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Abstract As a response to the increasing number of cyber
threats, novel detection and prevention methods are con-
stantly being developed. One of the main obstacles hin-
dering the development and evaluation of such methods is
the shortage of reference data sets. What is proposed in
this work is a way of testing methods detecting network
threats. It includes a procedure for creating realistic refer-
ence data sets describing network threats and the processing
and use of these data sets in testing environments. The pro-
posed approach is illustrated and validated on the basis of
the problem of spam detection. Reference data sets for spam
detection are developed, analysed and used to both gener-
ate the requested volume of simulated traffic and analyse
it using machine learning algorithms. The tests take into
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account both the accuracy and performance of threat detec-
tion methods under real load and constrained computing
resources.
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1 Introduction

1.1 Insufficient number of network data sets and its impact
on cyber security

Modern high bandwidth core networks are susceptible to
numerous cyber threats. Among them, large-scale spam dis-
tribution and Distributed Denial of Service (DDoS) [11, 23]
attacks are of significant importance. Any kind of network
forensics aimed at the reduction of these threats includes
their prior detection.

When trying to implement efficient countermeasures to
mitigate the scale of threats, local system administrators,
network operators and research groups are faced with a vari-
ety of possible intrusion detection approaches, methods and
off-the-shelf systems. This is accompanied by a very limited
number of up-to-date network data sets that could be used
to verify the cyber security of network systems at different
levels. This makes the validation of individual threat detec-
tion methods problematic, if it is possible at all. In turn, the
security of the systems is negatively affected. Moreover, the
research into efficient techniques of intrusion detection is
largely suffering for the same reason, i.e. limited availabil-
ity of realistic network data sets [7]. In their recent survey
[19], Tavallaee et al. report that 144 out of 276 analysed
anomaly-based intrusion detection methods proposed over
the last few years used Knowledge Discovery in Databases
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(KDD) and Defense Advanced Research Projects Agency
(DARPA) data sets for evaluation purposes. The latter data
sets, in spite of their past contribution to intrusion detection
research have at the same time been extensively criticised
[19]. The main reason why these data sets, which originated
several years ago, are still used is the lack of other, pub-
licly available data sets. The need for sharing data sets is
still observed and widely discussed in the network commu-
nity. In particular, it was reported to be one of the major
concerns during the Fifth Workshop on Active Internet Mea-
surements hosted in 2013 by the Cooperative Association
for Internet Data Analysis (CAIDA). Among other reasons,
the need for data sharing to parameterise or validate mod-
els and inferences and to establish historical baselines of
network behaviour [5] was emphasised.

Taking into account these data challenges, it is not sur-
prising to see that relatively well-known intrusion methods
are still successfully being used to compromise the security
of many systems.

At the same time, what is especially promising is the
ability to detect cyber threats at a network level via Net-
work Intrusion Detection Systems (NIDS). This could result
in more efficient digital evidence processing performed by
the network operators, i.e. on a wider scale than the scale
of individual network hosts. However, it is even more dif-
ficult to validate different intrusion detection techniques in
this case. In the case of NIDS, additional legal constraints
have to be considered, which limits the number of feasible
techniques. On the one hand, customers expect their Internet
Service Providers (ISPs) to provide efficient, fully secured
access to the Internet. On the other hand, requirements
related to privacy and confidentiality are equally important.

Moreover, cyber threats are constantly evolving. There-
fore, the validation of both existing and newly developed
NIDS should be based on up-to-date representative network
data sets. This suggests the need to develop methods and
procedures making possible the generation of such data sets
based on real network traffic but not affecting the privacy of
users causing this traffic.

Among other purposes, such data sets could be used by
different research centres to establish a common baseline for

the evaluation of the usability of individual misuse detec-
tion techniques. The use of only internally available data
sets obviously prohibits the development of ground truth.
In the latter context, the representation of network traffic
via NetFlow records containing discriminators such as those
proposed in [16] can be promoted as it does not reveal any
packet data. Moreover, network flows can be additionally
anonymised by changing IP addresses.

To sum up, rather than just a few new network data sets,
an entire process of data set generation is needed. A high
level overview of such a process is presented in Fig. 1. First,
the data from real network traffic is acquired and filtered,
e.g. based on a protocol and/or ports. Individual events such
as HTTP requests or mail transmission are labelled to mark
the events representing threats of interest. Next, the data can
be anonymised. Finally, it can be converted to another for-
mat such as NetFlow. Such conversion can be applied at
different stages of the process depending on the category of
threat and the data needed to label it.

1.2 The need for the combination of data sets and testing
environments

One more obstacle affecting the adoption of novel detection
methods in high bandwidth networks is the limited atten-
tion paid in many novel methods to performance aspects. In
many works, the tests of different intrusion detection tech-
niques are made in an off-line manner using the data files as
an input for individual techniques. Hence, the performance
of individual techniques is not tested. At the same time,
in high bandwidth networks, the performance of the traffic
capturing process is a challenge which can be even more
demanding when machine learning algorithms have to be
executed in parallel in the same environment.

