
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2023

Aerodynamic Implications of a Bio‐Inspired Rotating Empennage Aerodynamic Implications of a Bio Inspired Rotating Empennage

Design for Control of a Fighter Aircraft Design for Control of a Fighter Aircraft

Christian R. Bolander
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Aerospace Engineering Commons, and the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Bolander, Christian R., "Aerodynamic Implications of a Bio‐Inspired Rotating Empennage Design for
Control of a Fighter Aircraft" (2023). All Graduate Theses and Dissertations. 8749.
https://digitalcommons.usu.edu/etd/8749

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F8749&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/218?utm_source=digitalcommons.usu.edu%2Fetd%2F8749&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.usu.edu%2Fetd%2F8749&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/8749?utm_source=digitalcommons.usu.edu%2Fetd%2F8749&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

AERODYNAMIC IMPLICATIONS OF A BIO-INSPIRED ROTATING EMPENNAGE

DESIGN FOR CONTROL OF A FIGHTER AIRCRAFT

by

Christian R. Bolander

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Aerospace Engineering

Approved:

Douglas F. Hunsaker, Ph.D. James Joo, Ph.D.
Major Professor Committee Member

Tianye He, Ph.D. Matthew Harris, Ph.D.
Committee Member Committee Member

Stephen Whitmore, Ph.D. D. Richard Cutler, Ph.D.
Committee Member Vice Provost for Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2023

ii

Copyright © Christian R. Bolander 2023

All Rights Reserved

iii

ABSTRACT

Aerodynamic Implications of a Bio-Inspired Rotating Empennage Design for Control of a

Fighter Aircraft

by

Christian R. Bolander, Doctor of Philosophy

Utah State University, 2023

Major Professor: Douglas F. Hunsaker, Ph.D.
Department: Mechanical and Aerospace Engineering

Future tactical aircraft will likely demonstrate improvements in efficiency, weight, and

control by implementing bio-inspired control systems. This work explores the aerodynamic

implications of a novel control effector for a fighter aircraft inspired by the function of,

and the degrees of freedom available in, a bird’s tail. Specifically, the control effector in

this work is introduced into a fighter aircraft by removing the vertical tail and allowing

the horizontal tail surfaces to rotate about the centerline of the aircraft. The geometry of

the baseline fighter aircraft and its bio-inspired variant are first defined using open-source

geometric data and estimates from published drawings of the baseline aircraft. To analyze

the aerodynamic forces and moments acting on each aircraft, two aerodynamic models are

constructed, one for each aircraft, based on a linearized model, augmented with certain

non-linear effects. The coefficients in each aerodynamic model are then calculated using

a numerical lifting-line algorithm and the aerodynamic effects of the rotating tail control

effector are characterized. As a result of constructing these models the bio-inspired aircraft

was shown to exhibit trade-offs with longitudinal and lateral control. In an effort to better

understand these trade-offs, a trim analysis is performed for two static trim conditions:

the steady, coordinated turn and steady-heading sideslip. This analysis shows that the

iv

bio-inspired aircraft has no appreciable reduction in trim envelope when compared to the

baseline aircraft and has a larger trim envelope in steady-heading sideslip. Additionally, the

static control authority available to each aircraft is compared to identify the longitudinal

and lateral controlling moment trade-offs. The control authority of the bio-inspired aircraft

is larger than the baseline aircraft, except when large pitching and yawing moments are

coupled. Finally, a linearized state-feedback controller is developed using linear quadratic

regulation and applied in simulation to each aircraft in the presence of a wind gust and the

robustness of the controller is determined by sweeping through approximately 1300 gust

cases. With the linearized feedback controller, the bio-inspired aircraft was shown to reject

gust disturbances in all of the cases studied.

(491 pages)

v

PUBLIC ABSTRACT

Aerodynamic Implications of a Bio-Inspired Rotating Empennage Design for Control of a

Fighter Aircraft

Christian R. Bolander

This dissertation presents an analysis of the aerodynamics for an aircraft using a novel,

bio-inspired control system. The control system is a rotating tail, that is inspired by the

way in which birds use their tail to control their flight. An aerodynamic model for a baseline

aircraft and a bio-inspired variant are created by referencing well-known relationships for

the aerodynamics of flight, which are then used to analyze the available flight envelope

at which each aircraft can reach two different equilibrium states. An analysis of the total

aerodynamic control authority of each aircraft is also included along with a preliminary

control system to bring the aircraft back to equilibrium when influenced by a wind gust.

These studies indicate some of the benefits and trade-offs of using this bio-inspired rotating

tail design.

vi

“If ye labor with all your might, I will consecrate that spot that it shall be made holy.”
- Doctrine and Covenants 124:44

vii

ACKNOWLEDGMENTS

This work has been an effort that would not be possible with just my capabilities alone.

I would like to, first and foremost, thank my wonderful wife, Beth, and our children, Emma,

James, and Kezia. They have provided untold support to me during this time, and I’m sure

that James will always assume that everyone works on a dissertation at some point in their

life.

I am also incredibly grateful for the support of my advisor, Dr. Doug Hunsaker. He has

recognized and acknowledged my efforts throughout the journey. Those acknowledgements

have been lodestones to me, pointing me in the right direction and helping me to improve

and progress. I am also grateful for Dr. James Joo and his support throughout this

project, both through funding from the Air Force Research Lab as well as his guidance in

improvements that could be made to the project. My current supervisor, Dr. Thom Fronk,

has also been an great support to me throughout the final hours of my dissertation writing,

and I am grateful for his thoughtfulness and patience with the effort that it has required.

My wonderful parents, siblings, colleagues, and friends; I am grateful for each of you and

know that you share in any sense of accomplishment that I feel in presenting this work to

the world.

Finally, I am grateful to God, and I would be remiss not to include Him here. My faith

has been a bedrock foundation for me throughout this process, and I acknowledge that His

help has brought me to where I am today.

Christian R. Bolander

viii

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . v

ACKNOWLEDGMENTS . vii

LIST OF TABLES . xi

LIST OF FIGURES . xiv

1 INTRODUCTION . 1

2 LITERATURE REVIEW . 6
2.1 Longitudinal and Lateral Degrees of Freedom 6
2.2 Avian Tail Morphology . 17
2.3 The Role of the Tail in Avian Flight Control 18

2.3.1 Longitudinal Stability and Control 19
2.3.2 Lateral Stability and Control . 22

2.4 Control of Aircraft Using a Rotating Tail 24
2.4.1 Longitudinal Stability and Control 25
2.4.2 Lateral Control and Stability . 28

3 DESCRIPTION OF THE BASELINE AIRCRAFT AND ITS BIRE VARIANT . . 32
3.1 Description of the Baseline Aircraft . 32
3.2 Description of the BIRE Variant . 41

4 FORMULATING AN AERODYNAMIC MODEL FOR THE BASELINE AND BIRE
AIRCRAFT . 47

4.1 Aerodynamic Forces and Moments . 49
4.1.1 Nondimensional Forces and Moments 50
4.1.2 Coordinate Systems . 54
4.1.3 Compressibility Corrections . 56

4.2 A Description of the Aerodynamic Models 57
4.2.1 A Linear Aerodynamic Model . 58
4.2.2 A Non-Linear Aerodynamic Model 63

5 EVALUATION OF THE AERODYNAMIC COEFFICIENTS 71
5.1 Airfoil Aerodynamics . 71
5.2 Linear Aerodynamic Model . 79
5.3 Non-Linear Aerodynamic Model . 80

5.3.1 Grid Resolution Study . 82
5.3.2 Baseline Aircraft . 83
5.3.3 BIRE Aircraft Coefficients . 96

ix

6 SIX-DEGREE-OF-FREEDOM STATIC TRIM . 125
6.1 Flight Conditions . 127
6.2 Procedure for Finding the Trim State at a Given Flight Condition 130

6.2.1 Thrust Model . 131
6.2.2 Specifying Aircraft Orientation . 135
6.2.3 Steady, Coordinated Turn . 137
6.2.4 Steady-Heading Sideslip . 138
6.2.5 Trim Algorithm . 138
6.2.6 Solving For the States of the Aerodynamic Model 139
6.2.7 Example Trim Cases . 143

6.3 Shifting the Center of Gravity . 144
6.4 Static Trim Analysis . 147

6.4.1 Steady, Coordinated Turn Analysis 147
6.4.2 Steady-Heading Sideslip Analysis . 152
6.4.3 Tail Strike Analysis . 157

7 ATTAINABLE MOMENT SET ANALYSIS . 167
7.1 Moment Set Generation . 168
7.2 Attainable Moment Set Comparison . 170
7.3 A Comparison Between Yaw Control and Drag 176

8 A LINEARIZED CONTROL SYSTEM ANALYSIS . 180
8.1 Linearizing the Equations of Motion . 181
8.2 Constructing the Linearized A Matrix . 188

8.2.1 Aerodynamic Force and Moment State Derivatives 190
8.2.2 Example Case . 197

8.3 Constructing the Linearized Control Matrix 199
8.3.1 Aerodynamic Force and Moment Control Derivatives 202
8.3.2 Example Case . 209

8.4 Analyzing Controllability of the BIRE System 211
8.5 Disturbance Rejection Analysis . 212

8.5.1 Gust Model . 214
8.5.2 Baseline LQR Design . 214
8.5.3 BIRE LQR Design . 216
8.5.4 Simulation . 217

9 SUMMARY AND CONCLUSIONS . 224

REFERENCES . 228

APPENDICES . 238

A LINEAR AERODYNAMIC MODEL BUILDUP . 239
A.1 Longitudinal Force and Moment Coefficients 239
A.2 Lateral Force and Moment Coefficients . 249

x

B MACHUPX FILES . 250
B.1 Baseline Aircraft Input File . 250
B.2 Baseline Aircraft Airplane File . 252
B.3 BIRE Aircraft Input File . 255
B.4 BIRE Aircraft Airplane File . 256
B.5 Example BIRE Rotated Tail Airplane File (δB = 10◦) 259
B.6 Other JSON Files . 262

C SOURCE CODE . 277
C.1 Analysis of the Aircraft Geometry . 277
C.2 Aerodynamic Model Definition . 280
C.3 Aerodynamic Model Coefficient Evaluation 300
C.4 Static Trim Analysis . 352
C.5 Attainable Moment Set Analysis . 377
C.6 Linearized Controller Analysis . 385

D AERODYNAMIC DATABASES . 425
D.1 Baseline Aerodynamic Database . 425
D.2 BIRE Aerodynamic Database . 432

E CURRICULUM VITAE . 472

xi

LIST OF TABLES

Table Page

3.1 Lifting surface geometry data used to model the baseline aircraft. 33

3.2 Geometric characteristics of the lifting surfaces on the baseline fighter aircraft. 39

3.3 Description of the control surfaces on the baseline aircraft. 40

3.4 Inertial properties of the baseline aircraft. 40

3.5 Geometric characteristics of the lifting surfaces on the BIRE variant. 43

3.6 Description of the control surfaces on the BIRE aircraft. 44

3.7 Inertial data as a function of BIRE rotation angle of the BIRE variant. . . 45

3.8 Inertial properties of the BIRE variant. 45

5.1 Stations and ordinates of the NACA 64A204 airfoil given in percent of airfoil
chord. 72

5.2 Stations and ordinates of the NACA 0005 airfoil given in percent of airfoil
chord. 73

5.3 Stations and ordinates of the NACA 0004 airfoil given in percent of airfoil
chord. 73

5.4 Camber line for the NACA 64A204 airfoil sampled at 50 stations. All mea-
surements in percent-chord. 75

5.5 Linear airfoil models for the NACA airfoils used in the baseline and BIRE
aircraft. 80

5.6 Limits for each degree of freedom in the baseline fighter aircraft database. . 85

5.7 A comparison of the aerodynamic force coefficients predicted by MachUpX
and the wind tunnel data in the non-linear aerodynamic model. 87

5.8 A comparison of the aerodynamic moment coefficients predicted by MachUpX
and the wind tunnel data in the non-linear aerodynamic model. 88

5.9 Trim sensitivity analysis of the baseline aircraft force coefficients. 93

xii

5.10 Trim sensitivity analysis of the baseline aircraft moment coefficients. 94

5.11 Adjustments made to the aerodynamic force component coefficients in the
baseline non-linear model. 96

5.12 Adjustments made to the aerodynamic moment component coefficients in the
baseline non-linear model. 97

5.13 Limits for each degree of freedom in the baseline fighter aircraft database. . 97

5.14 Sensitivity to tail rotation angle study for the aerodynamic coefficients of the
BIRE aircraft. 100

5.15 Fit parameters for the BIRE aerodynamic force coefficients. 101

5.16 Fit parameters for the BIRE aerodynamic moment coefficients. 102

6.1 Flight conditions considered in the static trim analysis. 128

6.2 Thrust model coefficient fits as a function of altitude. 134

6.3 Dominant terms in the pseudo-aerodynamic forces and moments. 141

6.4 Example steady-heading sideslip trim solution for the baseline aircraft. . . . 144

6.5 Example steady-heading sideslip trim solution for the BIRE aircraft. 145

6.6 Example steady, coordinated turn trim solution for the baseline aircraft. . . 145

6.7 Example steady, coordinated turn trim solution for the BIRE aircraft. . . . 146

6.8 Vectors from the landing gear to points of interest in a tail strike for each
aircraft in level flight. 159

7.1 Maximum and minimum moments produced by the baseline and BIRE air-
craft at each flight condition in Table 6.1. 177

A.1 Lift slope parameters for incompressible flow. 241

A.2 Factors used for calculating the downwash induced by the main wing. . . . 243

A.3 Parameters for estimating axial shift in location of the aerodynamic center
for each lifting surface. 245

A.4 Estimated moment arm values from Fig. A.2. 245

A.5 Component lift coefficients used in the linear aerodynamic model for the
baseline aircraft. 246

xiii

A.6 Induced drag parameters for incompressible flow. 247

A.7 Component drag coefficients used in the linear aerodynamic model for the
baseline aircraft. 247

A.8 Component pitching moment coefficients used in the linear aerodynamic
model for the baseline aircraft. 249

