host the virtual
switch and its attached VMs. Thus, when embedding a virtual
switch, we consider the aggregated resource requirement that
encompasses its own requirements and that of its attached
VMs. Let ĉri denote the aggregated resource requirement of
virtual switch i for resource type r. It can be written as:

ĉri = cri +
∑
h∈H

∑
i∈N

vhi g
r
h (2)

- Resources required by gateway switches

DOT requires to install a Gateway Switch in each of
the active physical hosts to forward the traffic towards other
physical nodes. Hence, we need to account for the resources
required by the Gateway Switch. In our experiments, we found
that these resources (mainly CPU) are proportional to the
bandwidth capacities of all virtual links going outward from
the physical machine (i.e., virtual links connecting two virtual
switches hosted by two different machines). Let frp denote the
requirement of a gateway switch located at host p for resource
type r ∈ R . Hence, we can estimate resource requirement for
gateway switches located on physical host p. It can be written
as follows:

frp =
∑
i∈N

∑
j∈N

∑
q∈Ñ

∑
e∈E

xip(1− xjp)xjqzei zej beρr (3)

- Translation overhead

Packets sent from one physical machine to another undergo
encapsulation at the gateway switch. In order to minimize
this translation overhead, we need to minimize the number of
virtual links using physical network interfaces. In other words,
whenever possible, we try to place communicating virtual
switches within the same physical host. Thus, translation
overhead can be written as:

CT =
∑
i∈N

∑
j∈N

∑
p∈Ñ

∑
q∈Ñ

∑
e∈E

xip(1− xjp)xjqzeizej (4)

- Number of used physical nodes

The number of physical nodes used to embed emulated
networks can be expressed as follows:

CE =
∑
p∈Ñ

yp (5)

Minimizing this number is important for different reasons.
First, this allows to reduce resource fragmentation, and thereby
make room for more emulated networks to be embedded.
Second, using less physical nodes results in reduced energy
consumption.

- Objective function

Given the system model described above, the objective
of our optimization problem is to minimize the translation
overhead and the number of used physical nodes (Eq. 4 and 5).
It can be written as follows:

C = αCT + βCE (6)

where α and β are weights used to adjust the importance of
individual objectives. Furthermore, the following constraints
must be satisfied : ∑

p∈Ñ

xip = 1, ∀i ∈ N (7)

xip ≤ yp ∀i ∈ N, p ∈ Ñ (8)

frp +
∑
i∈N

xipĉ
r
i ≤ c̃rp ∀p ∈ Ñ , r ∈ R (9)

∑
i∈N

∑
j∈N

∑
q∈Ñ

∑
e∈E

xip(1− xjp)xjqzeizejbe ≤ b̃p ∀p ∈ Ñ (10)

xip(1− xjp)xjqzeizejδe ≥ δ̃pq ∀i, j ∈ N, p, q ∈ Ñ , e ∈ E
(11)

xip ∈ {0, 1} ∀i ∈ N, p ∈ Ñ (12)

yp ∈ {0, 1} ∀p ∈ Ñ (13)

Constraint (7) guarantees that each virtual switch is assigned
to exactly one physical host. We also ensure that a physical
node is active if it hosts at least one virtual switch (Eq.
8). Furthermore, Eq. (9) ensures that physical host capacities
are not exceeded. Constraint (10) indicates that the sum
of bandwidth requirements of cross-host virtual links using
the same network interface should not exceed its bandwidth
capacity. Finally, Eq. (11) ensures that if a virtual link is
mapped onto a path between two different physical nodes, its
delay requirement is satisfied. This optimization problem is
NP-hard as it generalizes the Multi-dimensional Bin-packing
Problem [17]. Hence, in the following, we provide a simple
yet effective heuristic to solve it.

