321 research outputs found
Vitellogenin Underwent Subfunctionalization to Acquire Caste and Behavioral Specific Expression in the Harvester Ant Pogonomyrmex barbatus
PMCID: PMC3744404This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication
The Molecular Clockwork of the Fire Ant Solenopsis invicta
This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication
Social stress increases the susceptibility to infection in the ant Harpegnathos saltator
Aggressive interactions between members of a social group represent an important source of social stress with all its negative follow-ups. We used the ponerine ant Harpegnathos saltator to study the effects of frequent aggressive interactions on the resistance to different stressors. In these ants, removal or death of reproducing animals results in a period of social instability within the colony that is characterized by frequent ritualized aggressive interactions leading to the establishment of a new dominance structure. Animals are more susceptible to infections during this period, whereas their resistance against other stressors remained unchanged. This is associated with a shift from glutathione-S-transferase activities towards glutathione peroxidase activities, which increases the antioxidative capacity at the expense of their immune competence
Sources of variation in cuticular hydrocarbons in the ant formica exsecta
Phenotypic variation arises from interactions between genotype and environment, although how variation is produced and then maintained remains unclear. The discovery of the nest-mate recognition system in Formica exsecta ants has allowed phenotypic variation in chemical profiles to be quantified across a natural population of 83 colonies. We investigated if this variation was correlated or not with intrinsic (genetic relatedness), extrinsic (location, light, temperature) or social (queen number) factors. (Z)-9-Alkenes and n-alkanes showed different patterns of variance: island (location) explained only 0.2% of the variation in (Z)-9-alkenes, but 21¬–29% in n-alkanes, whereas colony of origin explained 96% and 45–49% of the variation in (Z)-9-alkenes and n-alkanes, respectively. By contrast, within-colony variance of (Z)-9-alkenes was 4%, and 23–34% in n-alkanes, supporting the function of the former as recognition cues. (Z)-9-Alkene and n-alkane profiles were correlated with the genetic distance between colonies. Only n-alkane profiles diverged with increasing spatial distance. Sampling year explained a small (5%), but significant, amount of the variation in the (Z)-9-alkenes, but there was no consistent directional trend. Polygynous colonies and populous monogynous colonies were dominated by a rich C23:1 profile. We found no associations between worker size, mound exposure, or humidity, although effect sizes for the latter two factors were considerable. The results support the conjecture that genetic factors are the most likely source of between-colony variation in cuticular hydrocarbons
The impact of negative selection on thymocyte migration in the medulla
Developing thymocytes are screened for self-reactivity before they exit the thymus, but how thymocytes scan the medulla for self antigens is unclear. Using two-photon microscopy, we observed that medullary thymocytes migrated rapidly and made frequent, transient contacts with dendritic cells. In the presence of a negative selecting ligand, thymocytes slowed, became confined to areas of approximately 30 mum in diameter and had increased contact with dendritic cells surrounding confinement zones. One third of polyclonal medullary thymocytes also showed confined, slower migration and may correspond to autoreactive thymocytes. Our data suggest that many autoreactive thymocytes do not undergo immediate arrest and death after encountering a negative selecting ligand but instead adopt an altered migration program while remaining in the medullary microenvironment
A heterozygous moth genome provides insights into herbivory and detoxification
How an insect evolves to become a successful herbivore is of profound biological and practical importance. Herbivores are often adapted to feed on a specific group of evolutionarily and biochemically related host plants1, but the genetic and molecular bases for adaptation to plant defense compounds remain poorly understood2. We report the first whole-genome sequence of a basal lepidopteran species, Plutella xylostella, which contains 18,071 protein-coding and 1,412 unique genes with an expansion of gene families associated with perception and the detoxification of plant defense compounds. A recent expansion of retrotransposons near detoxification-related genes and a wider system used in the metabolism of plant defense compounds are shown to also be involved in the development of insecticide resistance. This work shows the genetic and molecular bases for the evolutionary success of this worldwide herbivore and offers wider insights into insect adaptation to plant feeding, as well as opening avenues for more sustainable pest management.Minsheng You … Simon W Baxter … et al