For all these reasons, a combination of realistic network
data sets and testing environments using network emulation
methods [15] is needed. This should be used to test both
the accuracy of threat detection techniques and their perfor-
mance. Ideally, the performance should not only be tested
under different load conditions such as the overall volume
of analysed network traffic but also the number of parallel

Fig. 1 The reference set
creation
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Fig. 2 The test bed

network flows or the average size of network datagrams. To
sum up, a combination of all these factors, i.e. the methods
of creating up-to-date network data sets when needed, the
use of representative data sets based on real network traffic,
the ability to scale the volume of this traffic and the abil-
ity to test an end-to-end solution including network traffic
probe(s), data aggregation and threat detection based on the
data processed on-the-fly would significantly contribute to
the development of cyber threat prevention techniques. This
means that a network testing environment rather than ability
to only read in the data files is needed. The components of
such a test bed are presented in Fig. 2. First, the reference set
is divided into a learning and a testing set. The learning set
is used to develop the traffic analyser using machine learn-
ing techniques. The testing set may be contaminated by the
events from an outside source, e.g. sample testing cases with
known expected response. Such testing cases are needed to
verify the merits of the forensic techniques. Next, network
traffic can be generated based on the contaminated testing
set. The volume of network traffic can be scaled to test the
performance of detection techniques in parallel with their
accuracy.

The primary objective of this work is to propose such a
test bed and evaluate it using a realistic test scenario based
on spam detection. Such a combination of virtual test bed
and data sets based on real network traffic is described in
this study. The problem dealt with is spam detection based
on NetFlow records, which are both developed and pro-
cessed on-the-fly. The NetFlow records are produced by a
NetFlow probe named nProbe1 and processed by a newly
developed plug-in implementing machine learning algo-
rithms. The role of the plug-in is to extend the NetFlow
mail records with the additional attribute meaning spam
or correct mail flow. Such extended NetFlow records can
be processed locally or by a central collector. The tests of

1http://www.ntop.org/products/nprobe/

the proposed spam detection technique refer to its accu-
racy, the performance of the modules needed to produce
NetFlow records with the required discriminators and the
performance of the spam detection module. Hence, not only
is the method accuracy aspect addressed but also the impact
of data stream and traffic volume on method performance.

The remainder of this work is organised as follows. First,
the creation of reference sets is discussed in Section 2. This
is followed by a description of the testing environment out-
lined in Section 3. The way the combination of environment
and realistic data has been used for the end-to-end testing of
the spam detection module is discussed in Section 4. This is
followed by the conclusions in Section 5.

2 Creation of reference sets and detection models

This section contains assumptions that allow the user to cre-
ate a realistic reference set. The assumptions are defined as
generic rules that can be used to develop the reference set
for any network cyber threat.

The presented propositions are verified on a real task,
namely the detection of spam, which is presented in
Section 4.

2.1 Reference set creation

A reference set can be defined as a set of network traffic data
having a form and content that allows the detection of one or
many categories of events of interest. Such a set is usually
a subset of the real network traffic set that is large enough
to allow the analysis of the event but significantly reduced
compared to the source traffic. Realistic and representative
data sets can improve research into detection of anomalies,
attack prevention and botnet detection.

http://www.ntop.org/products/nprobe/
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However, the creation of reference sets is subject to seri-
ous problems including, but not limited to, the collection
and storage of large volumes of data, the privacy aspect and
the relevance of the collected events. Therefore, only a very
limited number of useful reference sets exist [7]. Among
notable exceptions, the repository of data sets maintained
by the Cooperative Association for Internet Data Analysis
can be mentioned. Still, even in this repository, the data sets
for individual events are quite limited. For instance, there is
only one data set for a DDoS attack, originating from 2007.2

The creation of reference sets starts with the selection
of observed parameters. For the selected parameters, their
values are captured. On the basis of these parameters, the
features are calculated. Different values of features describe
various events, which can be separated from the background
network traffic on the basis of logical rules or classifiers.
Thus, the reference set is a set of records described by fea-
tures that can be used to detect events among background
traffic. Individual steps for creating such sets are proposed
in the following sections. It is assumed that the reference
sets will be defined as sets of NetFlow records. However,
reference data sets not based on NetFlow records are also
possible.

The reference set can be a sample of typical network
traffic that contains some event records captured from the
network, or injected by an enrichment module. Moreover,
the reference set has to contain sufficient information to
create data in a form acceptable for a diagnostic unit.
The methods of set creation for different applications are
proposed in the following sections.

2.2 Features selection

The problem of monitoring in a multi-service and multi-
user environment exhibits a high complexity due to the size
of the space to explore. In order to be able to detect events
in such a context, the data set to be analysed should be
reduced [9]. Therefore, only the most important features
should be selected to describe the collected records.

For detection of significant features, it is necessary to
first define the range of collected data. Discriminators for
use in flow-based classification were proposed among oth-
ers in [16]. Among nearly 250 features proposed in this
study, there are such basic features as packet length, TCP
window size, or time to live (TTL).

The method of selection proposed in this work is based
on machine learning. To perform an analysis, two distin-
guishable subsets are necessary. The first subset contains
the analysed events and the second consists of the rest of
the network traffic. Both subsets are described by the same

2http://www.caida.org/data/overview/

subset of low-level features. Feature selection creates a sub-
set of features that discriminate events from the background
traffic.

The initial set of features is limited to simple statistics
such as count, minimum, maximum and average. In the next
step, the selection of features is performed by a decision
tree [4]. This selection results in a subset of relevant features
for use in model construction being created.

