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Dietary fat quality impacts genome-wide DNA
methylation patterns in a cross-sectional study
of Greek preadolescents

Sarah Voisin*,1,4, Markus S Almén1,4, George Moschonis2, George P Chrousos3, Yannis Manios2

and Helgi B Schiöth1

The type and the amount of dietary fat have a significant influence on the metabolic pathways involved in the development

of obesity, metabolic syndrome, diabetes type 2 and cardiovascular diseases. However, it is unknown to what extent this

modulation is achieved through DNA methylation. We assessed the effects of cholesterol intake, the proportion of energy intake

derived from fat, the ratio of polyunsaturated fatty acids (PUFA) to saturated fatty acids (SFA), the ratio of monounsaturated

fatty acids (MUFA) to SFA, and the ratio of MUFAþPUFA to SFA on genome-wide DNA methylation patterns in normal-weight

and obese children. We determined the genome-wide methylation profile in the blood of 69 Greek preadolescents (B10 years

old) as well as their dietary intake for two consecutive weekdays and one weekend day. The methylation levels of one CpG

island shore and four sites were significantly correlated with total fat intake. The methylation levels of 2 islands, 11 island

shores and 16 sites were significantly correlated with PUFA/SFA; of 9 islands, 26 island shores and 158 sites with MUFA/SFA;

and of 10 islands, 40 island shores and 130 sites with (MUFAþPUFA)/SFA. We found significant gene enrichment in 34

pathways for PUFA/SFA, including the leptin pathway, and a significant enrichment in 5 pathways for (MUFAþPUFA)/SFA.

Our results suggest that specific changes in DNA methylation may have an important role in the mechanisms involved in the

physiological responses to different types of dietary fat.
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INTRODUCTION

According to the World Health Organization1, worldwide obesity has
nearly doubled since 1980, resulting in an increase in cardiovascular
diseases and diabetes type 2. One of the possible causes to this
negative development is the increase of consumption of energy-dense
foods that are high in fat. Dietary guidelines do not only recommend
to eat a moderate amount of fat, but they also recommend to
consume the right type of fat.2 Fatty acids include saturated
fatty acids (SFA), monounsaturated fatty acids (MUFA) or
polyunsaturated fatty acids (PUFA), and their structural differences
explain why they have different biological effects.3 Consuming PUFA
or MUFA instead of SFA is known to improve the blood lipid profile.4

Moreover, consumption of SFA in place of MUFA may worsen
glucose-insulin homeostasis.5 Finally, replacing SFA with PUFA has
been reported to lower coronary heart disease risk.6

Some of the effects of the qualitative and quantitative aspects
of fat intake have been imputed to a modification of the transcription
of key genes involved in pathways related to lipid and glucose
metabolism, and/or inflammation.7 The regulation of gene
expression can be achieved by mechanisms other than changes in
the nucleotide sequence, namely epigenetic processes. Such processes
are responsible for the establishment, maintenance, and reversal
of metastable transcriptional states.8 One major example of such
processes is the methylation of cytosine, usually at CpG dinucleotides,

called DNA methylation. Regions rich in CpGs are called ‘CpG
islands’ and are mostly unmethylated when located in the promoter
of active genes. Conversely, methylated promoters are associated with
reduced gene expression.9

Five studies have investigated the link between DNA methylation
and fat intake in humans, but the methylation assays in those studies
were limited to only few key genes. One study found a significantly
higher methylation in the peroxisome proliferator-activated receptor
coactivator-1 gene (PPARGC1A) in high-fat overfed men.10 Another
study found that the clock circadian regulator gene (CLOCK)
methylation was negatively associated with MUFA intake, but
positively associated with PUFA intake.11 A third study showed that
higher n-6 PUFA intake was associated with lower methylation in the
promoter of tumor necrosis factor-a (TNFa).12 A fourth study found
no significant correlation between a diet rich in fat and sucrose, and
methylation of hydroxyacyl-coenzyme A dehydrogenase (HADH) and
glucokinase (GCK) genes.13 The fifth paper reported a lack of
correlation between four diets enriched in different types of fat and
the methylation levels of leptin (LEP), leptin receptor (LEPR), and
pro-opiomelanocortin (POMC) genes.14

Here we explore the genome-wide DNA methylation profiles of
Greek preadolescents with respect to parameters related to dietary fat
quantity, and dietary fat quality. To our knowledge, this is the first
time that parameters related to both quantitative and qualitative
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aspects of fat intake with respect to DNA methylation are investigated
at a genome-wide scale. Moreover, no such studies have been
performed in children.

