281 research outputs found

    Aerodynamic Implications of a Bio‐Inspired Rotating Empennage Design for Control of a Fighter Aircraft

    Get PDF
    This dissertation presents an analysis of the aerodynamics for an aircraft using a novel, bio-inspired control system. The control system is a rotating tail, that is inspired by the way in which birds use their tail to control their flight. An aerodynamic model for a baseline aircraft and a bio-inspired variant are created by referencing well-known relationships for the aerodynamics of flight, which are then used to analyze the available flight envelope at which each aircraft can reach two different equilibrium states. An analysis of the total aerodynamic control authority of each aircraft is also included along with a preliminary control system to bring the aircraft back to equilibrium when influenced by a wind gust. These studies indicate some of the benefits and trade-offs of using this bio-inspired rotating tail design

    A Sine-Summation Algorithm for the Prediction of Ship Deck Motion

    Get PDF
    Landing a fixed-wing aircraft on a moving aircraft carrier is a risky and inefficient process. Having an accurate prediction of ship deck motion decreases the risk posed to both the pilot and the aircraft and increases the efficiency of landing maneuvers. The present work proposes the use of a sine-summation algorithm to predict future ship motion. The algorithm decomposes recorded ship acceleration data into its characteristic harmonic parameters using a fast Fourier transform. The harmonic parameters are then used in a summation of sine waves to create a fit for the acceleration data, which is projected into future time intervals to predict ship motion. An aircraft carrier can supply the prediction made by the algorithm to an autopilot, which then decides to land or make another attempt. Included in this work is a brief overview of ship motion with six degrees of freedom and a description of the method. The results generated by the algorithm are presented for a specific ship motion dataset to provide a point of comparison between the proposed method and other common methods used. The proposed method appears to be accurate in comparison to similar prediction methods, while reducing the computational cost required to make a prediction

    EC82-1738 Tree Planting Guide

    Get PDF
    Site Preparation Proper site preparation is essential to your tree planting operation, and varies with the different climates and soil types. Chemical Control: On sandy soils, rough terrain, or other highly erodible sites, tillage is not recommended. Chemical weed and/or grass killers may be applied to the site in the fall or before planting in the spring. Summer Fallow: This practice is recommended on heavy soil in western Nebraska to conserve soil moisture. This may be accomplished with the aid of occasional disking, subsurface tillage, or chemicals to control weeds. Fall Tillage: In the eastern areas of the state fall plowing is recommended for grassland sites. Cropland may need no fall tillage. All sites should then be disked before spring planting

    Is the customer king?

    Get PDF
    Sales and service staff need to consider and influence a portfolio of relationships, not only customers, write Willy Bolander, Christopher R. Plouffe, Joseph A. Cote and Bryan Hochstei

    ACUTE EFFECTS OF DENTAL APPLIANCES ON UPPER AND LOWER ISOKINETIC MUSCLE FUNCTION

    Get PDF
    The possibility that athletic performance can be affected by a person’s jaw posture during the activity has been of interest to sports practitioners for many years. Using established elbow and knee flexion/extension testing protocols on a calibrated isokinetic dynamometer (Biodex System 2, Shirley, NY), this study examined selected muscle function characteristics in male NCAA II college football players (n=18) under test conditions in which they wore a professionally-fitted dental appliance (PowerPlus) designed for optimal maxilla-mandibular spacing, a common “boil-and-bite”-type mouth guard (Shock Dr.), and conditions in which they were instructed to have their teeth touch while keeping the jaws relaxed (Relax) or clenched (Clench) without wearing any oral appliances. Results indicated a significant improvement in total work (+9.8%), peak torque/body weight (+10.5%), and average power (+11.25%) for elbow flexion in the PowerPlus relative to the Relax condition. Similarly, knee flexion total work for the PowerPlus was significantly higher compared to both Relax and Clench test conditions

    Attainable Moment Set and Actuation Time of a Bio-Inspired Rotating Empennage

    Get PDF
    Future tactical aircraft will likely demonstrate improvements in efficiency, weight, and control by implementing bio-inspired control systems. This work analyzes a novel control system for a fighter aircraft inspired by the function of – and the degrees of freedom available in – a bird’s tail. The control system is introduced to an existing fighter aircraft design by removing the vertical tail and allowing the horizontal tail surfaces to rotate about the roll axis. Using a low-fidelity aerodynamic model, an analysis on the available controlling moments and actuation speeds of the baseline aircraft is compared to that of the bio-inspired rotating empennage design. The results of this analysis at a takeoff and approach flight condition indicate that the bio-inspired tail design is able to improve upon the baseline in terms of control power available for yaw by up to 170%, while also improving the actuation speed by about 450 milliseconds for moments about the pitch axis. The bio-inspired design is shown to have actuation times that are up to 600 milliseconds slower for generating yawing moments and a reduced roll control contribution from the tail in certain moment combinations. The impacts of these issues on control will need to be determined with analysis at additional flight conditions and a flight dynamics analysis