Although the tree is not a very complex classifier, its
main advantage is the ease of interpretation. Even a tree that
involves a large number of splits and nodes can be inter-
preted by users. Predictions of the tree are based on decision
rules. In classification problems, the user can specify mis-
classification cost. This is an important aspect when events
with extremely varied economic costs of misdetections such
as spam [17] or DDoS attacks [18] are discussed. In the
tree creation process, the Gini coefficient is calculated and
used as the measure of discrimination ability for selected
features [1]. The features with the best values of the coeffi-
cient are included into the model. The hierarchy of features
is used in the selection process. The features with a small
influence on the model are rejected from the set to min-
imise the computational overhead related to network traffic
processing.

The main disadvantage of the method is the fact that
each of the rejected features is evaluated individually, while
the rejection of several seemingly irrelevant features can
decrease the accuracy of the model. Therefore, the model
given by the reduced set of features should be compared
against the model created for the whole set of features.

The proposed method of selection yields a set of basic but
significant features. The reduction of features to the basic
statistics allows a collector to calculate the features rela-
tively fast. The analysis made by the tree replaces the feature
set with its subset containing the most significant features.

2.3 Flow collection

Packet header analysis and flow analysis are the main
approaches that should be discussed in the context of multi-
gigabit stream analysis. Neither of them utilise the informa-
tion contained in the payload. This fact is very important
for data volume reduction, but above all, to respect clients’
privacy. Therefore, a hash function can also be used to
obfuscate the IP addresses. Moreover, it was proven that
data does not need to be stored in some cases, as it can be
or even has to be processed in an on-line manner. Exam-
ples include the statistical detection of DDoS attacks [14]
and solutions developed on field-programmable gate array
(FPGA) cards [12].

Both hardware devices and software tools such as nProbe
can be used to constantly collect traffic data and emit Net-
Flow v9 flows towards a specified collector [6]. The set

http://www.caida.org/data/overview/
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of collected features is defined by a template. Default tem-
plates can be used to capture most of the basic features.
Moreover, the collector can also be extended by plug-ins to
provide other features.

The size of collected flows is significantly lower than the
size of complete frames or even just headers. However, even
for a very short period, the collection of data from a broad-
band remote access server (BRAS) creates multi-gigabyte
files. Therefore, only a limited subset of the traffic can be
analysed. There are two approaches to creating the subset.
In the first approach, the subset is a cross section of the
traffic. In this case, a random pool of clients’ IP addresses
is selected and observed. The pool must maintain a typical
proportion between various types of clients (business, indi-
vidual). In the second approach, the subset is a probe of a
typical environment where events occur. Such an environ-
ment can be defined by some protocol and ports. These two
approaches can be combined.

The filtering rules for the IP pool as well as for the pro-
tocol and ports can be described and applied during the
collection process in the form of Berkeley Packet Filter,
which is supported by nProbe.

2.4 Analysis of probe

A probe collected from the whole traffic should be checked
for the presence of the analysed events. This task can be
done by supervised learning. Several machine learning tech-
niques can be used, but such classifiers must be trained on
a learning set that consists of distinguishable events and
background traffic records. The classifier works as a binary
separator and separates the events from the rest of the traf-
fic. It is assumed that at least a part of the instances will be
incorrectly classified. Such records create a new class called
‘other.’ The size of the class determines the classifier’s con-
fidence level (better classifiers have a smaller other class).
After that, the other class is created and a new classifier is
trained. The classifier splits the data space into three classes:
an event, background traffic and other. The model created
by the classifier includes uncertainty about the result.

The classifier trained on a learning set has a tendency
to detect the events described by the learning set while the
events from the probe may have different characteristics.
Therefore, an ensemble of various classifiers trained on dif-
ferent data sets should be used instead. The schema of the
probe analysis and the classifier development is shown in
Fig. 3.

The classifiers in the ensemble have various accuracies
and confidence levels. Therefore, a final classification
should not be carried out by an unbalanced voting algo-
rithm. The following method is proposed instead. Each
classifier from the ensemble recognises three classes: an

event, background traffic and other. The latter class con-
tains all border cases. The classes are labelled by 1, −1
and 0, respectively. The classifier Ci that returns a decision
yi is described by two coefficients. The first one, si , is
the accuracy of discrimination between the events and the
background. The second one, ci , is a confidence level cal-
culated as a percent of decisions from outside of the other
class calculated as:

ci = 1 −
∑

yi=0
∑ . (1)

The final classification decision is the sign of a weighted
sum given by the formula:

y = sgn
n∑

i=1

si
∑n

j=1 sj

ci
∑n

j=1 cj
yi , (2)

where n is the number of classifiers in the ensemble.
The presented analysis method is essential for the whole

proposed methodology. Various sources of data are neces-
sary to create a universal probe. On the other hand, the
ensemble of classifiers is a tool that can be easily extended
to improve the classification quality.

2.5 Enrichment of probe

If the number of records in the probe describing the anal-
ysed event is scarce, then new records should be added. As
stated before, the probe can be used just as a background for
the observed events. Then, the events from a learning set can
be added to the probe or the probe already contains inter-
esting events and new records should be generated based on
the existing records. Both approaches are described in the
following sections.

2.5.1 Contaminations from outside sources

Adding data to the probe brings several problems. Most of
all, contaminations from outside sources should have the
same set of features as the probe. Otherwise, features that
describe contaminations must be transformed to the proper
form. This problem can be avoided if the same technique is
used to collect data in both cases.