D.1 Aerodynamic database generated by MachUpX for the baseline aircraft. . . 426

D.2 Truncated aerodynamic database generated by MachUpX for the BIRE aircraft.433

xiv

LIST OF FIGURES

Figure Page

1.1 Albatross in flight . 2

1.2 Swallow-Tailed Kite in flight . 3

2.1 The body-fixed, six degree-of-freedom coordinate system applied to an air-
craft (a) and a bird (b). 7

2.2 Nomenclature and sign conventions for the avian tail morphing mechanisms
studied in this work. 17

3.1 Diagram used to solve for the quarter-chord sweep angle of a wing. 36

3.2 The modeled geometry of the baseline aircraft. All dimensions in feet. . . . 38

3.3 The modeled geometry of the BIRE aircraft. All dimensions in feet. 42

3.4 Empennage geometry of the baseline aircraft and its BIRE variant. 42

3.5 Changes in the moments and products of inertia of the BIRE aircraft as a
function of BIRE rotation angle. 46

4.1 A representation of the transformation between the wind, stability, and body-
fixed aircraft coordinate systems. 53

4.2 A representation of the body-fixed coordinate system. 55

5.1 Basic forms of the NACA 64A204, 0005, and 0004 airfoils. Measurements
taken as a percentage of the airfoil chord. 72

5.2 A comparison of the section lift slope of three NACA 6A-series airfoils to
thin airfoil theory results. 76

5.3 A comparison of the section zero-lift angle of attack of three NACA 6A-series
airfoils to thin airfoil theory results. 77

5.4 A comparison of the section quarter-chord pitching moment of three NACA
6A-series airfoils to thin airfoil theory results. 78

5.5 Data representing the section minimum drag of three NACA 6A-series airfoils
and one 6-series airfoil with an approximation for the NACA 64A204 airfoil. 79

xv

5.6 Data representing the drag derivatives of three NACA 6A-series airfoils with
an approximation for the NACA 64A204 airfoil. 80

5.7 Data representing the drag derivatives of two symmetric NACA 4-digit air-
foils with an approximation of the NACA 0005 and 0004 derivatives. 81

5.8 Grid convergence and run time of the component surfaces of the baseline
aircraft. 83

5.9 Grid convergence and run time of the component surfaces of the BIRE aircraft. 84

5.10 Longitudinal BIRE Lift coefficient fits. 104

5.11 Lateral BIRE Lift coefficient fits. 105

5.12 Longitudinal BIRE Side Force coefficient fits. 107

5.13 Lateral BIRE Side Force coefficient fits. 108

5.14 Longitudinal BIRE Drag coefficient fits. 109

5.14 Longitudinal BIRE Drag coefficient fits (continued). 110

5.15 Lateral BIRE Drag coefficient fits. 113

5.15 Lateral BIRE Drag coefficient fits (continued). 114

5.16 Longitudinal BIRE Rolling Moment coefficient fits. 114

5.17 Lateral BIRE Rolling Moment coefficient fits. 116

5.18 Longitudinal BIRE Pitching Moment coefficient fits. 118

5.19 Lateral BIRE Pitching Moment coefficient fits. 119

5.20 Longitudinal BIRE Yawing Moment coefficient fits. 121

5.21 Lateral BIRE Yawing Moment coefficient fits. 122

6.1 The BIRE design can create the same net force and moment (red) in many
situations as a traditional empennage using the additional degree-of-freedom
provided by rotation of the empennage. 126

6.2 Estimated flight envelope for the baseline aircraft with operational points of
interest identified. 128

6.3 Thrust fits according to Eq. (6.5) for three thrust levels at six altitudes. . . 133

xvi

6.4 Thrust coefficients and their fits as a function of altitude for three thrust levels.134

6.5 Steady, coordinated turn analysis with the center of gravity at its nominal
position. 148

6.6 Control surface deflections for the baseline aircraft and its BIRE variant as
a function of center of gravity location at stall speed. 151

6.7 Steady, coordinated turn analysis with the center of gravity moved forward. 152

6.8 Steady-Heading sideslip analysis with the center of gravity at its nominal
position. 153

6.9 Control surface deflections for the baseline aircraft and its BIRE variant as
a function of center of gravity location at maximum crosswind landing. . . . 155

6.10 Steady-heading sideslip analysis with the center of gravity moved forward. . 156

6.11 Aircraft configuration while landing in steady-heading sideslip. 157

6.12 Coordinate systems considered in the tail strike analysis. 158

6.13 Distances to the ground of the points of interest of each aircraft at flight
condition T1. 163

6.14 Distances to the ground of the points of interest of each aircraft at flight
condition T2. 164

6.15 Distances to the ground of the points of interest of each aircraft at flight
condition T1 with the CG forward. 165

6.16 Distances to the ground of the points of interest of each aircraft at flight
condition T2 with the CG forward. 166

7.1 Moment set combinations for the baseline and BIRE aircraft at flight condi-
tion T1. 170

7.2 Attainable moment sets at flight condition T1. Black lines correspond to the
baseline aircraft and grey lines to the BIRE. 171

7.3 Attainable moment sets at flight condition T2. Black lines correspond to the
baseline aircraft and grey lines to the BIRE. 173

7.4 Attainable moment sets at flight condition C1. Black lines correspond to the
baseline aircraft and grey lines to the BIRE. 174

7.5 Attainable moment sets at flight condition C2. Black lines correspond to the
baseline aircraft and grey lines to the BIRE. 175

xvii

7.6 Attainable moment sets at flight condition C3. Black lines correspond to the
baseline aircraft and grey lines to the BIRE. 176

7.7 Comparison of the drag produced using only the wing, a traditional aircraft
control system, and the BIRE to produce yawing moments. 178

8.1 Controllability analysis of the BIRE aircraft as a function of BIRE rotation
angle. 212

8.2 Simulated wind gust. 218

8.3 Simulated states of the baseline aircraft in the presence of a wind gust. . . . 219

8.4 Simulated states of the BIRE aircraft in the presence of a wind gust. 220

8.5 Shifted states of the baseline aircraft in the presence of a wind gust. 221

8.6 Shifted states of the BIRE aircraft in the presence of a wind gust. 222

8.7 Control inputs for each aircraft to reject a gust disturbance. 222

8.8 Control input rates for each aircraft to reject a gust disturbance. 223

A.1 A free-body diagram of the longitudinal forces and moments acting on the
baseline aircraft. 240

A.2 Longitudinal reference lengths for the baseline aircraft. 240

CHAPTER 1

INTRODUCTION

In their work investigating the challenges and opportunities in tailless aircraft stabil-

ity and control, Bowlus et al. outlined the aerospace research and engineering goals of

the office of the Deputy Director of Research and Engineering (DDR&E) in the Depart-

ment of Defense (DoD) [1]. These goals, as written in 1997, were to “reduce engineering,

manufacturing, and development costs, reduce production costs, reduce operation and sup-

port costs, reduce airframe weight, improve aircraft lift to drag ratio, and improve aircraft

agility.” The vision of the Directorate of Defense Research and Engineering for Research

and Technology (DDR&E(R&T)) at the time of writing this work more broadly speaks of

creating “far-reaching technology innovations and set them on a trajectory to create U.S.

military technical advantage [2].” Certainly there exists significant overlap between these

goals and the benefits of developing tailless aircraft technologies, such as those investigated

by Bowlus et al., would serve to provide technical advantage to the U.S. military today [1].

The work by Bowlus et al. focused on achieving these types of “far-reaching technology

innovations” through the development of tailless “flying wing” designs [1]. Their work out-

lined some of the challenges with tailless aircraft designs, which include: the generation of

yaw control power, multi-axis instabilities, optimization of multiple control surfaces for any

given axis, and nonlinearity and coupling between control surfaces. From these challenges,

we see that one of the primary problems facing the development of tailless aircraft is that of

identifying robust, adequately-powered control systems that can provide sufficient stability

to a tailless aircraft. Various control systems were explored by Bowlus et al. that demon-

strated the ability to address these challenges; however, each of the systems was reliant on

coupled supplementary control systems to satisfy control requirements [1].

While many of the conventional approaches to tailless designs are becoming increas-

ingly complex, birds have demonstrated incredible control authority through variable flight

2

conditions without a vertical control surface. Many bird species, such as the albatross shown

in Fig. 1.1, have large, high-aspect-ratio wings with a small tail similar to a flying-wing

design. Other species, such as the swallow-tailed kite in Fig. 1.2, have large tails that are

used throughout flight in a manner consistent with an active control system. Many UAVs

employing tail control systems inspired by birds such as the kite are able to produce similar

levels of lateral stability and control as a traditional empennage while providing drag reduc-

tion [3]. Further research into the area of bio-inspired flight control systems such as these

will likely be one of the ways in which the goals of the DDR&E(R&T) and the Department

of Defense are achieved in coming years.

Fig. 1.1: An albatross in flight closely represents a flying wing design [4]. Photograph: Max
Allen/Alamy.

In 1996, as part of the development of next-generation fighter aircraft, the Department

of Defense sought proposals that outlined novel control systems for tailless aircraft. Both

Boeing [6] and Lockheed Martin [7] submitted preliminary results as part of their proposals

for this Innovative Control Effectors (ICE) contract. Roetman et al. [6] studied a control

design that removed the vertical stabilizer while allowing the horizontal tail to rotate for

lateral control similar to the swallow-tailed kite in Fig. 1.2. In spite of the intent of this

3

Fig. 1.2: The swallow-tailed kite uses its tail to control itself while gliding [5]. Photograph:
Andy Morffew.

tail control system, the rotating horizontal stabilizer examined by Roetman et al. [6] was

limited to analysis at a specific dihedral angle, effectively representing a V-tail. Part of this

limitation was attributed to the fact that rotating the tail introduced multiple trim solutions

to a given flight condition, which their trim algorithms were not prepared to consider

effectively. Nevertheless, they found that this control system was “effective throughout the

flight envelope of interest” and appeared “to be a viable concept being nearly as effective

as the baseline [aircraft]”, in addition to providing potential weight reduction and reduced

aerodynamic complexity [6]. Nevertheless, Roetman et al. spent the majority of their

analysis on their “rotating” horizontal tail and showed that the handling qualities were

favorable when compared to the other designs they analyzed [6].

Although simply a V-tail in practice, the value in a rotating tail control system such

as that proposed by Roetman et al. [6] is largely in its simplicity. As an extension of the

work begun by Roetman et al. [6], this dissertation proposal will propose research on a

Bio-Inspired Rotating Empennage (BIRE) control system. In addition, we will present a

consistent nomenclature for bird tail morphology that will be used throughout a review

4

of the literature. The literature will be segmented into two parts, the first of which will

focus on the control offered to birds by rotating their tails. The second section of literature

will present results outlining the aerodynamic implications of using a rotating tail control

system on an aircraft. The information in each of these sections will be tied to traditional

flight mechanics relationships for stability and control that are presented by Phillips [8].

Once the current understanding of the effect on aerodynamics and control is established

from the literature, the analysis in this work is developed as follows. First, the geometry of

a baseline fighter aircraft is determined using publicly-available data and scaled estimations

from published figures. The necessary geometric modifications required to represent the

BIRE can then be made on this baseline model. Following the geometry definition, a

model describing the aerodynamic forces and moments acting on each aircraft is given.

These models are based upon a traditional linearized coefficient model and then augmented

with certain non-linear effects based on familiarity with the aircraft aerodynamics and

understanding from analytical studies. The coefficients in each model will then be evaluated

using data from a numerical lifting-line method.

With the aerodynamic model defined for each aircraft, several studies are performed to

better understand the aerodynamic and control implications of the BIRE. The first of these

studies is a static trim analysis that presents data indicating the effect of implementing

the rotating empennage on the trim envelope of the aircraft. Data from this analysis can

be compared to the trim envelope of the baseline aircraft for comparison. This static trim

analysis also allows for a preliminary understanding of the risk of tail strike posed by the

BIRE when landing in a crosswind.

The static control authority of the baseline aircraft and BIRE are then compared using

an attainable moment set analysis. This study looks at the aerodynamic moments that can

be produced by the tail while maintaining control about another axis (in this case the pitch

axis). In particular, this study indicates the intuitive trade-offs embraced by implementing

a rotating tail as a control effector.

5

Finally, a preliminary control law is presented for both the baseline aircraft and the

BIRE. The control law is developed for a linearized, rigid body system using state-feedback

and a linear quadratic regulator and is intended to stabilize the aircraft in the presence of a

gust disturbance. Simulations of each aircraft employing the state-feedback control law are

shown alongside a time-domain robustness study to examine the effectiveness of the control

in a variety of gusting conditions.

This dissertation lays a foundation of tools that can be used to further explore the

implications of a rotating tail design. Additional research will allow many of the questions

that are currently outstanding in the literature review to be better understood. Further,

these tools and analyses can stand as a foundation for future research efforts into rotating

tail designs. By examining the BIRE as is presented in this work, the concerns highlighted

by Bowlus et al. [1] can be addressed and future work on this subject can be enhanced.

CHAPTER 2

LITERATURE REVIEW

As outlined in the Introduction, this chapter examines what is known about the role

of the avian tail in controlling a birds’ flight and what has been learned about controlling

aircraft using a rotating tail. The literature in each of these sections is placed in the

context of known flight mechanics relationships based on simplified models. Using these

relationships, intuition can be built to help understand the expected nature of applying a

rotating tail control effector to an aircraft. Before investigating these pieces of literature, a

consistent nomenclature must be established for both the flight mechanics relationships as

well as avian tail morphology.

Throughout this dissertation, the word “control” will be used in a variety of ways.

The “control system” of an aircraft can generally be described as a combination of the

desired state of an aircraft, any measurements of the aircraft states, a control law, and the

means of actuation of the system. In addition to the description of the control system,

this literature review will frequently refer to longitudinal or lateral control. In this context,

control refers to the aerodynamic forces and moments being manipulated by the aircraft to

direct its flight and will be referenced as “aerodynamic control”. An effort will be made

to distinguish between these interconnected definitions referencing control throughout this

work.

2.1 Longitudinal and Lateral Degrees of Freedom

The aerodynamic forces and moments acting on an aircraft or a bird can be defined

within the body-fixed, six degree-of-freedom reference system shown in Fig. 2.1. These six

degrees of freedom can be sub-divided into two categories: longitudinal and lateral degrees

of freedom. The longitudinal degrees of freedom are those within the x -z plane of Fig. 2.1

and the three remaining degrees are called the lateral degrees of freedom.

7

x

ℓ

y

𝑚

𝑛

z

(a)

y

𝑚

z

𝑛

x
ℓ

(b)

Fig. 2.1: The body-fixed, six degree-of-freedom coordinate system applied to an aircraft (a)
and a bird (b).