B. Heuristic solution

In the following, we present the heuristic algorithm used
by DOT for embedding emulated networks. The goal is to find
a feasible mapping that minimizes the translation overhead and
the number of used physical hosts as dictated by the objective
function (Eq. 6). This is illustrated by Algorithm 1. This
embedding algorithm guarantees maximum bandwidth require-
ment of each link, and thus it is oblivious of traffic type. Given
an emulated network, virtual switches are selected one by one
according to some policy. Each selected switch is assigned to
one of the active hosts that satisfies the switch requirements
in terms of CPU, memory, disk, bandwidth and propagation
delay (between the virtual switch under consideration and
previously embedded ones). A new host is turned on if active
nodes are not able to satisfy these requirements. However,

Algorithm 1 Emulated Network Embedding

1: Ña ← Set of active physical hosts
2: Nu ← N {Set of unassigned switches}
3: while Nu 6= ∅ do
4: Sort Nu in decreasing order according to Ri (Eq. 17)
5: i← first node in Nu

6: Ñ(i) ← hosts Ña satisfying resource requirements of
i.

7: if Ñ(i) 6= ∅ then
8: Sort Ñ(i) in decreasing order according to Fip

(Eq. 20)
9: p← first node in Ñi

10: else {Need to switch on a physical machine}
11: Activate physical host p that satisfies resource re-

quirement of i, and if not possible set p = −1.
12: end if
13: if p 6= −1 then
14: Ña ← Ña ∪ {p}
15: Assign virtual switch i to physical machine p
16: Nu ← Nu \ {i}
17: else
18: return the emulated network is not embeddable
19: end if
20: end while

the whole emulated network is rejected if there is no feasible
embedding for all its components. In the following, we provide
more details on the policies used to decide the embedding
order of virtual switches and to designate the hosting physical
machines.

- Virtual switch selection. In order to decide on the
embedding order of the virtual switches, we define multi-
ple guiding policies. For instance, it is intuitive that virtual
switches with high connectivity are difficult to embed. Hence,
it is better to embed them first since this might increase chances
to embed their neighbors within the same physical machine,
resulting in less cross-host links. Thus, we define the degree
ratio of virtual switch i as:

RD
i =

∑
e∈E

zei

max
j∈N

∑
e∈E

zej
(14)

The second policiy we define to characterize a virtual switch
is the resource ratio given by:

RC
i = wb

∑
e∈E

zei be

max
j∈N

∑
e∈E

zej be
+

∑
r∈R

wr
ĉri

max
j∈N

ĉrj
(15)

The intuition here is that it is always more difficult to ac-
commodate high resource demanding virtual switches. Hence,
the need to consider their embedding first. The resource ratio
value may be adjusted using the weights wb and wr that should
reflect the scarcity of the resource.

Furthermore, we also try to embed first virtual switches
whose neighbors are already embedded. This increases the
likelihood that they are hosted within the same machine,
and thereby reduces the number of cross-host links and the
consumed physical bandwidth as well. We define this locality
ratio as:

RN
i =

∑
j∈N

∑
e∈E

∑
p∈Ñ

zei z
e
jxjp∑

j∈N

∑
e∈E

zei z
e
j

(16)

Finally, switch selection is based on its ranking computed as
the weighted sum of the aforementioned ratios as follows:

Ri = γDRD
i + γBRB

i + γNRN
i (17)

where γD, γR and γN are weights used to adjust the influence
of each factor.

Algorithm 1 evaluates Ri for all unembedded virtual
switches and selects the one with the highest value to embed
first. The next step is to select the physical machine which will
accommodate the selected virtual switch.

- Physical host selection. Once the virtual switch to be
embedded is selected, the hosting physical machine is chosen
based on two criteria. The first criterion is to select the host
with lowest residual capacity computed for each host p as
follows:

FR
ip =

∑
r∈R

wr

min
q∈Ñ

uriq

urip
(18)

where uriq is the estimated residual capacitive for resource r in
physical node q when it is hosting virtual switch i. Minimizing
residual capacities of physical machines result in less resource
fragmentation and higher machine utilization.