MATERIALS AND METHODS
Genome-wide changes of DNA methylation pattern associated with parameters

related to fat intake were assessed. Two variables related to dietary fat quantity

(proportion of energy intake derived from fat, cholesterol intake) and three

related to dietary fat quality (MUFA/SFA, PUFA/SFA and (MUFAþPUFA)/

SFA) were analyzed. A linear model that explains the methylation level for

each CpG site/island corrected for gender, weight category, Tanner stage

(an estimation of physical development), and white blood cell count was

utilized. The ratios between the unsaturated and saturated fatty acid intakes

were preferred to their individual values, as they have been reported to have

antagonistic effects. A higher fatty acids ratio would account for a ‘healthier’

fatty acid intake profile, while a lower ratio would account for an ‘unhealthier’

fatty acid intake profile.

Ethics
All participants and their guardians gave informed written consent and the

study was approved by the Greek Ministry of National Education (7055/C7-

Athens, 19-01-2007) and the Ethical Committee of Harokopio University

(16/ Athens, 19-12-2006).

Subjects
The ‘Healthy Growth Study’ was a cross-sectional epidemiological study

initiated in May 2007. Approval to conduct the study was granted by the

Greek Ministry of National Education (7055/C7-Athens, 19-01-2007) and the

Ethics Committee of Harokopio University of Athens (16/Athens, 19-12-2006).

The study population comprised school children attending the fifth and sixth

grades of primary schools located in the regions of Attica, Etoloakarnania,

Thessaloniki and Heraklion. The sampling procedure is fully described

elsewhere.15 For the purpose of the current analysis, a subsample of

24 obese and 23 normal-weight preadolescent girls, as well as 11 obese and

11 normal-weight preadolescent boys (Table 1) was selected. This subsample

was initially used to investigate the effect of polymorphism in the FTO gene on

genome-wide DNA methylation patterns.16

Dietary assessment
Dietary intake data was obtained for two consecutive weekdays and one

weekend day, via morning interviews with the children at the school site using

the 24-h recall technique. More specifically, all study participants were asked to

describe the type and amount of foods and beverages consumed during the

previous day, provided that it was a usual day according to the participant’s

perception. To improve the accuracy of food descriptions, standard household

measures (cups, tablespoons, etc) and food models were used to define

amounts. At the end of each interview, the interviewers, who were dietitians

rigorously trained to minimize interviewer’s effect, reviewed the collected food

intake data with the respondent to clarify entries, servings and possible

forgotten foods. Food intake data were analyzed using the Nutritionist V diet

analysis software (version 2.1, 1999, First Databank, San Bruno, CA, USA),

which was extensively amended to include traditional Greek recipes, as

described in Food Composition Tables of Greek Cooked Foods and Dishes.

Furthermore, the database was updated with nutritional information of

processed foods provided by independent research institutes, food companies

and fast-food chains.

Table 1 Demographic data stratified for weight category and gender

Gender Normal-weight Obese P-valuea

Male

N 11 11

Age (years) 10.34±0.25 10.82±0.56 0.03

Height (z-score)b �1.0±0.20 0.44±0.21 o0.001

Weight (z-score)b �0.94±0.093 1.5±0.15 o0.001

BMI (z-score)b �0.71±0.11 1.6±0.19 o0.001

White blood cell count (103/mm3) 8.56±3.85 6.93±1.27 n.s.

Tanner stagec (z-score)b �1.5±0.27 �1.5±0.32 n.s.

Total fat intake (% of total energy intake) 39.92±8.96 45.82±9.54 n.s.

MUFA intake (% of total energy intake) 19.00±5.97 21.74±5.91 n.s.

PUFA intake (% of total energy intake) 7.83±7.99 4.77±0.92 n.s.

SFA intake (% of total energy intake) 13.32±3.62 16.29±3.54 n.s.

Cholesterol (g/day) 188.90±101.84 304.49±137.54 n.s.

Female

N 23 24

Age (years) 10.54±0.46 10.94±0.71 0.05

Height (z-score)b �0.76±0.16 0.30±0.24 0.001

Weight (z-score)b �0.86±0.088 1.5±0.19 o0.001

BMI (z-score)b �0.72±0.079 1.8±0.13 o0.001

White blood cell count (103/mm3) 7.26±2.07 7.28±1.70 n.s.

Tanner stagec (z-score)b �1.45±0.14 �0.70±0.21 n.s.

Total fat intake (% of total energy intake) 42.22±6.59 38.42±7.66 n.s.

MUFA intake (% of total energy intake) 18.83±4.85 17.96±±5.15 n.s.

PUFA intake (% of total energy intake) 7.56±11.42 4.30±2.13 0.04

SFA intake (% of total energy intake) 15.55±2.98 13.67±4.28 0.04

Cholesterol (g/day) 216.25±89.86 211.04±125.58 n.s.