The total aerodynamic force acting on an aircraft, such as the one in Fig. 2.1, can

be separated into components along each of the body-fixed axes. These forces are named

after the body-fixed axis along which they lie: the body-fixed X force, the body-fixed Y

force, and the body-fixed Z force. Likewise, the total aerodynamic moment acting on the

aircraft can be separated into right-hand moments acting about each axis. These are the

rolling moment `, the pitching moment m, and the yawing moment n about the x -, y-, and

z -axes, respectively. According to our earlier definition, the aerodynamic force components

along the x - and z -axes and the aerodynamic moment component about the y-axis are the

longitudinal forces and moment. The only remaining force component lies along the y-axis,

while the remaining moments are about the x - and z -axes; these constitute the lateral force

and moments.

The body-fixed system shown in Fig. 2.1 is not the only reference system that is

commonly defined for a body in flight. It is sometimes helpful to use a coordinate system

aligned with the atmospheric wind, called the wind coordinate system. The wind coordinate

system is similar to the body-fixed system, the exception being that the wind x -axis is

8

parallel with, but in the opposite direction to, the wind. The longitudinal forces in the

wind system are referred to as the lift and drag forces (L and D), while the lateral force is

referred to as the side force (S).

In a symmetric aircraft in level flight, the longitudinal and lateral forces and moments

are very nearly decoupled. In addition, the control surfaces on the wing and tail are pri-

marily responsible for one of the three aerodynamic moments. That is, the elevators on the

horizontal tail primarily generates a pitching moment, the ailerons on the main wing pri-

marily generates a rolling moment, and the rudder on the vertical tail primarily generates

a yawing moment. The rotating tail of the BIRE will produce substantial coupling between

imposed pitching and yawing moments that is not present in the control-surface combina-

tion of a traditional aircraft. A planar horizontal tail will produce nearly a pure pitching

moment; however, as the tail rotates about the empennage, a combination of pitching and

yawing moments will occur. This coupling between the lateral and longitudinal forces and

moments will be the subject of much of the discussion of the effects of tail rotation in both

birds and aircraft.

Before covering the nomenclature and degrees of freedom that will be used when dis-

cussing avian tail morphology, we will briefly review longitudinal and lateral aerodynamic

control and stability. We will cover the ways in which stability and aerodynamic control

effectiveness is measured and present analytical relationships between aircraft geometry,

aerodynamic properties, and stability and aerodynamic control. These relationships are

not exact, but will give intuitive insight into the effects that the tail degrees of freedom will

have on longitudinal and lateral stability and aerodynamic control.

Longitudinal Stability and Aerodynamic Control

In traditional aircraft, the area of the horizontal tail is directly related to the pitch

stability and control effectiveness [9,10]. A linear aerodynamic model can be used to provide

a relationship between tail properties and the pitch stability of a traditional aircraft below

stall as

Cm,α ∝ −V CLh,α (2.1)

9

where Cm,α is the pitch stability, V is the tail volume coefficient, and CLh,α is the lift slope

of the tail. The tail volume coefficient is a measure of tail “volume” to wing “volume” and

is defined as

V ≡ Shlh
Swcw

(2.2)

where lh is the distance from the center of gravity to the aerodynamic center of the tail,

cw is the mean chord of the main wing, Sh is the horizontal area of the tail, and Sw is the

horizontal area of the main wing. An aircraft is longitudinally stable in pitch if Cm,α < 0

and therefore any increase in the tail volume coefficient will have a stabilizing effect on the

aircraft [9].

The previous paragraph has covered the role of the tail in providing static longitudinal

stability, but the tail also has an effect on the dynamic longitudinal stability of an aircraft

as well. Longitudinal motion consists of two dynamic modes, called the short-period and

long-period or phugoid modes. These modes are associated with two pairs of oscillatory

eigenvalues and will be stable when the real part of those eigenvalue pairs is negative.

When these dynamic modes are stable, any disturbances to the aircraft will be damped out

naturally by the aircraft.

The short-period dynamic mode of an aircraft is characterized by rapid changes in

angle of attack and altitude [11]. By assuming that the longitudinal and lateral degrees

of freedom are decoupled and that the angle of attack and pitch rate are decoupled from

the other longitudinal states, a closed-form solution can be produced for the dimensionless

eigenvalues of the short period mode [12]. A relationship between the properties of the tail

and the real part of the dimensionless eigenvalue associated with the short-period mode is

given by

Re (λsp) ∝ 1

Iyyb
Cm,q (2.3)

where Iyyb is an inertial term and Cm,q is the pitch damping derivative.

10

Using the linear aerodynamic model, the relationship between the pitch damping

derivative and the properties of the tail can be written as

Cm,q ∝ −V
lh
cw
CLh,α (2.4)

and will always be negative with an aft tail. From Eqs. (2.3) and (2.4), we can see that

increasing the tail volume coefficient, moving the aerodynamic center of the tail further aft,

or increasing the tail lift slope will have a stabilizing effect on the short-period mode of the

aircraft.

The long-period or phugoid dynamic mode of an aircraft is characterized by slow

changes in airspeed, altitude, and elevation angle with very little change in angle of at-

tack [11]. Under the assumption that the change in angle of attack is zero and assuming

further that the forward velocity and elevation angle are decoupled from the other longi-

tudinal terms, a closed-form solution for the dimensionless eigenvalues of the phugoid can

be produced [13]. The relationship between the real part of the dimensionless phugoid

eigenvalue and the tail properties is given by [13]

Re (λlp) ∝ 1

Iyyb

Cm,q
Cm,α + Cm,q

(2.5)

Equation (2.5) shows that increasing the magnitude of the pitch damping derivative or

increasing the pitch stability will providing a stabilizing contribution to the phugoid mode

of an aircraft.

An aircraft, or any body in flight, can measure its longitudinal aerodynamic control

by its ability to both trim and maneuver in the longitudinal plane across relevant flight

conditions [14]. In terms of a traditional aircraft, this means that an aircraft with greater

longitudinal aerodynamic control authority will produce more pitching moment per degree

of elevator deflection than another. Using the same linear aerodynamic model as before, the

relationship between tail properties and the pitch control derivative of a traditional aircraft

11

below stall is

Cm,δe ∝ V
(
ch
lh
Cmh,δe − CLh,α

)
(2.6)

where Cm,δe is the pitch control derivative, ch is the mean chord of the tail, and Cmh,δe is

the pitch control derivative of the tail alone.

A positive deflection of the elevator moves the trailing-edge of the horizontal tail down-

ward. This acts to increase the lift on the trailing-edge of the tail, which produces a negative

pitching moment. Therefore, the pitch control derivative of the tail for a conventional air-

craft will generally be negative [15]. This same logic applies to the pitch control derivative

of the aircraft as a whole. From Eq. (2.6), any negative decrement to the pitch control

derivative should act to increase the longitudinal aerodynamic control authority or effective-

ness. Since Cmh,δe < 0 and CLh,α > 0 in general, an increase in the magnitude of either of

these coefficients, an increase in tail volume coefficient, or an increase in the mean chord of

the tail will increase the longitudinal aerodynamic control effectiveness of the aircraft [16].

Lateral Stability and Aerodynamic Control

The lateral degrees of freedom are characterized by two aerodynamic moments, the

rolling moment and the yawing moment. Therefore, instead of simply referring to lateral

stability and control, the distinction will be made between roll stability and control and

yaw stability and control. The relationship between the properties of the tail and roll

stability will be addressed before moving to relationships concerning roll control. This will

be followed by the relationships between tail properties and yaw stability, before finally

outlining the relationships concerning yaw control.

Static roll stability is fundamentally different than both pitch stability and yaw stabil-

ity, since rolling motions are directly related to the orientation of the aircraft through the

bank angle φ rather than the wind through the aerodynamic angles, α and β. However,

when an aircraft is oriented at some bank angle, any degree of sideslip will affect the rolling

moment. Thus roll stability is described by the gradient C`,β.

12

Using the same linear aerodynamic model used to analyze the effects of the tail on

pitch, the relationship between the properties of the tail and the roll stability of a traditional

aircraft below stall is given by

C`,β ∝ −Vv
1

lv
(hv − bh)CLv ,α (2.7)

where Sv is the area of the vertical tail, hv distance in the negative body-fixed z -direction

between the aerodynamic center of the vertical tail and the center of gravity, CLv ,α is the

lift slope of the vertical tail, and Vv is called the vertical tail volume coefficient, which is

defined as

Vv =
Svlv
Swbw

(2.8)

This ratio of the vertical tail “volume” to the wing “volume” is analogous to the tail

volume coefficient defined in Eq. (2.2). Note that Eq. (2.7) assumes that the horizontal

tail is positioned below the vertical tail. An aircraft is stable in roll if C`,β < 0 [17]. Thus,

with the vertical tail above the center of gravity, hv > 0, and the vertical tail provides

a stabilizing contribution to the roll stability. On the other hand, the horizontal tail is

destabilizing if located below the vertical tail and stabilizing otherwise.

The lateral motion of an aircraft consists of three dynamic modes: the roll mode, the

spiral mode, and the Dutch roll mode. Of these three modes, both the roll and spiral

mode generally consist of purely real eigenvalues, while the Dutch roll mode is generally a

complex eigenvalue pair. As before, so long as the real portion of the eigenvalue associated

with each of these modes is negative, the aircraft system will be dynamically stable and any

disturbances to the system will be damped out with time. The roll is primarily related to

dynamic stability about the roll axis, while roll and yaw are integrated into both the spiral

and Dutch roll modes. Therefore, both of these modes will be discussed after static yaw

stability is introduced.

The roll mode of an aircraft is generally characterized in terms of the time required for

a rolling motion to approach a constant rate [18]. This rolling motion is generally initiated

13

by the ailerons. An estimate for the real eigenvalue corresponding to the roll mode is [19]

λr ∝
1

Ixxb
C`,p (2.9)

where Ixxb is an inertial term and C`,p is the roll damping derivative.

The roll damping derivative is primarily influenced by the main wing, rather than the

tail. An estimate of the contribution of the wing to the roll damping derivative can be made

using lifting-line theory as developed by Prandtl [20]. An extension of this estimate can be

used to find the relationship between the roll damping derivative and the properties of the

tail as

C`,p ∝ −bhCLh,α − bvCLv ,α (2.10)

Considering both Eq. (2.9) and Eq. (2.10), an increase of either the span or lift slope of

both portions of the tail will result in an increase in the magnitude of the roll damping

derivative and will provide a stabilizing contribution to the roll mode of an aircraft.

As the aileron is primarily responsible for producing rolling moments, the main wing

contributes most substantially to the roll control derivative of an aircraft. This traditional

roll control derivative is defined as C`,δa and it will be negative when a positive aileron

deflection deflects the trailing-edge of the right aileron downward and the trailing-edge of

the left aileron upward. In the absence of differential tail deflections patterned after the

ailerons, the only other contribution from the tail to the aerodynamic control of the rolling

moment is induced by rudder deflections on the vertical tail. While primarily responsible

for creating yawing moments, the offset in the body-fixed z -direction of the rudder from

the center of gravity creates a moment arm for any force generated by the rudder. Thus,

the rudder will provide a substantial rolling moment when it is deflected.

From the linear aerodynamic model, the relationship between the properties of the tail

and the roll control derivative induced by the rudder in a traditional aircraft below stall is

given by

C`,δr ∝ Vv
1

lv
(hv − bh)CLv ,α (2.11)

14

for a horizontal tail mounted below the vertical tail. To better understand the implications

of Eq. (2.11), we will consider an aircraft in a banked turn to the left. A turn to the

left requires a negative rolling moment and a negative yawing moment according to the

body-fixed system given in Fig. 2.1. These moments can be generated by a positive aileron

deflection and a positive rudder deflection. Therefore, the roll control derivative predicted

by Eq. (2.11) will support the roll control derivative of the main wing only if its value is

also negative. From Eq. (2.11) we can see that this would require the quantity hv−bh to be

negative, corresponding to a relatively large horizontal tail and a relatively small vertical

tail. In the context of turning flight with a traditional aircraft, therefore, the induced control

derivative given in Eq. (2.11) will counteract the roll control derivative of the aircraft.

In an aircraft, the vertical tail provides the majority of the lateral stability, much like

the presence of the horizontal tail provides the largest contribution to longitudinal stability.

The same linear aerodynamic model used previously can be used to provide a relationship

between the properties of the tail and the yaw stability of a traditional aircraft below stall

as [21]

Cn,β ∝ VvCLv ,α + V bh
lh

(CDh,β + tan ΛhCDh) (2.12)

where CDh is the drag on the horizontal tail, CDh,β is its derivative with respect to sideslip,

and Λh is the sweep angle of the horizontal tail. Due to the definition of the sideslip angle,

an aircraft is statically stable in yaw if Cn,β > 0 [21]. Thus, an increase in either tail volume

coefficient, the tail drag or its derivative, the horizontal tail sweep angle, or the lift slope of

the vertical tail will provide a stabilizing contribution to the yaw stability of a traditional

aircraft.

As stated previously, the lateral dynamic motion has two modes related to stability

about the yaw axis. The spiral mode is characterized by a change in heading or direction

of travel [18]. By assuming the sideslip, roll, and yaw accelerations are small, the lateral

equations of motion can be solved for a single first-order differential equation with respect

to the bank angle [22]. From this analysis, a relationship between the properties of the tail

15

and the dimensionless eigenvalue of the spiral model can be established as

λs ∝
C`,βCn,r − C`,rCn,β
C`,βCn,p − C`,pCn,β

(2.13)

In Eq. (2.13), we note the presence of the roll stability, yaw stability, and roll-damping

derivatives. Also included are two cross-damping terms, C`,r and Cn,p, along with the

yaw-damping derivative, Cn,r.

The relationship between the tail properties and the yaw cross-damping term Cn,p can

be estimated using the same process as C`,p as [20]

Cn,p ∝ −
(

1− 1

RAh
CLh,α

)
bhCLh −

(
1− 1

RAv
CLv ,α

)
bvCLv (2.14)

where RAh is the aspect ratio of the horizontal tail and RAv is the aspect ratio of the vertical

tail. Similarly, the relationship between the tail and the roll cross-damping term C`,r can

be estimated as [20]

C`,r ∝ VvhvCLv ,β +

(
1− 1

RAh
CLh,α

)
bhCLh (2.15)

Finally, the relationship between the yaw-damping derivative and the properties of the tail

can be estimated by [20]

Cn,r ∝ VvhvCLv ,β (2.16)

The relationship between these damping terms and the stability of the spiral mode is

more complex than was revealed by examining the longitudinal modes and the roll mode.