The second problem occurs especially when additional
data is collected in the same network. In such a situation,
the data may be described with the same source and des-
tination as existing flows. If flows concern different pairs
of sources and destinations, where a source and a destina-
tion is defined by the IP number and port, then a new set
of flows can be simply concatenated with the probe. Other-
wise, the features should be recalculated. It is assumed that
all features are simple statistics such as count, minimum,
maximum and average.
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Fig. 3 Analysis of the probe. Data collected from various servers are
used to create binary classifiers. Records misclassified by the classi-
fiers create a new class. In turn, multi-class classifiers that split data

into ultimate classes, being the event, background traffic and other, are
developed. The classifiers are grouped in an ensemble. The ensemble
is used to analyse the probe

If in the probe P and in the outside set O two flows with
the same source and destination exist, then a new statistic
for the feature f is calculated from features f P and f O as:

fmax = max
(
f P

max, f
O
max

)
,

fmin = min
(
f P

min, f
O
min

)
,

fcount = f P
count + f O

count,

favg = f P
countf

P
avg + f O

countf
O
avg

fcount
. (3)

New records are added to the probe because the propor-
tion of records which describe the event is relatively small.
However, the new records may cover original records and
change the characteristic of the event. This can be benefi-
cial if the new records describe the specific aspect of the
observed event. Nevertheless, in the situation when records
from the probe are the main aim of research, a different
methodology should be used. The methodology is described
by the following algorithm.

Let R be a subset of the probe that describes the event and
the pair (O,�) is a partially ordered set, where O is a set of
outside records and r is a partial order relation over a set O.
The relation � is defined as

∀o1,o2∈Oo1 � o2 ≡ min
r∈R d(o1, r) ≤ min

r∈R d(o2, r), (4)

where the function d(o, r) is a distance calculated between
the records o and r. Usually, the distance between records is
the Euclidean metric

d(o, r) =
√
√
√
√

n∑

i=1

(oi − ri)2. (5)

The records can be normalised to the rage [0, 1] to level
off influence of features. However even then, the distance
for binary features is always 0 or 1 and individual features
are mostly independent. Therefore, the Manhattan distance
can be used instead

d(o, r) =
n∑

i=1

|oi − ri |. (6)

An application of the reaction � implies that the first
records of the list created by the ordered set O have similar
equivalents in the set R.

Now, subsequent records from the list can be added to
the set until a desired quantity is obtained. An alternative
approach assumes that records are added until the value of
d is below some threshold.

2.5.2 Contaminations generated by genetic algorithm

Contaminations may also be generated without outside
influences using a genetic algorithm. The algorithm cre-
ates two new records based on two existing records. Each
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record is described as a set of continuous and discrete fea-
tures. Randomly selected records are transformed into new
records by crossover and mutation operators. The fitness of
the created record is checked by a classifier that recognises
the event. The details are given below.

Each flow is described by a set of continuous c1, c2, . . . ,

cn and discrete d1, d2, . . . , dm features. Therefore, two ran-
domly selected flows from the set R can be described
as:

r1 = c1
1, c

1
2, . . . , c

1
n, d

1
1 , d

1
2 , . . . , d

1
m,

r2 = c2
1, c

2
2, . . . , c

2
n, d

2
1 , d

2
2 . . . d

2
m. (7)

The records r1 and r2 can be used to generate new
records through genetic operators: crossover and mutation.
The crossover operator works separately on continuous and
discrete features.

New continuous features are calculated as averages of
parents’ values:

∀ni=0c
a
i = c1

i + c2
i

2
. (8)

The same method cannot be applied to discrete features.
Therefore, two copies of a flow are created. Both flows
have the same continuous features but their discrete features
are inherited from different parents. Hence, new records are
defined as:

r3 = ca1 , c
a
2 , . . . , c

a
n, d

1
1 , d

1
2 , . . . , d

1
m,

r4 = ca1 , c
a
2 , . . . , c

a
n, d

2
1 , d

2
2 . . . d

2
m. (9)

The mutation operator can be used optionally and should
be used when the initial number of flows is very small.
The operator changes one of the discrete features into its
opposite:

∃!i∈{1,...,m}di = (1 − di), (10)

where ∃! means that there is one and only one discrete
feature changed.

The created records can be considered as the event if
and only if the classifier recognises them as the event.
Only verified records should be added to the probe R. In
other cases, the records should be generated once again.
An exception can be made when the probe R is cre-
ated to verify heuristic methods that should recognise a
new form of events. In such a case, additional limita-
tions on the form of created records depend on the type
of events.

2.6 Procedure

The assumptions presented in this section create a coher-
ent methodology. The whole method is summarised in
Algorithm 1. An input of the algorithm is a labelled set of
PCAP and classifiers. As an output, a reference set is cre-
ated. The set consists of NetFlow records that are labelled
by classifiers trained on input data. The set can be extended
by additional records.

3 Creation of testing environment

3.1 Introduction

Constructing classifiers detecting anomalies in network traf-
fic involves performing many rigorous tests to evaluate
their performance. Setting up a proper testing environment
for such a purpose is not a trivial task. First of all, it
should make trying out various approaches as easy as pos-
sible under laboratory conditions. Secondly, it should allow
experiments to be performed on different scales—ranging
from simple proof of concept checks performed on sin-
gle machines to much larger experiments involving e.g.
hundreds of computers connected to a local network.