Abbreviations: BMI, body mass index; MUFA, monounsaturated fatty acid; n.s., nonsignificant; PUFA, polyunsaturated fatty acid; SFA, saturated fatty acid.
aIndicates P-value for significant or n.s. differences between obese and normal-weight individuals. All values are means±SEs.
bz-Scores were calculated using all samples from the Healthy Growth Study as a reference population.
cDescribes pubertal development.
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DNA methylation profiling
The genome-wide Illumina Infinium HumanMethylation27 BeadChip

(Illumina, San Diego, CA, USA), which allows interrogation of 27 578 CpG

dinucleotides covering 14 495 genes was applied to determine the methylation

profile of genomic DNA isolated and purified from the peripheral whole

blood. This chip has been shown to give a reliable and reproducible estimation

of the methylation profile on a genomic scale.17 First, bisulfite conversion of

genomic DNA was performed using the EZ DNA Methylation-Gold Kit (Zymo

Research, Irvine, CA, USA) according to the manufacturer’s protocol. Briefly,

500 ng of DNA was sodium bisulfite-treated, denatured at 98 1C for 10 min,

and bisulfite converted at 64 1C for 2.5 h. After conversion, samples were

desulfonated and purified using column preparation. Approximately 200 ng of

bisulfate-converted DNA was processed according to the Illumina Infinium

Methylation Assay protocol. This assay is based on the conversion of

unmethylated cytosine (C) nucleotides into uracil/thymine (T) nucleotides

by the bisulfite treatment. The DNA was whole-genome amplified,

enzymatically fragmented, precipitated, resuspended, and hybridized

overnight at 48 1C to locus-specific oligonucleotide primers on the

BeadChip. After hybridization, the C or T nucleotides were detected by

single-base primer extension. The fluorescence signals corresponding to the

C or T nucleotides were measured from the BeadChips using the Illumina

iScan scanner. Phenotypes, raw data and background-corrected normalized

DNA methylation data are available through the GEO database (http://www.

ncbi.nlm.nih.gov/geo/) with accession numbers GSE27860 for the girls and

GSE57484 for the boys.

Data processing
All downstream data processing and statistical analyses were performed with

the statistical software R (www.r-project.org) together with the lumi,18 limma19

and IMA20 packages of the Bioconductor project.

Data preprocessing. The fluorescence data were preprocessed using the

GenomeStudio 2009.2 (Illumina) software. We used the log2 ratio of the

intensities of methylated probe versus unmethylated probe, also called M-value,

which is more statistically valid for the differential analysis of methylation

levels.21

Quality control. The data were imported and submitted to quality control

using a modified version of the IMA.methy450PP function of the IMA package.

The following CpG sites and samples were removed: the sites with missing

b-values, the sites with detection P-value40.05, the sites having o75% of

samples with detection P-valueo10�5, the samples with missing b-values, the

samples with detection P-value410�5 and the samples having o75% of sites

with detection P-valueo10�5. A total of 26 168 probes were included in the

analysis, after discarding 328 probes that did not reach the quality control

together with 1082 probes from the sex chromosomes.

Normalization. Quantile normalization was performed on the M-values of all

the 26 168 CpG sites using the lumiMethyN function of the lumi package.

Annotation. For better interpretation of the genome-wide methylation

patterns, we chose to use the expanded annotation table for the Illumina

Infinium HumanMethylation450 BeadChip array generated by Price et al.22

There are a total of 27 578 loci for 27k array, and 1600 of them are not mapped

to 450k array. For those unmapped loci, we kept their original annotation from

the 27k array. The expanded annotation file was used to determine the average

methylation value of CpG sites belonging to the same island or island shores

(all sites with the same name in the ‘HIL_CpG_Island_Name’ column of the

annotation file were averaged). We obtained the average methylation value of

5980 islands/island shores, which reduced the number of interrogated locations

to 19 437 sites/islands. The CpG island classification developed by Price et al22

provides good enrichment discrimination of CpG islands. This classification is

a combination of Weber et al’s classification23 where CpG islands are defined

according to the GC content, the Obs/Exp CpG ratio and the island length,

and Illumina’s classification, where CpG islands are defined according to their

physical position (islands, island shores, and shelves). The location within a

CpG island or shore are suggested to be relevant,24 and Price et al’s definition

of CpG islands allowed to distinguish different methylation distribution

between probes, which remained undetectable with the Illumina CpG island

classification.22 Besides, their classification demonstrated a more extreme DNA

methylation profile and a larger proportion of differentially methylated regions

between different tissues.