Each of the damping terms are inter-related through the tail volume ratio and the lift

produced by the tail. In general, a vertical tail mounted above the horizontal tail should

have C`,r > 0 and Cn,r < 0. The analysis that follows will reveal that stabilizing the spiral

mode is coupled significantly with stabilization of the Dutch roll mode.

The Dutch roll mode is characterized by an oscillatory combination of roll, yaw, and

sideslip [18]. An approximation for the real part of the eigenvalue for this dynamic mode is

16

included in Phillips [23]

Re (λ)Dr ∝ CY,β + Cn,r −RDc +RDp (2.17)

where

RDc ∝
C`,rCn,p
C`,p

(2.18)

RDp ∝
C`,rCn,β − C`,βCn,r
C`,p (Cn,β + CY,βCn,r)

− RDs
C`,p

(2.19)

and

RDs ∝ −
C`,β(1− CY,r)Cn,p + CY,βC`,rCn,p

C`,p
(2.20)

For a traditional, statically stable aircraft, CY,β < 0, CY,r > 0, C`,β < 0, C`,r > 0, and

Cn,β > 0. Furthermore, the roll-damping and the yaw-damping derivative are negative

according to Eqs. (2.10) and (2.16). Thus, CY,β and Cn,r should provide stabilizing contri-

butions to the Dutch roll mode. The other terms in Eq. (2.17) are more complex and must

be examined on a case-by-case basis, just like the stability of the spiral mode. Specifically,

increasing the magnitude of one of the stability derivatives will likely also change several of

the damping derivatives and provide difficulty in completely stabilizing both modes simul-

taneously [23].

Finally, using the linear aerodynamic model as before, the relationship between the

properties of the tail and the yaw control derivative in a traditional aircraft below stall is

given by [21]

Cn,δr ∝ −Vv
(
CLv ,α −

cv
lv
Cmv ,δr

)
(2.21)

Since the aerodynamic derivative Cmv ,δr is always negative, the yaw control derivative is

always negative for an aft rudder with a positive rudder deflection defined to the left [21].

Also, increasing the vertical tail volume coefficient, the lift slope of the vertical tail, or

the moment derivative of the rudder will increase the yaw control authority available to a

traditional aircraft below stall.

17

2.2 Avian Tail Morphology

The nomenclature adopted to discuss avian tail morphology across the studies men-

tioned in the forthcoming literature review can vary substantially. To ensure that consis-

tency is retained in both morphology definitions and in the relationship between changes in

tail morphology and aerodynamics, a common nomenclature will be defined here. Figure 2.2

shows each of the tail morphing capabilities that will be highlighted from the literature: tail

spread, tail incidence, and tail rotation. While this dissertation focuses on a control system

that incorporates tail rotation and incidence only, variations in tail spread are generally

included in many UAV designs that incorporate a rotating tail. Additionally, birds often

couple tail rotation with both tail spread and tail incidence and, thus, decoupling these tail

degrees of freedom in our treatment of the literature would neglect some key characteristics

of rotating the tail during flight.

Spread Incidence

Rotation

Fig. 2.2: Nomenclature and sign conventions for the avian tail morphing mechanisms studied
in this work.

Included with the tail morphology nomenclature in Fig. 2.2 is a representation of an

increase in each tail morphing degree of freedom. From Fig. 2.2, we see that an increase

18

in the spread angle corresponds to an increase in the area of the tail. Likewise, an increase

in tail incidence corresponds to downward deflection of the tail about its base, while an

increase in tail rotation corresponds to a solid-body, clockwise rotation of the tail when

viewed from behind the bird.

By manipulating the spread of their tails, birds are able to control the area of their

tail mid-flight. We can see by examining Eqs. (2.1)–(2.21) that the horizontal and vertical

components of the tail have a substantial impact on stability and control in a traditional

aircraft. Changes in tail incidence are often considered synonymous to the elevator deflection

of a traditional aircraft, acting to change the camber of the tail and thereby change the

zero-lift angle of attack of the tail without substantially affecting the lift slope. Again,

the relationships established in Section 2.1 tell us that manipulating the camber line, and

therefore properties such as the lift and moment acting on the tail, will have an impact on

several of the stability, damping, and control characteristics of a traditional aircraft.

Finally, tail rotation represents a way for birds to control the ratio of vertical to hor-

izontal tail area throughout their flight. Within the context of the relationships given in

Section 2.1, we see that tail rotation allows for the longitudinal and lateral degrees of free-

dom to be coupled by trading off the tail volume coefficients V and Vv. Tail rotation as

defined here is different than tail twist, which is not a solid-body motion, but rather a

spanwise variation in tail geometry [24]. Since the amount of literature that details the

effects of tail twist in birds is rather limited, such studies will be omitted from this review;

however, they can be found in the work by Harvey, Gamble, and Bolander et al. [3].

2.3 The Role of the Tail in Avian Flight Control

As a precursor to this portion of the literature, I make special mention to the reader

that the BIRE design is purposely labeled a bio-inspired design, rather than a bio-mimetic

design. Understanding the benefits offered to an aircraft by incorporating such a design

does not necessarily translate into an understanding of how birds use their tail in flight.

That information can only be obtained by studying the birds themselves; and, even then,

the results will likely vary substantially among different species.

19

It is also important to mention that there are numerous instances in which birds have

been observed to couple wing and tail morphing to control their flight [3,25–33]. Since the

BIRE design primarily uses the tail to generate forces and moments, the literature presented

here will focus solely on the role of the tail in flight control. The reader is referred to the

review presented by Harvey, Gamble, and Bolander et al. [3] for more details on wing-tail

coupling in avian flight control.

2.3.1 Longitudinal Stability and Control

Where appropriate throughout this section, we will use the relationships in Eqs. (2.1)–

(2.6) to identify how changes in tail morphology may affect the aerodynamics of an avian

tail. In this way, we can determine how birds may use their tail configuration to provide

longitudinal stability and control during flight. This insight can then be used when analyzing

the BIRE control system to provide intuition into potential trade-offs between longitudinal

and lateral stability and control.

Tail Spread

Studies that have focused on the aerodynamic effects of tail spread on longitudinal

stability and control have concluded that tail spread acts to manipulate pitch stability

and can be used in conjunction with tail incidence to increase pitch control effectiveness.

Qualitatively, Hankin [34] observed that doves keep their tail habitually spread during

gliding flight, from which he concluded that the tail provides pitch stability just like the

horizontal tail of a traditional aircraft. Thomas and Taylor [35] also noted in photographs

of the Gyrfalcon by Dunne [36] that tail spread seemed to be used in conjunction with wing

sweep to maintain stability when carrying prey. Since increasing tail spread will directly

increase the tail volume ratio V, we can predict this behavior from the relationship in

Eq. (2.1). Changing stability during flight would be helpful when transitioning from a

steady-state flight condition to a flight phase requiring maneuverability and control.

Several researchers have shown that tail spread can be used in conjunction with tail

incidence to increase pitch control effectiveness. For example, Gillies et al. [25] and Car-

20

ruthers et al. [29, 30] observed that the steppe eagle coupled tail spread with negative tail

incidence angles while landing. The tail morphing happened in-phase with changes in the

angle of attack of the wings, likely indicates that the tail was being used to counteract the

large pitching moments created by the wings. This same phenomena was also observed

in the African vulture by Thomas [26]. We see that increasing the tail volume ratio will

similarly increase the pitch control effectiveness of a traditional aircraft as shown in Eq.

(2.6). These examples indicate that controlling pitch effectiveness using tail spread may

be an effective way to transition from level flight to more vertical flight phases, which is

encountered in maneuvers such as perching or vertical take-off and landing scenarios.

Lastly, many researchers have hypothesized that tail spread allows birds to manipulate

drag and provide weight support during flight. Pennycuick [37] noted from wind tunnel

tests that pigeons adjust their tail spread depending on their speed, adopting a large spread

angle during slow glides and reducing tail spread as their glide speed increased. Many others

have noted this variation in tail spread with glide speed and have concluded that it is likely

used to balance drag generation with weight support requirements [28,35,37–45].

Tail Incidence

Research into the effects of tail incidence on longitudinal stability and control have

indicated that birds likely use this degree of freedom in a similar manner to a traditional

aircraft elevator. That is, tail incidence does not correlate with substantial changes in

longitudinal stability; rather, it is used to produce controlling moments in pitch and also

to control lift support in conjunction with the wings. Observations by Pennycuick and

Webbe [46] indicated that very small tail deflections appeared to be used by the northern

fulmar for corrective purposes in pitch. Similar conclusions have been drawn by Raspet [47]

and Pennycuick [48], the latter of which observed this behavior in kites, such as the one

shown in Fig. 1.2.

Changes in tail incidence or deflection have been observed to be coordinated with the

spreading of the tail, especially during maneuvers that required a large degree of pitch

control, such as perching and turning [26, 32, 49]. For example, both Thomas [26] and

21

Carruthers et al. [29] noted that the steppe eagle and African vulture spread and held

their tails at negative incidence angles while perching. Equation (2.6) indicates that this

would increase the pitch control derivative of the bird, thereby increasing the total pitching

moment produced for a given tail incidence angle. Likewise, Gillies et al. [25] found that,

while gathering data from a steppe eagle in flight, one of the most consistent movements

they observed was increased tail spread and negative tail incidence when initiating a banked

turn. The authors hypothesized that this motion is used to create a nose-down pitching

motion to start the turn, analogous to that used by paragliders to decrease their elevation

angle and increase their turning rate. Combining tail spread and tail incidence in this

manner could be helpful in aircraft requiring large amounts of pitch control during certain

maneuvers without increasing drag throughout the flight envelope with a larger tail.

Finally, just like with tail spread, several studies have shown that the tail incidence

needed for birds to trim changes from negative to positive as their flight speed decreased

[44,45]. In the final phase of the steppe eagle’s perching maneuver, Gillies et al. [25] observed

that the tail adopted a positive incidence angle. This was hypothesized to be a means of

weight support offered by the tail at low speeds [50] and correlates with the changes in spread

angle noted in Section 2.3.1. As shown by the studies in this section, the tail incidence likely

serves the same purpose to birds as the elevator of a traditional aircraft. We have noted

that pitch control effectiveness can be increased through spread, which allows for larger

pitching moments to be generated by changes in incidence. Nevertheless, there is currently

no quantitative evidence comparing the pitch control effectiveness of avian tail incidence to

a traditional elevator [3].

Tail Rotation

The author found no studies evaluating the effects of tail rotation on longitudinal

stability and control in avian flight. As mentioned previously, tail rotation is a means by

which the tail volume coefficients can be coupled, providing a tradeoff between longitudinal

and lateral aerodynamic properties [51]. Most studies have focused on the effect of tail

rotation on lateral stability and control; therefore, Gamble, Harvey, and Bolander et al. [3]

22

note that this is an area of study that needs to be further explored in future work on

bio-inspired flight control.

2.3.2 Lateral Stability and Control

One of the primary concerns with tailless aircraft is the lack of lateral stability and

control without a vertical tail. This section will lend insight into how birds provide that

stability and control. Specifically, we will be able to evaluate the effectiveness of a birds’

tail in providing lateral stability and control through the use of tail rotation.

Tail Spread and Incidence

Studies on avian aerodynamic control have indicated that tail spread and incidence are

most effective at contributing to lateral stability and control when coupled with tail rotation.

Changes in incidence of a level tail make substantial changes in only the longitudinal degrees

of freedom. The only work that has been done regarding lateral stability and control has

focused on the effect of tail spread on the static and dynamic yaw stability.

Analytical and numerical studies by Sachs [52–54] indicate that the relative inertia

of some birds may be small enough that the sweep of their wings and tail may provide

sufficient dynamic and static yaw stability for their flight. Referring to Eq. (2.12), we

see that increasing the tail volume coefficient V through spread will provide a stabilizing

contribution to the yaw stability. In terms of lateral dynamic stability, the resulting effect

on the stability of the spiral and Dutch roll modes is unclear. Depending on the relative

magnitudes of C`,β, C`,r, Cn,r, Cn,p, and C`,p, increasing the magnitude of the yaw stability

derivative could provide a stabilizing contribution to the spiral mode and to the Dutch

roll mode through RDp . The ability to manipulate lateral static and dynamic stability

through a longitudinal control effector such as tail spread could serve to mitigate some of

the instabilities created by removing the vertical tail.

23

Tail Rotation

Rotating their tail during flight has been hypothesized to allow birds to: augment their

yaw stability, counteract dynamic lateral instabilities, produce lateral moment combinations

required to initiate maneuvers like a banked turn, and control adverse yaw. Analytical work

by Thomas [26] showed that birds could use tail rotation to augment their yaw stability. The

analytical relationship in Eq. (2.12) shows that increasing the vertical tail volume coefficient

would provide a stabilizing contribution. This would occur in spite of the decrease in the

horizontal tail volume coefficient, since the effects of the lift slope on the vertical portion of

the tail likely outweigh the effects of drag-induced yaw stability.

Observing many banked turns performed by the steppe eagle led Gillies et al. [25] to

conclude that tail rotation was used to counteract spiral instability. They found that the

steppe eagle consistently held its tail at a higher rotation angle than the bank of its turn,

which would provide a yawing moment away from the direction of the turn. Thus, holding

the tail at this over-banked rotation angle would counteract the additional yawing moment

produced by an unstable spiral mode. As there has been relatively little investigation into

this hypothesis in the biological community [3], additional research is required to understand

the implications of tail rotation on lateral dynamic stability control.

Several researchers have noted that a combination of tail rotation, tail spread, and tail

incidence are used to perform banking turns. For example, we have already described the

banked turns of the steppe eagle studied by Gillies et al. [25]. Similarly, Oehme [55] noted

that a the banked turn of a drongo was coordinated using a spread and twisted tail. Oehme

[32] also recorded that a rightward-banked turn by the hen harrier was initiated by negative

tail rotation. To stop the turn, the hen harrier used a rapid positive tail rotation [32],

which aligns with observations by Gillies et al. [25] of the steppe eagle performing the same

rotation when completing its banked turn. Though not equivalent to a rudder deflection, by

referring to Eqs. (2.21) and (2.11), we see that increasing the vertical tail volume coefficient

results in an increase in the yaw and roll control derivatives. Thus, we would expect that a

similar relationship holds with tail rotations combined with tail spread and incidence.