This general concept translates into a number of impor-
tant requirements from the experimenters’ point of view. An
ideal testing environment would therefore:

1. Make implementing the developed methods a straight-
forward task, and thus incorporate a rich programming
environment with a variety of robust libraries and easy
access to the underlying network traffic,

2. Be easily pluggable into many points of a complicated
network,

3. Be adaptable to the desired scale of the test (up to a rea-
sonable extent),

4. Have the ability to introduce anomalies into the network
in a controlled fashion,

5. Be robust and easy to set up even on low-end hardware.

Notice that the hardware requirements are rather vague
as these are strictly connected to the specific anomaly types
and methods being tested and cannot be stated in the general
case.

3.2 Proposed solution

The testing environment we propose is a distributed sys-
tem consisting of probes plugged into key points of some
network. Each of these probes monitors the passing traf-
fic and performs computations connected with extracting its
features and applying the tested anomaly detection methods.
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Algorithm 1 The creation of a reference set



Ann. Telecommun. (2014) 69:363–377 371

In such an approach, the probes are independent so scal-
ing to a larger network simply involves increasing their
number. It should also be noted that when the tested detec-
tion methods are error prone, robustness may be obtained
through redundancy—then a failure of a single probe does
not corrupt the entire testing system.

In the case of more complex situations or more com-
putationally expensive methods, such an environment may
be extended by dividing the responsibilities and introducing
hierarchy. In such a situation, the testing environment con-
sists of interconnected nodes that can be divided into three
general types:

1. Probes directly processing ongoing network traffic,
extracting the necessary features and performing initial
calculations,

2. Analysers aggregating the results obtained from probes
and other analysers and performing higher level calcu-
lations,

3. Collectors storing the calculation results (e.g. in a
database).

The concrete number of node types and their responsibili-
ties of course need to be carefully tailored to the specific
anomaly type and methods. The benefits of splitting the
computational effort include better scaling to large traffic
loads and support for the implementation of sophisticated
methods requiring information originating from distinct
points of the underlying network.

One of the tools available for network monitoring is
nProbe, which has already been mentioned in this article.
Its basic use involves monitoring network traffic and gener-
ating NetFlow flows which can either be directly collected,
exported further or both. Another possibility is that it may
become a proxy which receives and transforms the flows
originating from other sources. After the transformation, the
flows may also be collected directly or exported further. The
operations performed while monitoring network traffic and
transforming the flows may be extended by custom plug-ins
written in the C programming language. As this language
has a rich ecosystem consisting of countless tools and
libraries, it provides a suitable programming environment
for creating efficient implementations of anomaly detection
methods. All these properties make nProbe an ideal base for
implementing the proposed testing environment.

The possibility of introducing specific anomalies into the
network is a crucial element of the testing environment. This
can be performed by at least two methods: replaying pre-
viously recorded packets and generating packets according
to some given flow. The first method is a straightforward
task which may be technically performed using for exam-
ple tcpreplay.3 However, it requires a PCAP file with the

3http://tcpreplay.synfin.net/

recorded anomaly. It should be noted that care needs to be
taken in order to prevent possible legal problems connected
with storing the payload and IP addresses.

The second anomaly injection method is somewhat more
complicated and based not on raw packets but on flows
recorded during the anomaly occurrence. This approach
may be easily explained if we notice that a flow r may
be interpreted as a value of function � which aggregates a
sequence of packets ψ , so r = �(ψ).

If it is possible to define a reverse function �−1 which
generates a sequence of packets from the given flow (ψ̂ =
�−1(r)), then, if these packets are injected into the network,
the monitoring probe should record the occurrence of flow
r.

Such a generated sequence will of course differ from
the original one, so we have ψ̂ �= ψ . However, as the
tested classifiers operate on flows rather than raw traffic, a
situation in which the probe records the desired flow r is
sufficient for experimental purposes.

The question remains whether it is possible to construct
the �−1 function. This of course depends on the types of
features that are present in the flow. In some cases, creating
a proper sequence of packets will be trivial, e.g. if we are
only interested in the minimal lmin and maximal lmax packet
length and the total length of the flow ltot, we simply need
to construct a sequence of packets consisting of:

1. a single packet of length lmin,
2. if lmax > lmin : a single packet of length lmax,
3. if ltot > lmax : k packets such that each one has a length

in the range [lmin, lmax] and the total length of all the k
packets is equal to ltot − lmax − lmin.

However, there exist features for which constructing a
reverse function might be very difficult. A good example
would be a feature which is the result of using some sort
of hash function on the packets. In the case of methods
operating on features which are results of simple statistical
functions, such a situation will never occur.

Technically, such an injection may be performed using a
packet crafting tool such as, e.g. Nemesis4 or Mausezahn.5

4 Use case: spam detection

The methodology described in Section 2.1 was used to cre-
ate a reference set that contains spam. All steps of the
method are presented in the following sections.

4http://nemesis.sourceforge.net/
5http://www.perihel.at/sec/mz/

http://tcpreplay.synfin.net/
http://nemesis.sourceforge.net/
http://www.perihel.at/sec/mz/


372 Ann. Telecommun. (2014) 69:363–377

4.1 Features selection

Flow-level parameters selected in [20] as a subset of the
set defined in [16] are the base for features selection. The
features were calculated for flows collected by Z̆ádnı́k and
Michlovský [20]. The authors collected data from the SMTP
server hosting mailboxes of the Liberouter6 project group.
The data set contains over 58,000 records described by 64
features and divided into several classes. Among all classes,
two describe spam. The first class dnsbl contains flows
from IP addresses mentioned on DNS black lists.7 The sec-
ond class y spam consists of flows that were successfully
received and marked as spam by SpamAssassin.8 In this
paper, both classes are considered as a single class spam.