Furthermore, in order to minimize the number of cross-
host links, we try to place selected virtual switch at a physical
node hosting the maximum number of its neighbors, i.e.,
maximizing the locality ratio:

FN
ip =

∑
j∈N

∑
e∈E

x̃jpz
e
i z

e
j

max
q∈Ñ

∑
j∈N

∑
e∈E

x̃jqz
e
i z

e
j

(19)

where i is the selected virtual switch and p is a physical node.
Finally, machine selection is based on its ranking computed as
the weighted sum of the aforementioned ratios, as follows:

Fip = λRFR
ip + λNFN

ip (20)

where λR and λN are the weights of each factor in the
selection criterion. Specifically, the physical machine p with
the highest Fip is selected to host the virtual switch i.

The worst case running time of this algorithm is
O(|N |2 log |N | + |N ||Ñ | log |Ñ |), where N and Ñ are the
number of virtual switches and active physical hosts, respec-
tively. The while loop at line 3 takes at most |N | rounds, and
the worst case complexity of the two sorts at lines 4 and 8 are
O(|N | log |N |) and O(|Ñ | log |Ñ |), respectively.

V. EVALUATION

In this section we provide performance evaluation of our
proposed heuristic compared to the First Fit (FF) approach.
We also show that in contrast to Mininet, DOT can provision
adequate resources to ensure guaranteed switching capacity for
each virtual switch. In the rest of this section we first describe
our experimental setup and then we present results obtained
from a DOT deployment in our cluster.

A. Experimental Setup

We have deployed DOT on 10 physical machines organized
in two racks. The central DOT manager has been deployed on
a separate host connected to the same network. All machines
run Ubuntu 12.04 as the host OS. All software components
used in DOT are open source. For emulating virtual switch we
use Open VSwitch version 1.9. We use Linux tc command
to simulate bandwidth limit and link delay on the virtual
links. We use KVM for machine virtualization and Libvirt
1.0.0 library to provision VMs. Each VM runs tiny core
Linux [18] that offers a minimalistic flavor of Linux and
has a very small resource footprint. We use Floodlight [19]
controller for the experiments in this paper. However, any
existing OpenFlow controller can be deployed on DOT. We
developed a management module in C++ that processes the
input network topology and provides an efficient embedding
using the proposed heuristic (Algorithm 1). We choose the
values of α and β as 1 and 100, respectively. The rest of the
parameters (γD, γB , γN , λR, and λN) are all set to 1. This
module also generates the system commands to deploy DOT
on a distributed infrastructure. We compared the performance

TABLE I. CHARACTERISTICS OF THE SIMULATED ISP TOPOLOGIES

Topology # of Switch # of Link
AS-1221 108 306
AS-1239 315 1944
AS-1755 87 322
AS-3967 79 294

of our proposed heuristic with the first fit (FF) approach.
This approach randomly chooses a physical machine for each
virtual switch, and embeds it if adequate residual resources are
available in that machine.

B. Results

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Background traffic (Mbps)

Mininet
DOT

Fig. 6. DOT vs. Mininet

In our first experiment, we deployed the fat-tree like
topology shown in Fig. 1(a) on DOT (spanning two physical
hosts) and performed similar experiment as in Fig. 1(b). We
started an UDP iperf server on host S and an UDP iperf
client (sending at 1000 Mbps) on host C. Then we started 7
iperf client-server pairs on the other 14 hosts and measured
the throughput of the traffic between C and S. The result of
the experiment is shown in Fig. 6. As we can see from the
figures, and unlike mininet, foreground traffic in DOT is not
affected by the background traffic. The embedding process of
DOT ensures that every physical host has enough resources to
accommodate the compute, memory, and bandwidth require-
ments of embedded virtual hosts and switches.