The expanded annotation file was also used to determine which gene each

interrogated CpG site/island may be associated with (‘Closest_TSS_

gene_name’ column of the annotation file), the distance of each interrogated

CpG site/island to the closest TSS (transcription start site) (‘Distance_

closest_TSS’ column of the annotation file) and the CpG density surrounding

each interrogated CpG site/island (‘HIL_CpG_class’ column of the annotation

file). Each site can either be located in a high-density CpG island, an

intermediate-density CpG island, a region of intermediate-density CpG island

that borders HCs, or a non-island. Indeed, the local CpG density has been

shown to influence the role of methylated cytosines, with methylation having

more transcriptional effect in high-density CpG island and less at non-

islands.25

The Illumina-provided MAPINFO GenomeStudio column was used to

determine the genomic location of each interrogated CpG site. For CpG

islands, the name of the island was used to determine its genomic location

(eg the island ‘chr19_IC:17905037-17906698’ would be a CpG island of

intermediate density located on chromosome 19, between 17 905 037 and

17 906 698).

Statistics

Linear model. We developed the following linear model for each CpG site k,

using limma’s robust regression method, with a maximum number of iteration

equal to 10 000:

Mk ¼ ak þ bkGGþ bkTTþ bkWW þ bkBBþ bkVV þ ek

where Mk is the M-value of CpG site/island k, G is the dichotomized gender

(female¼ 1 and male¼ 0), T is the Tanner stage, B is the white blood cell

count, W is the dichotomized weight category (normal-weight¼ 0 and

obese¼ 1), ek is the unexplained variability, and V is one of the following

variables: proportion of energy intake derived from total fat intake, cholesterol

intake (g/day), MUFA/SFA, PUFA/SFA, or (MUFAþPUFA)/SFA.

The coefficients bkx summarize the correlation between the methylation

level and the variables of interest. Moderated t-statistics for each contrast and

CpG site/island were created using an empirical Bayes model, to rank genes in

order of evidence for differential methylation.19 To control the proportion of

false positives, P-values were adjusted for multiple comparisons as proposed by

Benjamini and Hochberg (BH).26 An adjusted P-value40.05 was considered

nonsignificant.

Three children from the cohort had a MUFA/SFA, a PUFA/SFA, and a

(MUFAþPUFA)/SFA higher than the mean±3� SD. Thus, they were

excluded from the linear models developed for MUFA/SFA, PUFA/SFA, and

(MUFAþPUFA)/SFA.

Functional enrichment analysis. The unique Entrez Gene ID associated with

each significant gene-based site/island was identified. Three gene lists were

generated for MUFA/SFA, PUFA/SFA, and (MUFAþPUFA)/SFA, respectively.

We used the web-based ConsensusPathDB-human (CPDB)27,28 to

determine the significant pathways each gene list may be involved in.

On the basis of the reference gene set (all Entrez Gene IDs from the 27k

BeadChip annotation file were used as a background), the expected number of

genes in each pathway of the CPDB database is compared with the actual

number of genes found for this pathway. For each pathway, a P-value and a

q-value are calculated according to the hypergeometric test. The pathways with

a raw P-valueo0.05 together with a q-valueo0.05 were selected. As CPDB

includes information from 30 databases, the pathways often overlap with each

other to some extent. Thus, to show the relationships between the different

pathways, we constructed a heatmap of the proportion of shared input genes

between the significant pathways. For instance, if P1 is a given pathway

containing genes A, B, and C from the input gene list, and P2 is a given

pathway containing genes B, C, D, and E from the input gene list, the
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proportion of shared genes between P1 and P2 is:

P1\P2j j
P1[P2j j ¼

2

5
¼ 40%

We also used the web-based g:Profiler29,30 as an alternative method for

pathway analysis, to confirm the significant results obtained with CPDB. The

g:GOSt tool was used for enrichment analysis, with the same background gene

list, and the g:GOSt native method g:SCS for multiple testing correction.

The pathways with an adjusted P-valueo0.05 were selected. It is important to

note that g:Profiler only includes pathways from two databases: KEGG and

Reactome.

RESULTS

Four CpG sites and one CpG island were found to be significantly
associated with the proportion of overall fat intake (Figure 1a), while
no significance was found for cholesterol intake. The methylation
levels of 2 islands, 11 island shores, and 16 sites were significantly
correlated with PUFA/SFA; 9 islands, 26 island shores, and 158 sites
for MUFA/SFA; 10 islands, 40 island shores, and 130 sites for
(MUFAþPUFA)/SFA (Figure 1b and Supplementary Tables 1–3).

What genes are associated with the significant CpG sites/islands?
To determine which gene may be regulated by each CpG site and
island, we identified the gene whose TSS is closest to each CpG site
and island. Each significant site, island or island shore can show either

Figure 1 Volcano plots for proportion of total energy intake derived from fat (a) and (MUFAþPUFA)/SFA (b). The regression coefficient refers to the

coefficient of the linear model and each point represents a CpG site or a CpG island. The red horizontal line is the significance threshold (P-value¼0.05)

and all points above this line are significant. (a) proportion of total energy intake derived from fat (positive coefficients refer to an increased methylation in

children for whom fat represents a higher proportion of total energy intake). (b) (MUFAþPUFA)/SFA (positive coefficients refer to an increased methylation

in children having a higher (MUFAþPUFA)/SFA).
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Table 2 Information on the significant CpG sites/island found for proportion of energy intake derived from fat and the top 10 most significant