The same set of features was used to develop the new set
of NetFlow records that was collected at Warsaw Univer-
sity of Technology. The set originates from the mail server
Alpha and consists of NetFlow records containing the same
collection of features as Z̆ádnı́k’s set. The data was collected
over one working week. More than 42,000 NetFlow records
were collected. Among them, 589 records were labelled as
spam. The labelling method was similar to the method used
in [20]. SpamAssassin logs were compared with collected
flows. The spam detector decision was ascribed to a flow
with the same source and a close receipt time.

It was shown in [8] that the set of 64 features proposed in
[20] contains partly redundant features and the dimension-
ality of the data can be reduced. Therefore, feature selection
should be considered to eliminate redundant and irrelevant
features.

Discrimination rules that separate spam from the rest of
the traffic were developed for both created sets. This task
was performed using a C&RT tree [4], which creates clear
decision rules. A classification tree selects features because
of the Gini coefficient [1], which is a measure of statistical
dispersion. The feature significance is computed by sum-
ming over all nodes in the tree the drop in node impurity.
The results are expressed relative to the largest sum found
over all predictors where the largest sum is assigned 100
points. The details of this method are given in [4].

The accuracy of both classifiers was about 97 %. How-
ever, the tree structures were different. Therefore, various
features were selected as the most significant. The final fea-
tures set should not be based only on features selected as
major by both classifiers because such a set would be very
limited. Instead, the set can be extended by the features
selected by only one classifier. It is worth noting here that
different features may provide the same information. Hence,

6http://liberouter.org/
7http://cbl/abuseat/org/
8http://spamassassin.apache.org/

inevitably different feature sets may be used by different
classifiers.

The most significant features are collected in Table 1.
Features are calculated separately for both directions.
Therefore, the final set consists of 24 features.

4.2 Capture NetFlow records and features calculation

NetFlow records were collected by nProbe. This tool allows
the user to define a template of a NetFlow record. The tem-
plate, which was used in the case of spam, consists of IPv4
data, information about the number of bytes and packets,
flags and others. Traffic was filtered using the BPC Berke-
ley Packet Filter rule that limits collected data to the mail
traffic. As a result, 176,446 records were created. The total
size of records was 17.5 MB.

The collected records should be rewritten to achieve a
form similar to the set of the most important features that is
presented in Table 1 . Several features such as the count of
packets and the minimum and maximum lengths of packets
can be calculated directly from a built-in nProbe template.
The features based on flags such as the count or average
length of packet having a given flag cannot be calculated
from the template. Bit information about the flags set is
calculated instead. Eventually, the created set of features
consists of simple statistics calculated for packet length and
binary information about flags presence.

4.3 Probe analysis

Two classifiers were used to separate the traffic into three
classes: spam, background traffic and others. The first one
was a support vector machine (SVM) [21]. The second one
was a random forest [4]. Both techniques were trained on
records from Z̆ádnı́k’s and Alpha sets separately. The sets
consist of two classes, i.e. spam and background traffic. The

Table 1 The most significant features describing spam

Significance Name Description

100.0 slas Average length of packets having the ACK flag

99.5 spl Average packet length

91.0 slps Average length of packets having the PUSH flag

90.5 maxpl Maximum packet length

84.0 maxtw Maximum TCP window size

82.5 spps Count of packets having the PUSH flag

73.0 stw Average TCP window size

68.0 mintw Minimum TCP window size

67.5 maxttl Maximum TTL

67.0 sp Packets count

66.5 minttl Minimum TTL

66.5 sttl Average TTL

http://liberouter.org/
http://cbl/abuseat/org/
http://spamassassin.apache.org/
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third class ‘other’ was created from records misclassified by
the binary classifiers. The final classifiers were trained on
the three classes.

The obtained results are at least as good as those pre-
sented in other works. However, it is hard to compare the
obtained results directly. For example, in the work [13], the
machine learning techniques gave 93 % accuracy, but the
classified set was different form the one discussed in our
works. In the work [20], the same set of features was used
for the same records (Z̆ádnı́k’s set) but the classifiers recog-
nised five classes. The precision was about 96 % in this
case. Finally, in the work [8], Z̆ádnı́k’s set was separated
into three classes: spam, correct and others. The best result
obtained by an MLP network was 96 %. However, in the
last article, the main aim of the work was the dimensionality
reduction rather than classifier tuning.

The probe collected from BRAS was analysed by ensem-
bles of classifiers based on NetFlow features. The analysis
shows that the observed event spam is almost impercepti-
ble in the probe. The share of spam in the probe is less than
0.5 %. If the probe were to be used as a spam reference set,
contamination should be added.

4.4 Created reference sets

Apart from the collected probe, two additional reference
sets were created. In both sets, the number of spam records
was increased by 19,000. That gives about 10 % of spam in
the analysed probe, whereas the participation of spam was
imperceptible in the original set.

The first set was created by adding records from the out-
side set (the approach was described in Section 2.5.1). The
records came from different sources and thus a simple con-
catenation was enough to merge sets. The contamination
changed the characteristic of spam to a significant degree.