    A Review of Avian-Inspired Morphing for UAV Flight Control

    Get PDF
    The impressive maneuverability demonstrated by birds has so far eluded comparably sized uncrewed aerial vehicles (UAVs). Modern studies have shown that birds’ ability to change the shape of their wings and tail in flight, known as morphing, allows birds to actively control their longitudinal and lateral flight characteristics. These advances in our understanding of avian flight paired with advances in UAV manufacturing capabilities and applications has, in part, led to a growing field of researchers studying and developing avian-inspired morphing aircraft. Because avian-inspired morphing bridges at least two distinct fields (biology and engineering), it becomes challenging to compare and contrast the current state of knowledge. Here, we have compiled and reviewed the literature on flight control and stability of avian-inspired morphing UAVs and birds to incorporate both an engineering and a biological perspective. We focused our survey on the longitudinal and lateral control provided by wing morphing (sweep, dihedral, twist, and camber) and tail morphing (incidence, spread, and rotation). In this work, we discussed each degree of freedom individually while highlighting some potential implications of coupled morphing designs. Our survey revealed that wing morphing can be used to tailor lift distributions through morphing mechanisms such as sweep, twist, and camber, and produce lateral control through asymmetric morphing mechanisms. Tail morphing contributes to pitching moment generation through tail spread and incidence, with tail rotation allowing for lateral moment control. The coupled effects of wing–tail morphing represent an emerging area of study that shows promise in maximizing the control of its morphing components. By contrasting the existing studies, we identified multiple novel avian flight control methodologies that engineering studies could validate and incorporate to enhance maneuverability. In addition, we discussed specific situations where avian-inspired UAVs can provide new insights to researchers studying bird flight. Collectively, our results serve a dual purpose: to provide testable hypotheses of flight control mechanisms that birds may use in flight as well as to support the design of highly maneuverable and multi-functional UAV designs

    Near-Field Pressure Signature Splicing for Low-Fidelity Design Space Exploration of Supersonic Aircraft

    Get PDF
    As interest in supersonic overland flight intensifies, new ways to meet government restrictions on sonic boom loudness must be implemented. Low-fidelity aerodynamic tools, such as PANAIR, can estimate the near-field pressure signature that ultimately determines the loudness of the sonic boom at the ground. These tools can greatly benefit the exploration of large design spaces due to their computational efficiency. One of the limitations of low-fidelity tools is the accuracy of the solution produced, which is dependent on the fundamental physical assumptions made in the development of the governing equations. If flow patterns are produced that severely violate these fundamental assumptions, the validity of the near-field pressure signature is compromised. A method is proposed that splices together near-field pressure signatures from a low-fidelity and a higher-fidelity tool by cutting each pressure signature at a critical point and then blending the low-fidelity signature into the higher-fidelity signature. By splicing the signatures together, sections of the low-fidelity signature that represent fundamental violations of the governing equation are removed. This method allows for the exploration of the design space corresponding to areas on the geometry that produce accurate results in a low-fidelity signature. The method is tested on the JAXA Wing Body geometry from the Second AIAA Sonic Boom Prediction Workshop and shows that perturbations to this geometry can produce loudness results that match the high-fidelity results to within 0.4 PLdB

    A Multi-Fidelity Prediction of Aerodynamic and Sonic Boom Characteristics of the JAXA Wing Body

    Get PDF
    This paper presents a detailed comparison between the linear panel solver PANAIR A502 and the in-house Navier–Stokes solver UNS3D for a supersonic low-boom geometry. The high-fidelity flow solver was used to predict both the inviscid and laminar flow about the aircraft geometry. The JAXA wing body was selected as the supersonic low-boom geometry for this study. A comparison of the undertrack near-field pressure signatures showed good agreement between the three levels of model fidelity along the first 0.8L of the signature. Large oscillations in the PANAIR results were observed. The PANAIR discrepancies were traced back to violations of the underlying assumptions within PANAIR: (1) small perturbation velocities and (2) no regions of transonic flow. These violations were due to large changes in surface curvature resulting in a strong expansion wave. While investigating the PANAIR discrepancy, measures of the fundamental assumptions of the Prandtl-Glauert equation used by PANAIR were quantified and used to assess the applicability of PANAIR to a given problem. Further comparison of surface temperatures predicted between the inviscid and laminar solutions was made. It was found that the recovery temperatures predicted by the inviscid solution were 5% less than those predicted by the laminar solution in likely candidate regions for distributed adaptivity. A surface deformation was added to the forward portion of the geometry to asses the viability of a future optimization study in this region. In this study, it was found that the near-field and ground signatures predicted by PANAIR and the UNS3D solutions responded in similar manners to the deformation

    Automated Synthesis of Tableau Calculi

    Full text link
    This paper presents a method for synthesising sound and complete tableau calculi. Given a specification of the formal semantics of a logic, the method generates a set of tableau inference rules that can then be used to reason within the logic. The method guarantees that the generated rules form a calculus which is sound and constructively complete. If the logic can be shown to admit finite filtration with respect to a well-defined first-order semantics then adding a general blocking mechanism provides a terminating tableau calculus. The process of generating tableau rules can be completely automated and produces, together with the blocking mechanism, an automated procedure for generating tableau decision procedures. For illustration we show the workability of the approach for a description logic with transitive roles and propositional intuitionistic logic.Comment: 32 page
    corecore