CpG sites/islands found for MUFA/SFA, PUFA/SFA, and (MUFAþPUFA)/SFA

Gene

Entrez

Gene ID Genomic location of the probe/island (hg19)

HIL

classa

Genomic location

of the closest

TSS (hg19) Coefficientb

Adjusted

P-valuec

Proportion of energy intake derived from fat

GPS1 2873 chr17:80009807 HC 80009 762 �0.0135 0.00612

TAMM41 13 2001 chr3_HCshore:11887600_11888782;

chr3_ICshore:11887684_11888691

HC 11888 351 0.00987 0.00621

TAS2R13 50838 chr12:11061985 LC 11062 160 �0.0118 0.0121

MZB1 51237 chr5:138725350 LC 138 725 604 0.0145 0.023

TXNIP 10628 chr1:145438031 IC 145 438 461 0.0148 0.043

MUFA/SFA

ALDH3A2 224 chr17:19552343 HC 19552 063 �0.289 0.00097

MYLK3 91807 chr16:46782176 LC 46782 220 �0.238 0.00363

LOC642852 257 103 chr21:46716835 LC 46707 966 �0.317 0.00364

TPPP2 122 664 chr14:21498837 IC 21498 344 �0.309 0.00364

RXFP2 122 042 chr13:32313824 NA 32313 679 �0.262 0.00364

TMEM80 283 232 chr11_HCshore:694282_696564;

chr11_ICshore:694282_697179

HC 695 615 �0.245 0.00364

SEMA3G 56920 chr3:52478874 HC 52479 042 0.28 0.00388

VCAM1 7412 chr1:101185020 LC 101 185 195 �0.259 0.00482

KRT73 319 101 chr12:53013281 LC 53012 342 �0.245 0.00496

KRTCAP2 200 185 chr1:155145737 HC 155 145 803 �0.301 0.0051

PUFA/SFA

CBR1 873 chr21_HCshore:37441920_37443032;

chr21_ICshore:37442016_37442892

HC 37442 284 1.28 4.02e–06

RBCK1 10616 chr20:388351 HC 388 708 0.687 2.3e–05

ABHD16A 7920 chr6_HCshore:31670422_31671462;

chr6_ICshore:31670279_31671902

HC 31671 136 �0.302 7.18e–05

KRT23 25984 chr17:39095141 LC 39093 835 �0.326 0.00536

PDE3A 5139 chr12_HCshore:20521268_20523183;

chr12_ICshore:20520944_20523341

HC 20522 178 �0.274 0.0066

NCOA1 8648 chr2:24806720 LC 24807 344 �0.42 0.00722

PCED1A 64773 chr20:2822804 LC 2 821 796 �0.412 0.00914

MRPL13 27085 chr8:121457500 HC 121 457 646 0.308 0.0193

AKR7A2 54896 chr1_HCshore:19638013_19639253;

chr1_ICshore:19637904_19639606;

HC 19638 639 0.237 0.0193

FAM154A 158 297 chr9_IC:19032509_19033364 IC 19033 255 �0.357 0.0193

(MUFAþPUFA)/SFA

MRPL13 27085 chr8:121457500 HC 121 457 646 0.186 0.000952

NCOA1 8648 chr2:24806720 LC 24807 344 �0.233 0.00308

PCED1A 64773 chr20:2822804 LC 2821796 �0.213 0.00308

CCNA2 890 chr4_HCshore:122744257_122745486;

chr4_ICshore:122744093_122745437

HC 122 745 087 �0.126 0.00308

LCE1B 353 132 chr1:152783674 LC 152 784 446 �0.254 0.00352

ALDH3A2 224 chr17:19552343 HC 19552 063 �0.176 0.00352

MYLK3 91807 chr16:46782176 LC 46782 220 �0.166 0.00352

GBP7 388 646 chr1:89641121 LC 89641 722 �0.175 0.00352

DGKI 9162 chr7_HCshore:137530917_137532628;

chr7_ICshore:137530976_137532560

HC 137 531 608 �0.178 0.00352

DNTTIP1 140 686 chr20:44421526 LC 44420 575 0.148 0.00561

Abbreviations: HC, high-density CpG island; IC, intermediate-density CpG island; LC, non-island; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; SFA, saturated fatty acid.
aCpG density surrounding each interrogated CpG site/island.
bValue of the coefficient of the linear model associated with (MUFAþPUFA)/SFA.
cP-value calculated by moderated t-statistics and adjusted for multiple comparisons according to Benjamini and Hochberg.
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a positive fold change if its methylation is higher in children having
an elevated dietary variable (eg, a higher cholesterol intake), or a
negative fold change if its methylation is lower in children having an
elevated dietary variable.