The contamination of the second set was generated by
a genetic algorithm, based on the approach described in
Section 2.5.2. The new records were generated on the basis
of existing ones and the characteristic of spam changed
minimally.

The first created set can be used as a training set for meth-
ods that should recognise the given type of spam among

typical traffic. The second set can be used as a training
set for methods that should detect any kind of spam in the
analysed environment.

In the spam detection case, the a priori probability is
sometimes too small to create a valid classifier. This prob-
lem can be solved by the creation of a balanced learning set.
This can be done by reduction of records in a dominant class
or by adding new spam records.

Table 2 presents classification results for SVM classifiers
trained on various data sets including the original set. An
RBF kernel was used with γ = 0.8 and C ∈ [1, 10]. The
evaluation of classification on the sets was performed by a
10-fold cross-validation.

The a priori classification probability for spam in the
original probe was too small to create a classifier that detects
spam. However, the spam detection can be improved if a
reference set is used.

The classifier trained on the additional outside set detects
over half of spam records, but has a higher false positive
ratio. However, false alarms may be less expensive than
missed events.

Records from the outside set may have different charac-
teristics than spam records from the original probe. There-
fore, one more test has been performed on the generated
records.

The generated records have the same characteristics as
records from the probe. The classifier trained on this set
can detect spam similar to the spam given by the probe.
Only 1 % of spam is detected but it may be assumed that
the recognition of spam can be improved by increasing the
number of generated records.

4.5 Testing environment and experimental results

In order to apply the developed spam detection methods to
real network traffic, a testing environment was prepared fol-
lowing the concepts presented in Section 3. At the core of
this environment lies an nProbe plug-in which classifies the
flows gathered from the underlying network traffic using the
provided classifier.

When the probe exports a finished flow, the plug-in
effectively becomes active and performs a number of tasks:

Table 2 Classification results for various reference sets

Set Class Count Correct Incorrect Correct % Incorrect %

Original Background 43,875 43,875 0 100 0

Spam 239 0 239 0 100

Original Background 43,876 42,915 961 98 2

+ Outside Spam 4,319 1,983 2,336 45 54

Original Background 43,879 43,879 0 100 0

+ Generated Spam 4,985 54 4,931 1 99
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Fig. 4 An example network
setup: two local networks
connecting to the internet
through a gateway with nProbe

1. It calculates the flow features required by the classifier,
2. It transforms the calculated features into data structures

acceptable for a given classifier,
3. It runs the classifier and collects the resulting class,
4. It appends both the calculated features and the resulting

class to the exported flow.

Thus, we are able to apply these models under real-world
conditions. In the case of the presented results, the clas-
sifier was a random forest model prepared during our
experiments.

A typical use case for the plug-in is monitoring networks
for spam in situations similar to the one depicted in Fig. 4.

In this example, there are two networks connected
through a gateway that constantly monitors the traffic using
nProbe with the spam plug-in activated. If some source host
starts sending spam to the computers in local network A,
the plug-in will be able to detect this procedure and the host
may be blocked.

To gain an insight into the computational performance
of the presented environment, load tests were performed.
The purpose of these experiments was to determine whether
using the spam plug-in has a significant influence on
nProbe’s throughput. To carry out network tests, three gen-
eral approaches may be identified: simulation, live experi-
mentation and emulation [15]. Simulation is computation-
ally extensive and is most suitable for simplifying problems,
focusing on their specific aspects or when hardware and
firmware modifications are required [3]. Therefore, it is not
feasible for load testing purposes. As (in comparison with
live testing) emulation provides better control over the net-
work elements, the tests were performed in an emulated
virtual environment.

The experiments were conducted using a simple network
consisting of only two hosts. The first one was injecting
traffic while the second host was a server monitoring the
network using nProbe and measuring the times needed to
prepare NetFlow data. The computational effort required
during such data preparation is of course directly connected
to the list of exported fields. During the load tests, we
focused on estimating the extent to which using the spam
plug-in influences this procedure, thus the three different
lists described in Table 3 were used. For each list, a series
of independent experiments with increasing traffic volumes
were performed—the lower and upper traffic levels were
approximately 10,000 and 20,000 packets per second.

One important aspect of the experiment is connected with
injecting the network traffic. As the spam plug-in only per-
forms computations once per flow and the purpose of the
load tests was to measure its overhead, there should be a
large number of distinct flows generated during these tests
rather than only a large number of packets. Thus, the traf-
fic injected into the network consisted of short 10-packet
flows generated from a base sample of 10,000 flows by ran-
domising the host IP addresses. The base sample originated
from the already mentioned Alpha data set and provided
sufficient packet variety for load testing purposes.

In order to verify the claims about the low hardware
requirements of nProbe, the experiments were performed on
hardware with computational performance which is low by
modern standards. For that purpose, nProbe was installed on
a virtual server with significantly limited CPU speed, which
in terms of floating point operations per second (FLOPs)
roughly corresponded to Intel Pentium III @750 MHz pro-
cessors. This can be verified by analysing Fig. 5, which

Table 3 NetFlow fields used
during load testing experiment
setups S1,S2 and S3

S1 S2 S3 Field code Description

� � � IP4 SRC ADDR Source host IP4 address

� � � L4 SRC PORT Source host port

� � � IP4 DST ADDR Destination host IP4 address

� � � L4 DST PORT Destination host port

� � � PROTOCOL Communication protocol

� � spam FEATURES Input features for spam classifiers

� spam Random forest classification result
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Fig. 5 The computational
capabilities of the server in
comparison to legacy (a) and
modern (b) CPUs. The
comparison is based on the
number of GFLOPs obtained by
the server in the linpack
benchmark (e.g [22]) which is
compared to values stated in
Intel’s microprocessor export
compliance metrics. It may be
noticed that the server’s
performance is very poor by
modern standards

presents a comparison of the GFLOPs performance metric
for various CPU types. Although we were not able to slow
down other characteristics of the hardware used, e.g. the
memory access latency, we believe that the approach used
is sufficient to emulate a network probe based on low-end
hardware.