Quantum Dot Targeting with Lipoic Acid Ligase and HaloTag for Single-Molecule Imaging on Living Cells
We present a methodology for targeting quantum dots to specific proteins on living cells in two steps. In the first step, Escherichia coli lipoic acid ligase (LplA) site-specifically attaches 10-bromodecanoic acid onto a 13 amino acid recognition sequence that is genetically fused to a protein of interest. In the second step, quantum dots derivatized with HaloTag, a modified haloalkane dehalogenase, react with the ligated bromodecanoic acid to form a covalent adduct. We found this targeting method to be specific, fast, and fully orthogonal to a previously reported and analogous quantum dot targeting method using E. coli biotin ligase and streptavidin. We used these two methods in combination for two-color quantum dot visualization of different proteins expressed on the same cell or on neighboring cells. Both methods were also used to track single molecules of neurexin, a synaptic adhesion protein, to measure its lateral diffusion in the presence of neuroligin, its trans-synaptic adhesion partner.National Institutes of Health (U.S.) (R01 GM072670)Camille & Henry Dreyfus FoundationMassachusetts Institute of Technology. Computational and Systems Biology Program. MIT-Merck Postdoctoral Fellowshi
Dietary fat quality impacts genome-wide DNA methylation patterns in a cross-sectional study of Greek preadolescents
The type and the amount of dietary fat have a significant influence on the metabolic pathways involved in the development of obesity, metabolic syndrome, diabetes type 2 and cardiovascular diseases. However, it is unknown to what extent this modulation is achieved through DNA methylation. We assessed the effects of cholesterol intake, the proportion of energy intake derived from fat, the ratio of polyunsaturated fatty acids (PUFA) to saturated fatty acids (SFA), the ratio of monounsaturated fatty acids (MUFA) to SFA, and the ratio of MUFA+PUFA to SFA on genome-wide DNA methylation patterns in normal-weight and obese children. We determined the genome-wide methylation profile in the blood of 69 Greek preadolescents (∼10 years old) as well as their dietary intake for two consecutive weekdays and one weekend day. The methylation levels of one CpG island shore and four sites were significantly correlated with total fat intake. The methylation levels of 2 islands, 11 island shores and 16 sites were significantly correlated with PUFA/SFA; of 9 islands, 26 island shores and 158 sites with MUFA/SFA; and of 10 islands, 40 island shores and 130 sites with (MUFA+PUFA)/SFA. We found significant gene enrichment in 34 pathways for PUFA/SFA, including the leptin pathway, and a significant enrichment in 5 pathways for (MUFA+PUFA)/SFA. Our results suggest that specific changes in DNA methylation may have an important role in the mechanisms involved in the physiological responses to different types of dietary fat
The oyster genome reveals stress adaptation and complexity of shell formation
The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa. © 2012 Macmillan Publishers Limited. All rights reserved
HIstome—a relational knowledgebase of human histone proteins and histone modifying enzymes
Histones are abundant nuclear proteins that are essential for the packaging of eukaryotic DNA into chromosomes. Different histone variants, in combination with their modification ‘code’, control regulation of gene expression in diverse cellular processes. Several enzymes that catalyze the addition and removal of multiple histone modifications have been discovered in the past decade, enabling investigations of their role(s) in normal cellular processes and diverse pathological conditions. This sudden influx of data, however, has resulted in need of an updated knowledgebase that compiles, organizes and presents curated scientific information to the user in an easily accessible format. Here, we present HIstome, a browsable, manually curated, relational database that provides information about human histone proteins, their sites of modifications, variants and modifying enzymes. HIstome is a knowledgebase of 55 human histone proteins, 106 distinct sites of their post-translational modifications (PTMs) and 152 histone-modifying enzymes. Entries have been grouped into 5 types of histones, 8 types of post-translational modifications and 14 types of enzymes that catalyze addition and removal of these modifications. The resource will be useful for epigeneticists, pharmacologists and clinicians. HIstome: The Histone Infobase is available online at http://www.iiserpune.ac.in/∼coee/histome/ and http://www.actrec.gov.in/histome/
- …