Next, we evaluate the performance of our proposed heuris-
tic against that of FF. We embedded four ISP topologies (Ta-
ble I) from the RocketFuel repository [20]. We computed the
number of physical hosts required to embed these topologies.
The result is shown in Fig. 5(a). For AS-1221, FF requires 14
hosts whereas our heuristic require only 8 hosts. For AS-1239,
FF requires 36 hosts and our approach requires only 23 hosts.
Similarly, for the other topologies our heuristic consistently
requires much less number of physical hosts than FF.

To show the effectiveness of our proposed heuristic over
FF, we measure the number of cross-host links and total
bandwidth of cross-host links for each physical host. If a
host has fewer cross-host links then we have to provision less
compute resources for the gateway switch (Equation 4) and as
a result more virtual switches can be embedded on the same
physical host leading to a more compact embedding. Fewer
cross-host links also indicate that the embedding process is

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

AS-1221 AS-1239 AS-1755 AS-3967

N
u
m

b
e
r

o
f
p
h
y
s
ic

a
l
h
o
s
ts

Rocketfuel topology

First Fit
Proposed Heuristic

(a) Number of physical hosts

 0

 20

 40

 60

 80

 100

AS-1221 AS-1239 AS-1755 AS-3967

N
u
m

b
e
r

o
f
c
ro

s
s
-h

o
s
t
lin

k
s

Rocketfuel topology

First Fit
Proposed Heuristic

(b) Number of cross-host links

 0

 20

 40

 60

 80

 100

AS-1221 AS-1239 AS-1755 AS-3967

C
ro

s
s
-h

o
s
t
lin

k
 b

a
n
d
w

id
th

 (
%

)

Rocketfuel topology

First Fit
Proposed Heuristic

(c) Amount of cross-host bandwidth

Fig. 5. Evaluation results

able to embed highly connected portions of input topology on
the same physical host.

Fig. 5(b) reports the average, minimum and maximum
number of cross-host links for both FF and our proposed
heuristic. We can see from the figure that for all four topologies
our proposed heuristic produces embedding configurations that
require much less cross-host links than FF. For AS-1221,
AS-1239, AS-1755 and AS-3967 the reduction in average
number of cross-host links is 37%, 8.3%, 37.2% and 38.3%,
respectively. The maximum number of cross-host link over
all physical hosts for AS-1221, AS-1239, AS-1755 and AS-
3967 is 38, 103, 42 and 36, respectively for FF. However, for
our proposed heuristic the maximum is only 21, 81, 21 and
18, respectively, which is up to 50% reduction. The number
of links of AS-1239 is extremely high (1944 links). Hence,
average node degree for each node is also high. For this reason,
neighboring nodes cannot be always embedded in the same
physical host due to resource requirements (CPU, memory and
bandwidth). As a result, the number of cross-host links cannot
be significantly reduced. However, a point to be noted here is
that our heuristic improves upon the FF approach while using
less number of physical hosts.

Fig. 5(c) reports the average, minimum and maximum
percentage of physical bandwidth used by cross-host links for
both FF and our proposed heuristic. We can see from the figure
that for all four topologies our proposed heuristic produces
embedding configurations that require much less cross-host
link bandwidth than FF. For AS-1221, AS-1239, AS-1755
and AS-3967 the reduction in average amount of cross-host
link bandwidth proportion is 42.3%, 8%, 38% and 40%,
respectively. The maximum percentage of cross-host link over
all physical hosts for AS-1221, AS-1239, AS-1755 and AS-
3967 is 39, 98.8, 41.4 and 48.4, respectively for FF. However,
for our proposed heuristic the maximum is only 19.5, 83.2,
18.3 and 15.6, respectively. Our proposed heuristic can achieve
up to 50% reduction. For AS-1239, FF produces embedding
with 36 physical nodes with a maximum bandwidth usage of
98%. However, our heuristic embeds the same topology with
only 23 physical hosts and bounds the maximum bandwidth
usage within 83%.