24

Adverse yaw typically refers to the tendency of an aircraft in a banked turn to yaw in the

direction opposite to the desired turning direction. In the presence of adverse yaw, a banked

turn to the right will often result in the aircraft yawing to the left. In an aircraft, adverse

yaw is typically counteracted by deflecting the rudder to produce a counteracting yawing

moment. Research by Thomas [26] into bird flight and control led him to hypothesize

that tail rotations could be used to counteract adverse yaw. Supporting his hypothesis,

Gillies et al. [25] observed many transient tail rotations throughout the banked turn of the

steppe eagle. The authors found that, despite their transient nature, at least some of these

tail rotations were consistent with counteracting transient adverse yaw effects. Studying

pigeons, Warrick et al. [56] found that tail twist could be used to counteract adverse yaw

only in high-speed flight. In slow flight, they found that the demands of weight support did

not allow the tail to be twisted and thus could not be used to counteract adverse yaw.

The results discussed to this point indicate that there is still much to be learned about

how the tail degrees of freedom available to birds allow them to control their flight [3]. For-

tunately, results from bird-scale UAVs and other aircraft allow some of these relationships

to be defined in the context of traditional aircraft flight mechanics. Though future work

will be required to understand how the tail degrees of freedom are used by birds in flight,

the studies that follow will allow us to understand potential risks and benefits of employing

the BIRE control system.

2.4 Control of Aircraft Using a Rotating Tail

Several of the studies included in this section of literature were referred to briefly at the

beginning of this chapter. Their importance in providing context into the BIRE indicates

that they provide substantial evidence of the benefits and risks of using a rotating tail to

control flight. In this section, we will specifically mention many of these benefits and risks,

while supporting the insight gleaned from avian flight control in Section 2.3. Thus, this

section outlines what has been gleaned from aircraft about the use of a rotating tail to

control flight, while the section previous gives insight into benefits that we may yet be able

to leverage in future designs.

25

2.4.1 Longitudinal Stability and Control

We have previously discussed in Section 2.3.1 the key findings relating to longitudinal

stability and control for bird flight. First, research by several authors showed tail spread

allows birds to manipulate their static pitch stability, provide weight support, and increase

pitch control effectiveness. Research suggests that tail incidence was primarily a method of

generating pitching moments during flight and can likely be used in a manner equivalent

to the elevator of a standard aircraft. Finally, although tail rotation provides a coupling

between the longitudinal and lateral degrees of freedom, there are currently no studies

available that examine the effect of tail rotation on longitudinal stability and control. In

the following section, we will analyze the implications to longitudinal stability and control

of using a rotating tail control system on UAVs and aircraft.

Tail Spread and Incidence

The function of a traditional elevator control system on aircraft is well understood

and was described in Section 2.1. Therefore, we will investigate the effect on longitudinal

stability and control of tail spread and tail incidence together in this section, with the

emphasis placed on tail spread. The literature in this section shows that aircraft employing

both tail spread and incidence are able to manipulate pitch stability and pitch effectiveness,

in addition to providing lift support to the aircraft at low speeds.

Hummel [57] presented arguably the most extensive wind tunnel tests investigating

avian-inspired tail control that have been performed to date. He created wooden wing-

tail models for a variety of wing-and-tail geometries with the tail mounted directly to the

trailing-edge of the main wing. Wind tunnel tests on these models revealed that increasing

the spread on a given tail model increased both the static pitch stability and pitch control

effectiveness of the tail across several angles of attack [57]. Hummel attributed this result

to the formation of a leading-edge vortex on the highly-swept tail, thereby increasing the

lift generation of the tail. The Lishawk UAV, studied by Ajanic et al. [58], and the bionic

morphing tail design by Zheng et al. [59] both found the same relationship between tail

spread and pitch stability and control effectiveness. As discussed previously, increasing the

26

spread of the tail directly increases the tail volume coefficient, which increases both Cm,α

and Cm,δe as shown in the relationships in Eq. (2.1) and (2.6), respectively.

In Sections 2.3.1 and 2.3.2, we showed several studies that highlighted the use of tail

spread and incidence in birds at low speeds to provide additional weight support. Results

from the Lishawk showed that flight at slow speeds required both tail spread and incidence

to provide the proper lift support to maintain steady, level flight while maintaining minimum

power required [58]. This result supports the idea that a combination of tail spread and

incidence not only provides lift support, but also can be used to reduce drag, as mentioned

by many researchers [28,35,37–45].

Tail Rotation

While there were no studies on the effects of tail rotation on longitudinal stability and

control for avian flight, there have been several studies on UAVs or aircraft that indicate re-

lationships between tail rotation and longitudinal stability and control. These studies show

tail rotations vary the static and dynamic longitudinal stability, pitch control effectiveness,

and allow for lift and drag manipulation on the tail.

A bird-inspired rotating tail design, similar to the BIRE control system, was simulated

using a 6 degree-of-freedom model by Bras et al. [60] to determine its flight dynamics

and control properties. The simulations showed that in longitudinally-trimmed flight, the

pitch stability decreased with rotation angle. With approximately 65◦ of tail rotation, the

aircraft became longitudinally unstable Cm,α > 0, indicating that substantial tail rotation

was required to destabilize the aircraft [60].

Bras et al. [60] also examined the effects of tail rotation on the dynamic stability of the

aircraft. A state-space analysis showed that the short-period mode decreased in magnitude

from Re (λ)sp ≈ −1 to Re (λ)sp ≈ −0.3 at 90◦ tail rotation. Examining Eqs. (2.3) and

(2.4), we see that Cm,q will decrease in magnitude as the horizontal tail volume coefficient

decreases with tail rotation. Therefore, the decrease in magnitude of the real part of the

short-period eigenvalue is predicted by these analytical relationships.

27

When examining the result of tail rotation on the stability of the phugoid mode, Bras

et al. [60] found that the phugoid mode stabilized with tail rotation, eventually degenerating

into two real, stable roots. We first note that, in the results given on static pitch stability

by the authors, Cm,α became less negative with tail rotation. In the analysis of the short-

period mode, we also found that Cm,q would decrease in magnitude due to a decrease in

tail volume coefficient. According to those relationships with increasing tail rotation, we

see in Eq. (2.5) that the denominator will trend more positive while the numerator remains

negative. Thus, the increase in phugoid stability with tail rotation can also be expected

according to Eq. (2.5).

Results generated by Parga et al. [61], Hummel [57], and Bras et al. [60] show that

both the lift and drag can be manipulated using tail rotation. For example, the UAV

design investigated by Parga et al. [61] found that, with positive tail incidence, tail rotation

reduced the lift and drag on the tail regardless of rotation direction. This is consistent

with what would be expected from the trade-off between horizontal and vertail tail volume

coefficients with tail rotation. Hummel’s [57] results expand on those of Parga et al. [61]

by noting that this result is dependent on the lateral orientation of the aircraft. When his

models had positive sideslip, he noted that a negatively twisted tail negatively incremented

the lift. Conversely, positive twist at the same sideslip angle created a positive increment

in the lift on the tail.

Finally, the simulations performed by Bras et al. [60] showed that the elevator deflection

required to trim the aircraft in steady level flight increased modestly from 2◦ to 3◦ with

tail rotations from 0◦ to ± 75◦. At each tail rotation, the trim angle of attack remained

constant. With tail rotations beyond ±75◦, however, the elevator deflection required to

trim rapidly became negative, settling at approximately −1◦ with a tail rotation of ±90◦.

This indicates that there is a substantial range of tail rotations for which tail rotation has

a very small effect on the longitudinal trim properties of the aircraft.

Though these examples have expanded on the relationship between tail rotation and

longitudinal stability and control when compared to what we know from avian flight, this is

28

still a relatively unexplored area of research [3]. This identifies an important contribution

that this dissertation can make to the literature addressing the feasibility of control using

a rotating tail.

2.4.2 Lateral Control and Stability

In Section 2.3.2, we learned that tail spread and incidence were most effective at con-

tributing to lateral stability and control when used in conjunction with tail rotation. The

work by Sachs noted that the lower inertia of birds may allow them to provide sufficient

static stability with only a level tail and the sweep of their wings [52–54]; however, when

dealing with larger UAVs and aircraft, this certainly will not be the case. When tail spread

and incidence were used in conjunction with tail rotation, research shown that a rotated

tail could be used to generate rolling and yawing moments and provide yaw stability.

We have established that tail spread and incidence are the most impactful to lateral

control and stability when used in conjunction with tail rotation. Indeed, the only explicitly

measured effects of tail spread and incidence are taken in conjunction with tail rotation.

Therefore, we will forgo a discussion on tail spread and incidence and instead directly address

the effects of tail rotation (coupled with tail spread and incidence) on lateral control and

stability.

Tail Rotation

The studies mentioned in this section reveal that tail rotation is able to contribute

to lateral stability and control by increasing the roll control effectiveness, stabilizing the

dynamic roll mode, and augmenting both yaw stability and control effectiveness. Research

has also confirmed that employing a rotating tail on an aircraft allows the aircraft to pro-

duce roll and yaw moment combinations for lateral maneuvers and control adverse yaw as

discussed in Section 2.3.2.

Both the wind tunnel experiments of Hummel [57] and the simulations performed by

Bras et al. [60] indicate that tail rotation has no effect on the static roll stability of an

29

aircraft. The relationship in Eq. (2.7) suggests that increasing the vertical tail volume coef-

ficient through tail rotation would increase the static roll stability of an aircraft. However,

we remind the reader that Eq. (2.7) was derived assuming a single vertical tail surface.

Solid-body tail rotations like the ones investigated here produce an equal vertical tail vol-

ume coefficient above and below the aircraft. Therefore, it is likely that the generated

rolling moments cancel one another with the aircraft in sideslip, as suggested by the results

above. Roll stability is generally dominated by the lift on the main wing, so a lack of added

roll stability from a rotating tail does not represent a substantial concern for a rotating

empennage control system.

The dynamic analysis performed Bras et al. [60] showed that the dynamic roll mode

became increasingly stable with tail rotation, its magnitude doubling over the range of 90◦

tail rotations. Examining Eq. (2.9), we can see that an increase in roll damping coefficient

C`,p increases the stability of the roll mode. Although unclear how the relationship in Eq.

(2.10) would be affected by a rotating tail, one possible explanation would be that the

rotation of the tail out of the downwash of the wing would increase the lift slope of the tail

and thereby increase the damping it experiences in roll.

Hummel [57] and Parga et al. [61] both found that tail rotations increased the roll

control effectiveness of the aircraft they studied. Data from the wind tunnel models tested

by Hummel [57] showed that a positive, planar tail rotation would provide a negative rolling

moment. This rolling moment could then be counteracted or augmented by negative or

positive incidence angles, respectively. Parga et al. [61] also showed that a rotating tail was

able to produce rolling moments, though these moments were substantially smaller than

the rolling moments produced by traditional ailerons.

This is to be expected, since the rolling moment produced by ailerons is substantially

increased with the large lifting force acting on the main wing. It is likely that the increase

in roll control effectiveness is not entirely described by an increase in vertical tail volume

coefficient as shown in Eq. (2.11). While increasing the tail volume coefficient would

certainly contribute to generated moments, due to the symmetric nature of the tail about

30

the roll axis, it is likely the increase in rolling moment production from tail rotations is a

result of downwash effects.

Intuitively, yaw stability has been shown to increase with tail rotation angle. Both

Hummel [57] and Parga [61] found that rotating the tail increased the yaw stability inde-

pendent of the direction of rotation. Further, simulations from Bras et al. [60] showed that,

with approximately 50◦ of tail rotation, a planar rotating tail design was shown to have the

same level of yaw stability as the baseline aircraft they modeled, which had a vertical tail.

Referring to Eq. (2.12), we can see that any increase in the vertical tail volume coefficient

should stabilize an aircraft in yaw.

Investigations into the spiral and Dutch roll modes of Bras et al.’s [60] aircraft designs

revealed that increased tail rotation caused both modes to become increasingly unstable. We

know from their previous results that the roll stability was constant with tail rotation and

it is likely that the roll damping and roll cross-damping terms are each negative. Therefore,

referring to Eq. (2.13), we can focus on the second terms in the numerator and denominator

(since the change in C`,β ≈ 0). Thus, an increase in static yaw stability would drive the

real part of the dimensionless spiral mode eigenvalue more positive, as noted in the data

produced by Bras et al. [60].

Bras et al. [60] found that the Dutch roll mode was oscillatory for small tail rotation

angles before gradually degenerating into two unstable real roots. Using the same analysis

method as with the spiral mode, and assuming that Cn,p < 0, we see from Eqs. (2.17) and

(2.18) that RDc is destabilizing. We also note that RDs < 0 from Eq. (2.20), and therefore

RDp in Eq. (2.19) is also destabilizing to the real part of the dimensionless Dutch roll

eigenvalue. Again, an increase in static yaw would drive the Dutch roll mode to instability,

as shown in the simulations by Bras et al. [60]. The instability of both the spiral and Dutch

roll modes with increased tail rotation represents one potential concern with the BIRE

control system. Fortunately, instability in these modes may be controlled out by active

damping from BIRE rotation and elevator deflections.

31

The results from Parga et al. [61], Hummel [57], and Bras et al. [60] indicate that a

rotating tail is able to provide an increase in yaw control effectiveness. Both Hummel and

Parga et al. found that tail rotations created yawing moments on the aircraft and that the

direction and magnitude of those moments were directly controlled by tail incidence [57,61].

The dependence of the yawing moment on tail incidence was quickly identified by Parga

et al. [61] to be a potential difficulty, as that single control mechanism was responsible for

both longitudinal and lateral force and moment control. The wind tunnel tests performed

by Hummel [57] showed the same coupling when tail rotation was introduced into the

horizontal tails of his models.

Bras et al. [60] further investigated this potential issue by comparing the yawing mo-

ment produced by a longitudinally-trimmed rotating tail configuration to a traditional rud-

der configuration that was likewise longitudinally-trimmed. Their results showed that large

rotation angles were required to trim the aircraft and produce a yawing moment with a

planar rotating tail. In fact, it required nearly 90◦ of tail rotation to produce the same

yawing moment as 5◦ of rudder deflection on the baseline aircraft, indicating a much lower

yaw control derivative on the rotating tail design. Interestingly, Parga et al. [61] believed

that their rotating V-tail design had the potential to produce a yaw control effectiveness

that was comparable to a traditional rudder., but they did not show any proof of this idea.