The resulting data from the experiments was collected
and preprocessed. The preprocessing consisted in removing
the lower and upper 10 percentiles of the measured times.
This was necessary as measuring computation times in
nanosecond resolution is very sensitive to e.g. background
operating system operations which may significantly dis-
tort the results. The resulting data was used to calculate the
mean export data generating times for different experiment
runs as presented in Fig. 6. The differences between the
three setups are clear, although it may be noticed that apply-
ing the spam classifier only increases the computations by
roughly 9,000 ns, which is a satisfying result (this is also
summarised in Table 4). The overall loss of throughput may
be evaluated by analysing the occurrences of packet drop-
ping during the experiments. It should be noted that the

Fig. 6 Mean times required to prepare the flow data measured during
the experiments. The three plotted series reflect the S1,S2,S3 setups.
The points corresponding to runs with observed dropped packets are
surrounded with a grey circle

number of packets per second influences the general com-
putational load of nProbe. However, the effort required to
prepare features for the spam plug-in and perform classi-
fication is connected with the number of flows per second
rather than the number of packets per second. As already
mentioned, during the experiments, short flows were used
in order to put the focus on overloading nProbe due to
exporting rather than capturing packets.

The results obtained suggest that when the traffic load is
greater than approximately 16,000 packets per second, the
nProbe server becomes overloaded and thus at times drops
packets. Analysing the data, there is however no clear pat-
tern suggesting that applying the spam plug-in significantly
increases the overload level. Therefore, we may conclude
that it does not cause a significant decrease in the overall
nProbe throughput, so the upper performance limits will be
rather imposed by nProbe itself, not the proposed plug-in.

In order to gain insight into how the obtained results
correspond to real production environment conditions, a
23-h anonymised NetFlow sample originating from one of
Orange’s BRAS was analysed. During the analysis, flows
connected with sending emails were identified and used to
estimate the magnitude of this kind of traffic. There were
approximately three such flows per second and their packet
rate, estimated using a 1-s moving average window, was
71 ± 386[pps], which is significantly less than the rate
which was analysed during the low-end hardware experi-
ments. This means that the entire email traffic from a single
BRAS could be handled by the legacy hardware used during
the experiments.

Table 4 Times (in nanoseconds) required to prepare the flow data
measured during the load testing experiments

S1 times [ns] S2 times [ns] S3 times [ns]

Mean 4,157 8,u445 15,051

Median 3,594 7,597 12,684

Std. dev. 2,230 4,263 7,558
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Presented approximation is simple but adequate for the
discussed case. More complex model can be used in the
future (cf [10]).

The question arises: what is the upper traffic limit for
nProbe with the spam plug-in? As the maximal nProbe9

throughput is not significantly limited by the spam plug-
in, a rough performance estimate may be based on data
provided with this software and used to answer such a ques-
tion. According to the performance data published by ntop10

when run on dual core hardware, the probe is easily capable
of handling traffic above 1, 000 [Kpps] without dropping
packets. This means that it should also be possible to analyse
traffic of similar magnitude in real time using nProbe with a
spam plug-in installed on a modern multi-core machine with
an appropriate network interface. Alternatively, a hardware
solution can be used. The preliminary analysis suggests
that the proposed method or its simpler variation can be
implemented on FPGA cards [2].

5 Conclusions

Development of representative data sets and evaluation of
threat detection techniques are considered the major chal-
lenges in network data analysis. Hence, a way of developing
a combination of reference data sets and a testing environ-
ment has been proposed. First, the need for reference data
sets and the benefits of reference data sets composed of
NetFlow records were discussed. This was followed by a
description of how the network traffic capturing and trans-
formation process can be organised. Equally importantly, its
relation to the use of machine learning methods has been
addressed.

The approach proposed in this study was validated using
spam detection as a test case. Real data sets composed of
mail records were developed and reduced. Next, they were
used to generate network traffic of requested volumes to
test both the accuracy and throughput of the spam detection
system. Importantly, the tests were made with data based
on real network traffic. Moreover, mechanisms for captur-
ing new network traffic and converting it into a useful set
of relevant features were proposed. Finally, an end-to-end
testing strategy was proposed and performed. This took into
account the feasibility of the entire threat detection process

9In the tests, nProbe version 6.9.4 was used
10http://www.ntop.org/nprobe/tuning-nprobe-6–4–scalability–and–per
formance/

including traffic capturing, calculation of flow features and
analysis by the proposed threat detection algorithm.

In the future, other threats such as different categories
of DDoS attacks will be analysed. This will involve data
set creation and development of detection techniques. The
experience gained from the analysis of new problems will be
used to augment the proposed strategy for end-to-end threat
detection testing.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s)
and the source are credited.
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