Regarding the proportion of fat intake, one CpG site associated
with taste receptor, type 2, member 13 (TAS2R13) that may have a
role in the perception of bitterness, while another site associated with
thioredoxin interacting protein (TXNIP), a regulator of cellular
oxidative stress downregulated by SFA uptake31 (Table 2).

The 10 most significant sites/islands/island shores found for
MUFA/SFA included one CpG site associated with aldehyde dehy-
drogenase 3 family, member A2 (ALDH3A2) (P¼ 0.00097), whose
expression is reduced in insulin-resistant murine models.32 It also
included a CpG site associated with sema domain, immunoglobulin
domain (Ig), short basic domain, secreted, (semaphorin) 3G
(SEMA3G) (P¼ 0.0039), whose expression increases during
adipogenesis.33 Among the top 10 found for PUFA/SFA, there was
1 CpG site associated with nuclear receptor coactivator 1 (NCOA1)
(P¼ 0.0072) and another 1 associated with PC-esterase domain
containing 1A (PCED1A) (P¼ 0.0091), as well as an island shore
associated with phosphodiesterase 3A, cGMP-inhibited (PDE3A)
(P¼ 0.0066; Table 2).

There were only 4 sites and 1 island shore found significant for all
fatty acid ratios, but 86 sites/islands/island shores in common
between MUFA/SFA and (MUFAþPUFA)/SFA, and 7 in common
between PUFA/SFA and (MUFAþPUFA)/SFA (Figure 2). Notably,
the four sites found significant for all fatty acid ratios contained some
of previously mentioned sites (Table 2), for example, the ones
associated with NCOA1 (P¼ 0.0031) (Figure 3a) and PCED1A
(P¼ 0.0031) (Figure 3b). It also included an island shore associated
with CCNA2 (Figure 3c), a gene recently shown to be associated with
serum phosphatidylcholine concentration in mice.34

In which pathways are the significant genes involved?
Instead of going through all the genes associated with the significant
sites found for MUFA/SFA, PUFA/SFA, and (MUFAþPUFA)/SFA, it
was preferred to perform a gene enrichment analysis. Using CPDP,27

we identified the significant pathways for each of the fatty acid ratios.
We considered a pathway significant if the significant CpG sites/
island/island shores were associated with a high proportion of genes
involved in this particular pathway.

Figure 2 Venn diagram of the significant CpG sites and islands found for

MUFA/SFA, PUFA/SFA, and (MUFAþPUFA)/SFA.

Figure 3 Correlation between methylation of three sites associated with

NCOA1 (a), PCED1A (b), CCNA2 (c), and (MUFAþPUFA)/SFA. Coeff

(coefficient) of the linear model associated with (MUFAþPUFA)/SFA; full

triangles, obese girls (n¼23); full circles, obese boys (n¼11); empty

triangles, normal-weight girls (n¼22); empty circles, normal-weight boys

(n¼10).
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Neither CPDB nor g:Profiler identified significant pathways for
MUFA/SFA, but CPDB found 34 significant pathways for PUFA/SFA
(Supplementary Table 4), including 1 group of pathways related to
adipogenesis and mechanism of gene regulation by peroxisome
proliferators via PPARa (Group 1, Figure 4a), and another group of
pathways related to leptin and IL6 (Group 2, Figure 4a). Five
significant pathways were identified for (MUFAþ PUFA)/SFA
using CPDB (Supplementary Table 4), including one group of
pathways linked to NF-kB (Group 1, Figure 4b). g:Profiler identified
only one significant pathway for (MUFAþPUFA)/SFA, also linked
to NF-kB (IKKb phosphorylates IkB causing NF-kB to dissociate,
P-value¼ 0.041).

DISCUSSION

In the present study of Greek preadolescents, we found a large
number of CpG sites and regions significantly associated with
variables related to the quality of fat intake and few sites significantly
associated with variables related to the quantity of fat intake.

Our findings suggest that fat quality is likely to influence DNA
methylation on a large genomic scale. NCOA1, one of the most
significant gene found for all fatty acids ratios, is involved in the
mechanism of gene regulation by peroxisome proliferators via PPARa,
a master gene whose regulation is altered in obesity.35 NCOA1 is a
transcriptional coactivator whose ablation confers susceptibility to
diet-induced obesity.36 Interestingly, various fatty acids, but especially
PUFAs, act as ligands for PPARa. Moreover, along with PDE3A, the
fifth most significant gene found for PUFA/SFA, NCOA1, is part of
the leptin pathway. Leptin is an adipokine that has a key role in
regulating energy intake by inhibiting the sensation of hunger.37 Fish
oil has been reported to increase plasma leptin concentrations,38 and

leptin induces the expression of NCOA1 in human cells.39 Besides,
PDE3A’s expression is enhanced in cows fed with a diet enriched in
fish oil or in SFA.40 Interestingly, an island shore located near the TSS
of PDE3A was less methylated in children with a higher PUFA/SFA.
All this information is consistent with the negative fold change
observed for NCOA1 in our cohort.