Lastly, like with birds, the results from Parga et al. showed that tail rotation was

helpful in completing lateral maneuvers and controlling out adverse yaw. For example, the

rotating V-tail UAV design developed by Parga et al. was found to produce proverse yaw

when trimmed [61]. The authors also found that negative tail rotation was beneficial when

initiating banked turns to the right, which is consistent with the results from Oehme and

Gillies et al. [25, 32].

32

CHAPTER 3

DESCRIPTION OF THE BASELINE AIRCRAFT AND ITS BIRE VARIANT

A control system similar to the BIRE could potentially be applied to nearly any aircraft

with a traditional empennage including fighter, transport, passenger, and general aviation

aircraft. However, in this work the BIRE control system will be applied to a fighter-type

aircraft. The application of the BIRE control system to a fighter aircraft is motivated

by an interest in the effects of the control system when applied to a marginally stable

configuration. Additionally, removing the vertical tail has a substantial effect on the weight

of the aircraft. Though the reduction in weight may be mitigated by the weight of the

control system itself, the benefits to maneuverability and range will likely justify even a

slight increase in weight.

Before a thorough aerodynamic analysis can be performed, a description of the geom-

etry of the aircraft is required along with the flight conditions at which the analysis will

be performed. In this chapter, the relevant geometric and inertial properties of the chosen

aircraft are given. Applying the BIRE control system to the baseline aircraft makes sub-

stantial changes to these properties and these are recorded in this chapter as well. After

outlining the characteristics of each aircraft, the flight envelope and corresponding points

of analysis for both aircraft are described.

3.1 Description of the Baseline Aircraft

The baseline fighter aircraft chosen for this analysis is a single engine, supersonic, tac-

tical aircraft, similar to the F-16 Fighting Falcon. Publicly-released measurements of the

lifting surfaces of the F-16 are given in the works of Fox and Forrest [62] and Butcher [63].

Using these measurements along with the various geometric and aerodynamic definitions

from flight mechanics, a simple model of the F-16 can be developed for use with the aero-

dynamic tools referenced in Chapter 4.

33

Table 3.1: Lifting surface geometry data used to model the baseline aircraft.

Parameter Fox and Forrest [62] Butcher [63]
M

a
in

W
in

g
Planform Area, Sw, [ft2] 300* —

Span, bw [ft] 30* —

Aspect Ratio, RAw 3* —
Taper Ratio, RTw 0.2275 —

Mean Aerodynamic Chord, cw [ft] 11.32* —
Leading-Edge Sweep, ΛLEw [deg] 40 —
Trailing-Edge Sweep, ΛTEw [deg] 0 —
Airfoil Section NACA 64A204 —

H
o
ri

z
o
n
ta

l
T

a
il

Planform Area, Sh, [ft2] 63.675 63.7
Semispan, bh/2 [ft] 5.803 5.801
Root Chord, crh [ft] — 7.983
Tip Chord, cth [ft] — 3.117
Aspect Ratio, RAh 2.116 2.1
Mean Aerodynamic Chord, ch [ft] 5.906 —
Leading-Edge Sweep, ΛLEh [deg] 40 40
Trailing-Edge Sweep, ΛTEh [deg] 0 0
Dihedral, Γh [deg] -10 –
Airfoil Section (Root/Tip) Biconvex 6/3.5%

V
e
rt

ic
a
l

T
a
il Planform Area, Sv, [ft2] 54.675 —

Exposed Span, bv [ft] 8.416 —
Aspect Ratio (Theoretical), RAv 1.294 —
Mean Aerodynamic Chord, cv [ft] 6.838 —
Leading-Edge Sweep, ΛLEv , [deg] 47.5 —
Airfoil Section (Root/Tip) Biconvex 5.3/3% —

* Confirmed by Nguyen et al. [64]

Calculated Geometric Properties

The information given in Table 3.1 is enough to completely characterize the planform

geometry of the main wing and horizontal tail. To do so, the aspect ratio and taper ratio

of a tapered wing can be defined, respectively, as [24]

RA ≡
b2

S
(3.1)

and

RT ≡
ct
cr

(3.2)

where b is the span of the surface, S is planform area, ct is the chord length at the tip of

34

the lifting surface and cr is the chord length at the root. The planform area is the area of

a trapezoid and is given by

S =
cr + ct

2
b (3.3)

In particular, Eq. (3.2) can be solved for ct and substituted into Eq. (3.3) to solve for

the root chord given the span and taper ratio. Without the taper ratio of the vertical tail,

however, additional analysis must be performed to characterize its planform.

The taper ratio can be found using the aspect ratio, span, and the mean aerodynamic

chord, c. The mean aerodynamic chord is defined as [65]

c =
2

S

∫ b
2

0
c(z)2 dz (3.4)

and represents the chord length with an equal moment about its aerodynamic center as the

entire aircraft has about its aerodynamic center [66]. To calculate the mean aerodynamic

chord using Eq. (3.4), the chord distribution of a wing with constant taper, c(z), is required.

Given in terms of the span, aspect ratio, and taper ratio, the chord distribution of a wing

is [24]

c(z) =
2b

RA (1 +RT)

[
1− (1−RT)

∣∣∣∣2zb
∣∣∣∣] (3.5)

Eqs. (3.1)–(3.5) can be combined to solve for the taper ratio, given the aspect ratio, mean

aerodynamic chord, and span.

Substituting Eq. (3.5) into Eq. (3.4) and simplifying, the integral becomes

c = − 4b(R3
T − 1)

3RA(1−RT)(1 +RT)2

This can be rearranged to form a cubic of the taper ratio, given by

(4b− 3cRA)R3
T − 3cRAR

2
T + 3cRART + (3cRA − 4b) = 0 (3.6)

35

Finding the roots of this equation gives three candidates for the value of the taper ratio:

these are

RT = (1, 2.290, 0.437) (3.7)

Tapered wings are nearly always given a taper ratio that is less than one, corresponding to

a larger root chord than tip chord. Under this constraint, the only value that corresponds

to a tapered wing with root chord larger than tip chord is RT = 0.437. At this point, the

root and tip chord of the vertical tail can be calculated in the same manner as previously

outlined.

The aerodynamic model used here requires that the quarter-chord sweep angle of each

wing be known. Referring to Fig. 3.1, and letting m represent the chord fraction as

measured from the leading-edge, the sweep angle at chord fraction m can be calculated as

tan Λm = tan ΛLE +
2m

b
cr (RT − 1) (3.8)

where 0 ≤ m ≤ 1. This relationship can be used to solve for the quarter-chord sweep angle,

Λc/4, of each wing.

Finally, the mean geometric chord for each wing surface will need to be known for an

analysis performed later in this work. The mean geometric chord is defined as [24]

cg ≡
S

b
=

1

b

b/2∫
z=−b/2

c(z) dz (3.9)

For wings with linear taper, the integral in Eq. (3.9) becomes

cg =
1 +RT

2
cr (3.10)

Scaled Geometric Properties

The planform geometries of each lifting surface can be described completely with the

methodology above; however, modeling the aircraft in a low-order aerodynamic tool re-

36

ΛLE

Λ𝑚

𝑏/2

𝑚𝑐𝑟

𝑚𝑐𝑡

𝑏

2
tanΛLE

𝑏

2
tanΛ𝑚

Fig. 3.1: Diagram used to solve for the quarter-chord sweep angle of a wing.

quires that each lifting surface extend to the centerline of the aircraft. Since the fuselage

contributes to the lift generated by the aircraft [67], approximating fuselage effects by ex-

tending lifting surfaces through the fuselage is an acceptable modeling assumption. There-

fore, the measurements from the root chord of the horizontal and vertical tails must be

approximated by referring to scaled drawings included in the work of Fox and Forrest [62].

Using these scaled drawings, the spanwise distance from the root of the horizontal tail

to the centerline of the aircraft is approximated to be 3.40 ft. The vertical distance from the

root of the vertical tail to the centerline of the vehicle is likewise approximated at 2.07 ft.

In an effort to avoid substantially over-predicting the aerodynamic effect of these surfaces,

the leading-edge sweep of the lifting surface was set to zero degrees over the fuselage section

of the aircraft.

In the works of both Fox and Forrest [62] as well as Nguyen et al. [64], the axial location

of the center of gravity of the aircraft is given in terms of a percentage (35%) of the mean

aerodynamic chord of the main wing. Since no information is given to the contrary, it is

assumed that the center of gravity lies on the fuselage centerline of the aircraft; that is,

37

there is no displacement in the body-fixed y- or z- directions. The axial distance from the

center of gravity can be calculated by first finding the distance from the root leading-edge

to the leading edge of the mean aerodynamic chord section. This relationship is defined as

lcgw = crw + cw (0.35− 1)

The distance from the center of gravity to the quarter-chord of the main wing at the root

chord is

xcgw = lcgw − 0.25crw = 0.75crw + (0.35− 1)cw (3.11)

With the information given in Table 3.1, the axial displacement of the wing quarter-chord

from the center of gravity is 4.86 ft.

Since relationships between the location of the main wing and the horizontal and verti-

cal tails, the axial distance from the center of gravity to the quarter-chord of the horizontal

and vertical tails must be determined using the figures in Fox and Forrest [62]. By deter-

mining the distance from the leading-edge of the main wing to the leading-edge of the other

lifting surface, noted as xLE−LEh,v the axial distance from the quarter-chord to the center

of gravity is given by

xcgh,v = xLE−LEh,v + 0.25crh,v − lcgw (3.12)

For the horizontal tail, xLE−LEh = 20.1 ft and for the vertical tail, xLE−LEv = 15.5 ft. With

the lifting surfaces and their relation to the center of gravity defined, a simplified model of

the baseline aircraft can be constructed.

From the preceding sections and the information in Table 3.1, the aircraft geometry

is defined as shown in Fig. 3.2a. Shaded sections of the figure show the lifting surfaces as

represented in the aerodynamic tool. Figure 3.2b gives the location of the quarter-chord of

each lifting surface in relation to the center of gravity of the aircraft. This geometric data

is summarized in Table 3.2.

The final geometric characterization that needs to be made for the baseline aircraft

regards its control surfaces. When flown at supersonic speeds, many aircraft rotate entire

38

40°

3.71

16.29

49.34

5
.9

3

11.32
1

5

9
.1

2 5
.
7
1

3.12

7.98

40°

10°

3.94
47.5°

9.06

1
0

.4
8

8
.4

1

MAC

NACA 64A204

Main Wing

3.40

NACA 0004

NACA 0005

Vertical Tail

Horizontal Tail

(a) Lifting surface geometry.

𝑥𝑏

𝑦𝑏

𝑥𝑏

𝑧𝑏

4.86

-13.13

-8.83

(b) Center of gravity references.

Fig. 3.2: The modeled geometry of the baseline aircraft. All dimensions in feet.

lifting surfaces to mitigate the loss of control efficiency encountered due to shock waves [68].

This is the case with the baseline aircraft, which rotates the entire horizontal tail about

an axis parallel to the body-fixed y-axis, a configuration often referred to as a stabilator

39

Table 3.2: Geometric characteristics of the lifting surfaces on the baseline fighter aircraft.

Parameter Main Wing Horizontal Tail Vertical Tail

Planform Area, S [ft2] 300 63.675 54.675

Exposed Span, b [ft] 30 11.605 8.42*

Aspect Ratio, RA 3 2.116 1.44
Taper Ratio, RT 0.2275 0.391 0.52
Root Chord, cr 16.293 7.980 7.70
Mean Aerodynamic Chord, c [ft] 11.320 5.906 6.03
Mean Geometric Chord, cg [ft] 10.0 5.550 5.852
Leading-Edge Sweep, ΛLE [deg] 40 40 47.5
Quarter-Chord Sweep, Λc/4 [deg] 32 32 43

Half-Chord Sweep, Λc/2 [deg] 23 22 38

Dihedral, Γ [deg] 0 -10 90
Quarter-Chord Location, xcg [ft] 4.86 -13.13 -8.83
Airfoil NACA 64A204 NACA 0005 NACA 0004

* Represents the exposed semispan of the vertical tail

[9]. The stabilators of the baseline aircraft are able to deflect both symmetrically and

antisymmetrically to control flight in the supersonic regime.

In addition to the control offered by the stabilator, the main wing of the aircraft

employs trailing-edge ailerons and the vertical tail houses a trailing-edge rudder. Each of

these control surfaces are more efficient at lower Mach numbers and help to produce rolling

and yawing moments [68]. To simplify the control system for the baseline aircraft, the

differential stabilator deflections are coupled to deflections of the main wing ailerons in a

ratio of 1:4 [64]. These deflections are assumed to be antisymmetric, meaning that the

magnitude of the deflection on each side is equal while the direction is opposite.

Thus, the control surfaces of the baseline aircraft include: ailerons on the main wing,

δa, which are coupled with differential deflection of the stabilator, δd, symmetric stabilator

deflections, δe, and rudder deflections on the vertical tail, δr. Table 3.3 details the saturation

limits and actuation rate of the control surfaces modeled on the baseline aircraft as described

by Nguyen et al. [64]. The span fraction denotes the fraction of the span of the lifting

surface occupied by the control surface and was estimated using the drawings presented by

Fox and Forrest [62]. Likewise, the chord fraction represents the portion of the chord at

the corresponding span fraction location that the control surface covers. Note that these

40

fractions include the portion of each wing that extends into the fuselage as can be seen from

referencing Fig. 3.2.

Table 3.3: Description of the control surfaces on the baseline aircraft.

Control Surface
Saturation Span Chord Actuation

Limits, [deg] Fraction Fraction Rate, [deg/s]

Aileron*, δa ±21.5 0.23/0.76 0.22/0.22 80

Differential Deflection*, δd ±5.375 0.37/1.0 1.0/1.0 80
Stabilator Deflection†, δe ±25 0.37/1.0 1.0/1.0 60
Rudder, δr ±30 0.36/0.95 0.32/0.32 120

* Antisymmetric Deflection
† Symmetric Deflection

Both Stevens and Lewis [69] and Nguyen et al. [64] provide the inertial information

for the baseline aircraft. The inertial characteristics of the aircraft are used to evaluate

conditions of trim in Chapter 6 and examine aircraft control characteristics in Chapter 8.