VI. CONCLUSION

In this paper we presented the design and management
of DOT. To the best of our knowledge, DOT is the only
distributed emulator for SDN. To emulate a given network

and traffic load, DOT distributes the network components over
the available physical machines. DOT provides guaranteed
resources (computation and bandwidth) for each emulated
component (i.e., switches, hosts and links). It has built-in
support for configuring and monitoring the emulated compo-
nents from a central management module. Furthermore, we
formulated a mathematical model and proposed a heuristic
algorithm to optimize resource utilization while embedding an
emulated network into the cluster of machines. Experimental
results show that DOT is able to overcome scalability issues
of Mininet and to guarantee the required resources for the
emulated network. Moreover, the proposed embedding algo-
rithm performs significantly better than a first fit strategy.
Compared to the first fit strategy, our algorithm introduces
about 50% lesser cross-host links and requires about 50%
lesser bandwidth on physical links.

Currently, DOT is capable of using a fixed number of
physical machines to emulate a given network. However, our
framework can be easily extended to dynamically add hard-
ware resources on the fly to scale up or down with the changes
in the emulated networks. We intend to extend DOT with this
dynamic scalability feature. We also want to add multi-user
support for running multiple emulations on the same physical
infrastructure simultaneously. We will improve the usability
of DOT by implementing a generic RESTful API for remote
monitoring and management. Finally, we will incorporate a
configurable logging facility for tracking OpenFlow messages
during the emulation. These features will significantly improve
the usability of DOT.

ACKNOWLEDGEMENT

This work was supported by the Natural Science and
Engineering Council of Canada (NSERC) in part under its
Discovery program and in part under the Smart Applications
on Virtual Infrastructure (SAVI) Research Network.

REFERENCES

[1] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation,”
in International Conference on emerging Networking EXperiments and
Technologies (CoNEXT), 2012.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” SIGCOMM CCR, vol. 38, no. 2, Mar. 2008.

[3] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani,
R. Ahmed, and R. Boutaba, “Dynamic controller provisioning in
software defined networks,” in International Conference on Network
and Service Management (CNSM), 2013.

[4] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “PolicyCop:
an autonomic QoS policy enforcement framework for software defined
networks,” in Software Defined Networks for Future Networks and
Services (SDN4FNS), 2013.

[5] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “PayLess: A
Low Cost Netowrk Monitoring Framework for Software Defined Net-
works,” in IEEE/IFIP Network Operations and Management Symposium
(NOMS), 2014.

[6] A. Roy, K. Yocum, and A. C. Snoeren, “Challenges in the emulation
of large scale software defined networks,” in Asia-Pacific Workshop on
Systems (APSYS), 2013.

[7] http://www.geni.net/.
[8] http://fp7-ofelia.eu.
[9] http://openvswitch.org.

[10] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker,
“Extending Networking into the Virtualization Layer,” in Workshop on
Hot Topics in Networks (HotNets), 2009.

[11] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, “Generic Routing
Encapsulation (GRE),” RFC 2784, Internet Engineering Task Force,
Mar. 2000.

[12] https://github.com/noxrepo/nox.
[13] https://github.com/noxrepo/pox.
[14] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sher-

wood, “On controller performance in software-defined networks,” in
Workshop on Hot Topics in Management of Internet, Cloud, and
Enterprise Networks and Services (Hot-ICE), 2012.

[15] A. Voellmy and J. Wang, “Scalable software defined network con-
trollers,” SIGCOMM Comput. Commun. Rev., vol. 42, no. 4, pp. 289–
290, Aug. 2012.

[16] A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” in Proceedings ACM SIGCOMM, 2009.

[17] C. Chekuri and S. Khanna, “On multi-dimensional packing problems,”
in Annual ACM-SIAM symposium on Discrete algorithms (SODA),
1999.

[18] http://distro.ibiblio.org/tinycorelinux.
[19] http://floodlight.openflowhub.org.
[20] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies

with rocketfuel,” in ACM SIGCOMM, 2002.