There was substantial overlap between the significant sites/islands/
island shores found for the different fatty acid ratios, but little overlap
between all fatty acid ratios. This may reflect how MUFA and PUFA
affect DNA methylation in a different way. Interestingly, the site
associated with NCOA1 was more significant for (MUFAþPUFA)/
SFA than for PUFA/SFA or MUFA/SFA, suggesting that PUFA and
MUFA affect the methylation of this gene in an identical way.
A similar observation can be made for PCED1A and CCNA2 that
were more significant for (MUFAþPUFA)/SFA than for PUFA/SFA
or MUFA/SFA. However, this may also be due to differences in power
to detect significant correlations, as the fatty acids ratios distributions
were quite different (Supplementary Figure 1).

It should be noted that two of the four individual CpG sites found
to be significantly associated with the proportion of energy intake
derived from fat might be relevant to obesity. It has been hypothesized
that individuals with increased bitter taste sensitivity avoid antiox-
idant-rich vegetables because of their perceived bitterness, consuming
instead sweet, fatty foods.41 The site associated with TAS2R13 was
more methylated in children for whom fat represents a higher
proportion of the total energy intake. In addition, children with a
higher proportion of energy intake derived from fat had a higher
methylation at a site located in an island shore near TXNIP, which is
consistent with the observed downregulation of TXNIP by SFA
uptake.31 None of these genes were previously reported to be

Figure 4 Heatmap representation of the proportion of shared genes between the significant pathways found for PUFA/SFA (a) and (MUFAþPUFA)/SFA (b).

Each significant pathway retrieved from CPDB (P-valueo0.05 and q-valueo0.05) is represented on the graph, along with the database it comes from.

A stronger color indicates a higher proportion of shared genes between two pathways. (a) Red rectangle 1: group of pathways related to adipogenesis and

mechanism of gene regulation by peroxisome proliferators via PPARa; red rectangle 2: group of pathways related to leptin and IL6. (b) Red rectangle 1:
group of pathways related to NF-kB. The full colour version of this figure is available at European Journal of Human Genetics online.
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differentially methylated depending on fat intake, probably because
the methylation assays of previous studies were limited in scope only
addressing key genes.

The present work was not devoid of limitations. First of all, our
sample size is limited (n¼ 69) and therefore replication is needed to
confirm our findings and to allow generalization to larger populations.
Second, the fatty acid ratios investigated herein are among the most
interesting to compare with respect to health, as their roles are heavily
debated and researched. However, other fatty acids not examined in
this study may reflect other aspects of the quality of fat intake. For
example, unsaturated fatty acids includes trans unsaturated fatty acids,
which have been demonstrated to have adverse effects on health.42 In
addition, we did not separate n-3 and n-6 PUFA in our study, but
these two fatty acids do not have the same effects; while both n-3 and
n-6 PUFA have beneficial effects, an excess of n-6 PUFA can cause
health disorders.43 DNA methylation was assessed in whole peripheral
blood, which is the case for most epigenetic studies focused on
nutrition, as peripheral changes may occur in relation to overall
energy balance.44 However, the methylation pattern observed in blood
may not always reflect the pattern in other tissues.45 The other
weakness of this approach is that DNA methylation can vary by blood
cell type, and thus the methylation changes associated with the
variables investigated in this study may represent an alteration in
blood cell composition, rather than a change in methylation. However,
no correlation was found between any of the investigated variables and
the relative proportions of granulocytes, lymphocytes, or mid cells
(P-value40.05 on Spearman’s correlation test). Finally, an increasing
number of human studies suggest that parental BMI impacts DNA
methylation in the offspring, especially at imprinted genes.46–48

However, evidences in humans are still scarce and limited to two
available tissues at birth: umbilical cord and/or placenta; thus, we did
not take parental BMI into account in our analysis.

In conclusion, this study is the first to demonstrate the roles of fat
quantity and quality in DNA methylation patterns at a genome-wide
scale. Our results suggest that specific changes in DNA methylation
may have an important role in the mechanisms involved in the
physiological responses to different types of dietary fat. Future studies
could reveal other potential impacts of dietary fat quality on DNA
methylation in controlled, randomized designs, and perhaps investi-
gate further the downstream effects of this process.
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34 Schäfer N, Yu Z, Wagener A et al: Changes in metabolite profiles caused by genetically

determined obesity in mice. Metabolomics 2014; 10: 461–472.
35 Holloway GP, Bonen A, Spriet LL: Regulation of skeletal muscle mitochondrial fatty

acid metabolism in lean and obese individuals. Am J Clin Nutr 2009; 89: 455S–462S.
36 Picard F, Gehin M, Anicotte J et al: SRC-1 and TIF2 control energy balance between

white and brown adipose tissues. Cell 2002; 111: 931–941.
37 Brennan AM, Mantzoros CS: Drug Insight: the role of leptin in human physiology and

pathophysiology[mdash]emerging clinical applications. Nat Clin Pr End Met 2006; 2:

318–327.
38 Puglisi MJ, Hasty AH, Saraswathi V: The role of adipose tissue in mediating the

beneficial effects of dietary fish oil. J Nutr Biochem 2011; 22: 101–108.
39 Yin N, Wang D, Zhang H et al: Molecular mechanisms involved in the

growth stimulation of breast cancer cells by leptin. Cancer Res 2004; 64:

5870–5875.
40 Schmitt E, Ballou MA, Correa MN et al: Dietary lipid during the transition

period to manipulate subcutaneous adipose tissue peroxisome proliferator-activated

receptor-gamma co-regulator and target gene expression. J Dairy Sci 2011; 94:

5913–5925.
41 Garcia-Bailo B, Toguri C, Eny KM, El-Sohemy A: Genetic variation in taste and its

influence on food selection. Omi J Integr Biol 2009; 13: 69–80.
42 White B: Dietary fatty acids. Am Fam Phys 2009; 80: 345–350.
43 Lands B: Consequences of essential fatty acids. Nutrients 2012; 4: 1338–1357.
44 Pjetri E, Schmidt U, Kas MJ, Campbell IC: Epigenetics and eating disorders. Curr Opin

Clin Nutr Metab Care 2012; 15: 330–335.

45 McKay JA, Xie L, Harris S et al: Blood as a surrogate marker for tissue-specific
DNA methylation and changes due to folate depletion in post-partum female mice.
Mol Nutr Food Res 2011; 55: 1026–1035.

46 Soubry A, Murphy SK, Wang F et al: Newborns of obese parents have altered
DNA methylation patterns at imprinted genes. Int J Obes (Lond) 2013; e-pub ahead
of print 25 October 2013; doi:10.1038/ijo.2013.193.

47 Soubry A, Schildkraut JM, Murtha A et al: Paternal obesity is associated with IGF2
hypomethylation in newborns: results from a Newborn Epigenetics Study (NEST)
cohort. BMC Med 2013; 11: 29.

48 Liu X, Chen Q, Tsai H, Wang G: Maternal preconception body mass index and offspring
cord blood DNA methylation: exploration of early life origins of disease. Environ Mol
Mutagen 2013; 55: 223–230.

This work is licensed under a Creative Commons
Attribution 3.0 Unported License. The images or

other third party material in this article are included in the article’s
Creative Commons license, unless indicated otherwise in the credit
line; if the material is not included under the Creative Commons
license, users will need to obtain permission from the license holder
to reproduce the material. To view a copy of this license, visit http://
creativecommons.org/licenses/by/3.0/

Supplementary Information accompanies this paper on European Journal of Human Genetics website (http://www.nature.com/ejhg)

Genome-wide methylation and dietary fats
S Voisin et al

662

European Journal of Human Genetics

http://dx.doi.org/10.1038/ijo.2013.193
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.nature.com/ejhg

	Dietary fat quality impacts genome-wide DNA methylation patterns in a cross-sectional study of Greek preadolescents
	Introduction
	Materials and Methods
	Ethics
	Subjects
	Dietary assessment

	Table 1 
	DNA methylation profiling
	Data processing
	Data preprocessing
	Quality control
	Normalization
	Annotation

	Statistics
	Linear model
	Functional enrichment analysis


	Results
	What genes are associated with the significant CpG sitessolislands?

	Figure™1Volcano plots for proportion of total energy intake derived from fat (a) and (MUFA+PUFA)solSFA (b). The regression coefficient refers to the coefficient of the linear model and each point represents a CpG site or a CpG island. The red horizontal l
	Table 2 
	In which pathways are the significant genes involved?

	Figure™2Venn diagram of the significant CpG sites and islands found for MUFAsolSFA, PUFAsolSFA, and (MUFA+PUFA)solSFA
	Figure™3Correlation between methylation of three sites associated with NCOA1 (a), PCED1A (b), CCNA2 (c), and (MUFA+PUFA)solSFA. Coeff (coefficient) of the linear model associated with (MUFA+PUFA)solSFA; full triangles, obese girls (n=23); full circles, ob
	Discussion
	Figure™4Heatmap representation of the proportion of shared genes between the significant pathways found for PUFAsolSFA (a) and (MUFA+PUFA)solSFA (b). Each significant pathway retrieved from CPDB (P-valuelt0.05 and q-valuelt0.05) is represented on the grap
	A5
	ACKNOWLEDGEMENTS