Included in the works of Stevens and Lewis [69] and Nguyen et al. [64] is the total weight of

the aircraft, W , the components of the inertia tensor (e.g. Ixx), and the angular momentum

produced by the engines during flight (e.g. hx). These are each listed in Table 3.4.

Table 3.4: Inertial properties of the baseline aircraft.

Parameter Value

Weight, W [lbs.] 20,500
Inertia, Ixx [slug-ft2] 9,496
Inertia, Iyy [slug-ft2] 55,814
Inertia, Izz [slug-ft2] 63,100
Inertia, Ixy [slug-ft2] 0
Inertia, Ixz [slug-ft2] 982
Inertia, Iyz [slug-ft2] 0
Engine Momentum, hx [slug-ft2/s] 160
Engine Momentum, hy [slug-ft2/s] 0
Engine Momentum, hz [slug-ft2/s] 0

The moments of inertia, Ixx, Iyy, and Izz, are a measure of the resistance of the aircraft

to angular accelerations about each body-fixed axis [70]. These are, by definition, positive

41

quantities. In contrast, the products of inertia, Ixy, Ixz, and Iyz, are not sign-restricted and

are a measure of the location of mass with respect to the given plane [71]. If the product of

inertia contains an axis perpendicular to a plane of symmetry, then the product of inertia

will be zero, since the mass across that axis is equally distributed on both sides of the

aircraft. With respect to the products of inertia in Table 3.4, we note that the y-axis lies

perpendicular to the x-z plane of symmetry. Therefore, both Ixy and Iyz are equal to zero,

which is the case for most aircraft.

3.2 Description of the BIRE Variant

The characteristic geometry change incorporated into the design of the BIRE aircraft

is the removal of the vertical tail. Anhedral on the horizontal tail section of the baseline

aircraft was also replaced in the BIRE with a planar tail configuration. While maintaining

some degree of dihedral on the tail would add lateral stability to the BIRE [72], it was

determined that the control fidelity of the aircraft would be first be analyzed without

changes in dihedral. Once potential problems with the planar design are identified, future

work can investigate the role of dihedral on the aircraft aerodynamics and controls.

Finally, various changes were made to the aft portion of the outer mold line of the BIRE

to simplify the design of the rotation mechanism of the tail and present a more tractable

mechanical system. These changes are outlined in the work by Bolander et al. [73] and Ives

et al. [74]. As these outer mold line changes did not effect how the lifting surfaces would

be modeled in the aerodynamic software, they will not be outlined again here.

As a counterpart to Fig. 3.2, a basic outline of the entire geometry of the BIRE is

included for reference in Fig. 3.3. Note that the location of the quarter-chord of the main

wing and horizontal tail remain consistent between the baseline aircraft and the BIRE.

Therefore, Fig. 3.2b provides a sufficient reference for these dimensions when analyzing the

BIRE. Additionally, Fig. 3.4 shows a cutaway view of the empennage of each aircraft to

highlight the differences in design.

As mentioned above, the BIRE design is nearly identical to the baseline aircraft in

terms of its modeling, with the exception being the presence of the vertical tail and the

42

40°

3.71

16.29

49.34

5
.9

3

11.32
1

5

9
.2

1 5
.

8
0

3.12

7.98

40°

𝛿𝐵 =10°

MAC

NACA 64A204

Main Wing

NACA 0005

Horizontal Tail

Fig. 3.3: The modeled geometry of the BIRE aircraft. All dimensions in feet.

(a) Baseline aircraft

+ 𝛿𝐵

−𝛿𝐵

(b) BIRE variant

Fig. 3.4: Empennage geometry of the baseline aircraft and its BIRE variant.

lack of anhedral on the horizontal tail. For completeness, Table 3.5 contains a summary of

the geometric data of the BIRE variant analogous to the information in Table 3.2. Again,

it is assumed that the center of gravity and each lifting surface lies on the centerline of the

aircraft with no y- or z- displacements. This assumption is important for the BIRE because

43

the mechanism required to actuate tail rotations will be more tractable with a symmetric

distribution of weight on the tail.

Table 3.5: Geometric characteristics of the lifting surfaces on the BIRE variant.

Parameter Main Wing Rotating Tail

Planform Area, S [ft2] 300 63.675
Span, b [ft] 30 11.605
Aspect Ratio, RA 3 2.116
Taper Ratio, RT 0.2275 0.391
Root Chord, cr 16.293 7.980
Mean Aerodynamic Chord, c [ft] 11.320 5.906
Leading-Edge Sweep, ΛLE [deg] 40 40
Quarter-Chord Sweep, Λc/4 [deg] 32 32

Half-Chord Sweep, Λc/2 [deg] 23 22

Dihedral, Γ [deg] 0 0
Quarter-Chord Location, xcg [ft] 4.86 -13.13
Airfoil NACA 64A204 NACA 0005

The BIRE design employs a three degree-of-freedom control system, including symmet-

ric (1) and antisymmetric (2) stabilator deflections as well as the solid-body rotation of the

empennage about the centerline of the aircraft (3). Table 3.6 provides information on the

control surfaces of the BIRE variant. Like the baseline aircraft, the ailerons and differential

tail deflections are anti-symmetric deflections and the differential tail deflections are coupled

to the ailerons with a ratio of 1:4. The notation for the overlapping control surfaces between

the baseline aircraft and BIRE are consistent with the exception of a superscript B, which

will be used to distinguish between the baseline and BIRE control surface deflections when

plotted together. The tail rotations of the BIRE are denoted δB and given the name BIRE

rotation angle and here it is assumed that the tail is able to rotate at the same speed as

the slowest actuation rate among the control surfaces on the BIRE. As this is a preliminary

estimate, a conservative assumption was made that recognizes the mechanical difficulty in

rotating the entirety of the horizontal tail.

The inertial properties of the BIRE will vary substantially from those of the baseline

aircraft, shown in Table 3.4, when the empennage is rotated. A more thorough analysis

44

Table 3.6: Description of the control surfaces on the BIRE aircraft.

Control Surface
Saturation Span Chord Actuation

Limits, [deg] Fraction Fraction Rate, [deg/s]

Aileron*, δBa ±21.5 0.23/0.76 0.22/0.22 80

Differential Deflection*, δBd ±5.375 0.37/1.0 1.0/1.0 80
Stabilator Deflection†, δBe ±25 0.37/1.0 1.0/1.0 60
BIRE Rotation, δB ±180 – – 60

* Antisymmetric Deflection
† Symmetric Deflection

of the structure of each aircraft would be required to establish the appropriate weight es-

timates of each components and the effect of mechanism design on the weight and center

of gravity of the aircraft. This analysis is outside the scope of this work and, instead,

preliminary estimates based on CAD reconstructions of the geometry and load estimates

will be leveraged to make an informed estimate. Preliminary calculations of the weight of

the vertical tail using an aluminum skin gives a weight of approximately 500 lbs. Ideally,

the weight reduction caused by removing the vertical tail would be balanced or maintained

slightly net-negative by the addition of actuators to rotate the tail. However, as a conser-

vative estimate, it is assumed that the actuators will increase the weight of the baseline

aircraft by 500 lbs and that this weight will be added without substantially changing the

location of the center of gravity.

Using a CAD model of the BIRE aircraft, the moments and products of inertia were

calculated at several different tail rotation angles as reported in Table 3.7. As intuition

would suggest, these inertial changes for the BIRE are periodic in nature with a given

amplitude, frequency, phase shift, and offset. As an offset sinusoid, the moment of inertia

Iyy, for example, can be written in the form

Ĩyy = Ayy sin (ωyyδB + φyy) + zyy (3.13)

The values of the amplitude, Ayy, frequency, ωyy, phase shift, φyy, and offset, zyy,

can be determined using a least-squares optimization and the resulting periodic fits for the

45

inertial terms were given by Bolander et al. [75] and reproduced in Table 3.8. These fits

are visualized, alongside the data in Table 3.7, in Fig. 3.5. Note that changes in the term

Ĩyz are best described using the absolute value of a sinusoid, rather than the phase-shifted

sinusoids of Ĩyy and Ĩzz. The disparity introduced by using the absolute value of a sinusoid

will have no substantial repercussions on the analysis in this work. Note that the changes

in the inertia with tail rotation angle are small. This is because the weight of the tail is

very small with respect to the total weight of the aircraft.

Table 3.7: Inertial data as a function of BIRE rotation angle of the BIRE variant.

Parameter
BIRE Rotation Angle, δB [deg]

0 ±15 ±30 ±45 ±60 ±75 ±90

Weight, W̃ [lbs] 21,000 21,000 21,000 21,000 21,000 21,000 21,000

Inertia, Ĩxx [slug-ft2] 9,280 9,280 9,280 9,280 9,280 9,280 9,280

Inertia, Ĩyy [slug-ft2] 58,127 58,149 58,207 58,288 58,368 58,427 58,449

Inertia, Ĩzz [slug-ft2] 65,766 65,745 65,686 65,606 65,525 65,466 65,445

Inertia, Ĩxy [slug-ft2] 0 0 0 0 0 0 0

Inertia, Ĩxz [slug-ft2] -5 -5 -5 -5 -5 -5 -5

Inertia, Ĩyz [slug-ft2] 0 -80 -139 -161 -139 -80 0

Table 3.8: Inertial properties of the BIRE variant.

Parameter Value

Weight, W̃ [lbs] 21,000

Inertia, Ĩxx [slug-ft2] 9,280

Inertia, Ĩyy [slug-ft2] 58,288− 161 cos (2δB)

Inertia, Ĩzz [slug-ft2] 65,606 + 161 cos (2δB)

Inertia, Ĩxy [slug-ft2] 0

Inertia, Ĩxz [slug-ft2] -5

Inertia, Ĩyz [slug-ft2] −161 |sin (2δB)|

46

65000

65500

66000

58000
58250
58500

9260
9280
9300

−6
−3

0

−90 −60 −30 0 30 60 90

−180
−120
−60

BIRE Rotation Angle, δB [deg]

In
e
rt

ia
,
I

[s
lu

g
-f

t2
]

Ixx
Iyy

Izz
Ixy

Ixz
Iyz

Fig. 3.5: Changes in the moments and products of inertia of the BIRE aircraft as a function
of BIRE rotation angle.

CHAPTER 4

FORMULATING AN AERODYNAMIC MODEL FOR THE BASELINE AND BIRE

AIRCRAFT

The development of an aerodynamic model for the baseline aircraft and BIRE variant

depend on understanding the interactions between the aircraft equations of motion and

the aerodynamic forces and moments acting on the aircraft. For a rigid-body aircraft, the

rigid-body 6-DOF equations of motion are [76]

u̇

v̇

ẇ

 =
g

W

Fxb

Fyb

Fzb

+ g

−sθ
sφcθ

cφcθ

+

rv − qw

pw − ru

qu− pv

 (4.1)

ṗ

q̇

ṙ

 =

Ixxb −Ixyb −Ixzb
−Ixyb Iyyb −Iyzb
−Ixzb −Iyzb Izzb

−1

0 −hzb hyb

hzb 0 −hxb
−hyb hxb 0

p

q

r

+

Mxb + (Iyyb − Izzb)qr + Iyzb(q

2 − r2) + Ixzbpq − Ixybpr

Myb + (Izzb − Ixxb)pr + Ixzb(r
2 − p2) + Ixybqr − Iyzbpq

Mzb + (Ixxb − Iyyb)pq + Ixyb(p
2 − q2) + Iyzbpr − Ixzbqr

(4.2)

ẋf

ẏf

żf

 =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

u

v

w

+

Vwxf

Vwyf

Vwzf

 (4.3)

48

and
φ̇

θ̇

ψ̇

 =

1 sφsθ/cθ cφsθ/cθ

0 cφ −sφ
0 sφ/cθ cφ/cθ

p

q

r

 (4.4)

where the short-hand s and c indicate the sine or cosine, respectively, of the angle in the

subscript.

Phillips [77] mentions that Eqs. (4.1) and (4.2) with changes in mass and inertia so

long as these are accounted for in the “pseudo-aerodynamic” forces and moments acting

on the aircraft. However, changes in the inertia, such as those shown in Table 3.8, are not

accounted for in Eq. (4.2). Taking these changes in inertia into account would produce

an additional matrix-vector multiplication with the time derivative of the inverted inertia

tensor. In this work, it is assumed that the time derivative of the inertia tensor can be

neglected. It stands to reason that a diagonally-dominant matrix like the inertia tensor,

once inverted, will result in a very small additional term. Future work can justify this

approximation further.

In Eq. (4.1), the inertial properties of the aircraft are defined identically to those in

Tables 3.4 and 3.8 with the only addition being the gravitational constant g. The terms

u, v, and w, represent the translational velocity components of the aircraft in a body-fixed

coordinate system and the terms p, q, and r represent the rotational velocity in that same

system [77]. Using the traditional Euler angle description, the bank, elevation, and heading

angles are given by φ, θ, and ψ [78]. Vwxf , Vwyf , and Vwzf in Eq. (4.3) represent the velocity

of the wind with respect to to the earth-fixed reference frame. Finally, Fxb , Fyb , and Fzb

represent the body-fixed aerodynamic forces on the aircraft, including the thrust generated

by the aircraft, and Mxb , Myb , and Mzb represent the body-fixed aerodynamic moments

acting on the aircraft, which also includes the effects of thrust [77]. These moments are

often referred to as the rolling, pitching, and yawing moments of the aircraft.

49

The effects of thrust, as mentioned above, can be represented as an additional term in

Eq. (4.1). The forces in the wind system are related to the body-fixed aerodynamic forces

by
Fxb

Fyb

Fzb

 =

FPx

FPy

FPz

+

FXb

FYb

FZb

 (4.5)

where FPx , FPy , and FPz are the components of propulsive forces in the body-fixed coor-

dinate system and FXb , FYb , and FZb are the components of the aerodynamic forces in the

body-fixed system. The aerodynamic moments are similarly represented:

Mxb

Myb

Mzb

 =

MPx

MPy

MPz

+

MXb

MYb

MZb

 (4.6)

where MPx , MPy , and MPz are the components of propulsive moments in the body-fixed

coordinate system andMXb , MYb , andMZb are the components of the aerodynamic moments

in the body-fixed system.

A static analysis of an aircraft using Eqs. (4.1) and (4.2) can be performed by setting

the rate terms on the left-hand side equal to zero and solving for the state of the aircraft

(see Chapter 6). Likewise, Eqs. (4.1), (4.2), and (4.4) can be utilized to analyze control

characteristics of each aircraft system (see Chapter 8). In either case, a description of the

aerodynamic forces and moments for each aircraft is required to evaluate Eqs. (4.1) and

(4.2). The description of these forces and moments constitute an aerodynamic model for

the aircraft.

4.1 Aerodynamic Forces and Moments

The aerodynamic forces and moments acting on an aircraft are caused by pressure

stresses acting normal to the aircraft surface and shear stresses acting tangent to the aircraft

surface [79,80]. Changes in the aerodynamic forces and moments acting on the aircraft can

50

come from changes in the velocity of the aircraft, both translational and rotational, as well

as changes in the acceleration experienced by the aircraft. Additionally, changes in the

geometry of the aircraft, of which this work will focus on control surface deflections, will

have an impact on the aerodynamic forces and moments.

While changes in each of these parameters have an effect on the forces and moments

experienced by the aircraft, they do not all do so in equal proportion. As part of this

preliminary analysis, the effects of both translational and rotational accelerations on the

aerodynamic forces and moments will be ignored. In a trimmed state, where the acceler-

ations in the body-fixed frame are all zero, these accelerations will have no effect on the

aerodynamics. Thus, the analysis in Chapter 6 is independent of changes in the aerody-

namic forces and moments due to body-fixed accelerations. The simulations performed in

Chapter 8 have both translational and rotational accelerations present; however, by analyz-

ing small disturbances to the aircraft, the effects on the aerodynamic forces and moments

can be reasonably neglected in this case as well. By ignoring the effects of acceleration on

the aerodynamic forces and moments, a model of each will be constructed in terms of the

translational and rotational velocities as well as control surface deflections. The relationship

between the aerodynamic forces and moments can therefore be written as

Fb = f(u, v, w, p, q, r, δ) (4.7)

where F represents all of the aerodynamic forces and moments in the body-fixed coordinate

system and δ represents each of the control surfaces on the aircraft.

4.1.1 Nondimensional Forces and Moments

The relationships between the aerodynamic forces and moments and the velocities can

be made more convenient by considering a model using the nondimensional aerodynamic

force and moment coefficients. Nondimensionalizing the forces given in Eq. (4.1) by the

51

dynamic pressure, 1
2ρV

2Sw, yields

CX =
Fxb

1
2ρV

2Sw
(4.8)

CY =
Fyb

1
2ρV

2Sw
(4.9)

and

CZ =
Fzb

1
2ρV

2Sw
(4.10)

Whereas the nondimensional moments corresponding to the moments in Eq. (4.2) are

nondimensionalized using the dynamic pressure and a reference length and are given by

C` =
Mxb

1
2ρV

2Swbw
(4.11)

Cm =
Myb

1
2ρV

2Swcw
(4.12)

and

Cn =
Mzb

1
2ρV

2Swbw
(4.13)

Note that the reference lengths in the definition of the nondimensional aerodynamic mo-

ments are arbitrarily chosen to be the span of the main wing, bw, and the mean aerodynamic

chord of the main wing, cw.

In addition to the dependencies of the aerodynamic forces and moments themselves,

the aerodynamic coefficients in Eqs. (4.8) - (4.13) are generally considered functions of two

nondimensional numbers related to the velocity magnitude. The first of these numbers is

the Reynolds number [81], defined as

Re ≡
ρV lref

µ
(4.14)

where ρ is the density, lref is a reference length, and µ is the dynamic viscosity. The Reynolds

number is a ratio of the effects of inertia to viscosity in a given flow, meaning that higher

52

Reynolds numbers correspond to flows in which the effects of viscosity are substantially

less than the effects of inertia. The aerodynamic coefficients can change dramatically at

low Reynolds numbers, where the flow is transitioning from laminar to turbulent conditions

[20, 82]. However, at large Reynolds numbers, the aerodynamic coefficients are generally

considered weak functions of Reynolds number.

The other nondimensional number is the Mach number, defined as

M ≡ V

a
(4.15)

where a is the speed of sound. Since the speed of sound is directly associated with the

compressibility of air, the Mach number indicates regions in which compressibility effects

are significant to flow characteristics. Mach numbers below 0.3 are generally considered

to be incompressible, and therefore the aerodynamic coefficients are considered to be weak

functions of Mach number in this range [83]. Thus, at high Reynolds numbers and low

Mach numbers, the effect of velocity magnitude on the force and moment coefficients of the

aircraft are negligible [20].

While the aerodynamic coefficients can be considered independent of the velocity mag-

nitude under the preceding circumstances, they are not independent of the velocity as a

vector. Specifically, the aerodynamic coefficients are each a function of the aerodynamic

angles, α and β. Figure 4.1 shows these angles with regards to the freestream velocity.

From the geometry in Fig. 4.1, the angle of attack, α, is defined as

α ≡ tan−1
(w
u

)
(4.16)

The other aerodynamic angle, β, is called the sideslip angle and is defined as

β ≡ sin−1
(v
V

)
(4.17)

In a sense, these angles can be seen as a nondimensionalization of the body-fixed velocity

53

components v and w. To solve for the body-fixed velocity components using the aerody-

namic angles, it follows from the geometry presented in Fig. 4.1 that

u

v

w

 = V

cαcβ

sβ

sαcβ

 (4.18)

With the aerodynamic angles, the effects of the translational velocity on the aerodynamic

coefficients can be characterized completely.

𝑥𝑏
𝑦𝑏, 𝑦𝑠

𝑧𝑏

𝑭

𝑥𝑠

𝑧𝑠, 𝑧𝑤

𝑁

𝐴
𝑌

𝛼
𝐿

𝑌 𝐷𝑠

𝛼

𝑉∞

𝑥𝑤

𝑦𝑤

𝛽

𝛽

𝐿

𝐷
𝑆 fuselage reference line

Fig. 4.1: A representation of the transformation between the wind, stability, and body-fixed
aircraft coordinate systems.

Since the control surface deflections are already represented nondimensionally in angle

form, the final relationship in Eq. (4.7) that must be nondimensionalized is the rotational

body-fixed velocities. The traditional nondimensionalizations for the body-fixed rotational

54

velocities are

p ≡ pbw
2V

(4.19)

q ≡ qc̄w
2V

(4.20)

r ≡ rbw
2V

(4.21)

With these definitions, the relationship given in Eq. (4.7) can be rewritten for the nondi-

mensional coefficients in Eqs. (4.8) - (4.13) as

CFb = f(α, β, p, q, r, δ) (4.22)

With this form, an aerodynamic model can be created for each of the aerodynamic co-

efficients. However, the relationship between the aerodynamic force coefficients and the

aerodynamic angles are much more conveniently expressed in the wind coordinate system.

Therefore, the transformation between the body-fixed and wind coordinate systems must

be given before presenting the forms of the aerodynamic models.

4.1.2 Coordinate Systems

In Chapter 2, the body-fixed and wind coordinate systems were briefly introduced.

Here, they are explored in more depth to provide context for the transformations of the

aerodynamic coefficients between the two systems. The body-fixed coordinate system is

shown in Fig. 4.2. In this system, xb is aligned with a fuselage reference line and positive

out the nose of the aircraft, yb is measured positive out the right-side of the aircraft, and

zb is positive out the underside of the aircraft.

Though the equations of motion are defined using this body-fixed system, the aero-

dynamic forces on the aircraft are more readily defined when they are given with respect

to a coordinate system aligned with the freestream velocity. Called the wind coordinate

system, coordinate system has the x -axis co-linear to, and in the opposite direction of, the

freestream velocity. A third coordinate system, called the stability coordinate system, is

55

𝑥𝑏

𝑦𝑏

𝑧𝑏

fuselage reference line

Fig. 4.2: A representation of the body-fixed coordinate system.

sometimes used in flight dynamics analysis and acts as an intermediate system between the

body-fixed and wind systems. Each of these coordinate systems are depicted in Fig. 4.1.

Since the dynamics of the aircraft system are traditionally written in the body-fixed system

and the aerodynamic forces lend themselves to being defined using the wind system, we

require a transformation to map the forces from one coordinate system to another.

The transformation from the body-fixed to the wind coordinate system is made through

the aerodynamic angles α and β. The force coefficients as given in the body-fixed system

are CX , CY , and CZ , which will be referred to as the body-fixed x, y, and z coefficients.

Forces in the body-fixed system are often referred to as the axial force, A = −Fxb , the side

force Y = Fyb , and the normal force N = −Fzb , and are labeled as such in Fig. 4.1. In the

wind coordinate system, the corresponding force coefficients are CL, CS , and CD, which are

referred to as the lift, side force, and drag coefficients respectively. Given the body-fixed

force coefficients, the lift, side force, and drag coefficients are calculated as

CD

CS

CL

 =

CAcαcβ − CY sβ + CNsαcβ

CAcαsβ + CY cβ + CNsαsβ

CNcα − CAsα

 (4.23)

56

with A, Y , and N as defined above. If instead the lift, drag, and side force coefficients are

given in the wind system and the body-fixed coefficients are desired, the transformation

becomes
CX

CY

CZ

 =

−CA
CY

−CN

 =

CDcαcβ + CScαsβ − CLsα

CScβ − CDsβ
CDsαcβ + CSsαsβ + CLcα

 (4.24)

Note that the terms longitudinal and lateral will be used to describe the forces and

moments acting on the baseline aircraft and BIRE variant throughout the rest of this work.

To review, there are two longitudinal forces, lift (or normal force) and drag (or axial force)

and one longitudinal moment, the pitching moment. There are three lateral forces and

moments: a lateral force, the side force, and two lateral moments, the rolling and yawing

moments. In certain scenarios, the longitudinal and lateral forces and moments can be ana-

lyzed independently of one another. Since the BIRE fundamentally couples control of pitch

with control of yaw in its design, the instances in which they can be considered indepen-

dently are reduced. With this terminology and the basis for the aerodynamic coefficients

and their modeling parameters established, the aerodynamic models used in this work can

now be introduced.

4.1.3 Compressibility Corrections

As mentioned previously, flight conditions at high Reynolds numbers and Mach num-

bers below 0.3 have aerodynamic force and moment coefficients that are nearly independent

of velocity magnitude. Fighter aircraft will commonly cruise at Mach numbers substantially

higher than 0.3; therefore, it becomes important to adjust the aerodynamic force and mo-

ment coefficients to account for the effects of compressibility. The most common, and least

accurate, method for adjusting the lift slope for the effects of compressibility in subsonic

flow is the Prandtl-Glauert correction [84–86], given as

CL,α =
CL,α√
1−M2

(4.25)

57

where C indicates a coefficient corrected for compressibility. This correction does not take

into account the effects of sweep or aspect ratio, which are each important in the aerody-

namics of a fighter aircraft.

A more appropriate approximation for the effects of compressibility in subsonic flow

can be made by applying a compressibility correction given by Anderson [86]. The corrected

lift slope according to the correction given by Anderson is

CL,α =
CL,α cos Λc/2√

1−M2 cos2 Λc/2 +
[
CL,α cos Λc/2)/(πRA)

]2
+ (CL,α cos Λc/2)/(πRA)

(4.26)

This correction takes into account both the aspect ratio and sweep angle, and is therefore

a better approximation than a simple Prandtl-Glauert correction. To avoid the over-use

of notation, the underbar will be neglected from the coefficients in future equations and

it will simply be indicated whether the results presented are made using compressibility

corrections.

Generally, compressibility corrections such as given in Eq. (4.26) are applied to the

lift slope; however, the correction is derived by considering the effect of compressibility on

pressure forces, it is reasonable to expect that these effects can be applied to each of the

aerodynamic coefficients [87, 88]. Since the lift, pitching moment, and rolling moment are

most substantially influenced by flow over the main wing, its geometric parameters are used

in their compressibility corrections in Eq. (4.26). The side force and yawing moment are

most significantly influenced by flow over the vertical tail of the baseline aircraft or the

rotating tail of the BIRE. Therefore, for those coefficients, the geometric parameters of the

vertical tail and horizontal tail, respectively, will be used in Eq. (4.26).

4.2 A Description of the Aerodynamic Models

Since this dissertation represents an exploratory study of the aerodynamic and control

properties of an aircraft employing the BIRE control system, the study benefits from simple

and efficient analysis methods that identify general aerodynamic trends rapidly. Thus,

though many types of aerodynamic models could be used to analyze trim and control, this

58

dissertation will provide a benchmark for exploration of the BIRE concept by presenting

two low-fidelity aerodynamic models. One of these aerodynamic models is linear, with the

exception of the drag coefficient, while the other includes selected nonlinear effects to better

predict the salient aerodynamics of a fighter aircraft. The coefficients in the linear model

will be calculated using analytical relationships presented by Phillips [8] that are based on

the geometry of each aircraft. Coefficients in the nonlinear model will be determined using

aerodynamic data from a numerical lifting-line solver. This lifting-line solver, MachUpX1,

was developed in-house at Utah State University and has been shown in many instances to

correctly identify trends in aircraft design [89,90].

Using low-fidelity methods to construct an aerodynamic model allows for aerodynamic

trends to be identified more rapidly at the expense of an inability to describe higher-fidelity

physical phenomena for a given flight condition. Aircraft with straight, high aspect-ratio

wings are unlikely to experience physical phenomena requiring higher-fidelity aerodynamic

analysis in most flight conditions. The baseline aircraft and its BIRE variant have highly-

swept lifting surfaces with low aspect ratios, which can enable the development of leading-

edge vortexes and spanwise flow. These physical phenomena will not captured be cap-

tured in either of the models presented here; however, the general trends necessary for

this exploratory study can be obtained. Additionally, the effects of physical phenomena

unaccounted for by a low-fidelity model can be approximated by comparing aerodynamic

model coefficients produced by the lifting-line data to the same coefficients produced using

high-fidelity wind tunnel data for the baseline aircraft [64].

4.2.1 A Linear Aerodynamic Model

Consider the aerodynamic forces and moments acting on an aircraft flying directly into

the wind (α = β = 0) and with zero body-fixed rotation rates and control deflections.

The forces and moments acting on the aircraft in this condition will be denoted with a

subscript 0. Assuming small disturbances from this condition, the relationship between the

aerodynamic forces and the aerodynamic angles, nondimensional body-fixed rotation rates,

1https://github.com/usuaero/MachUpX

59

and control surface deflections are all zero. When linearized about this flight condition, the

lift and side force coefficients in the wind coordinate system acting on the baseline aircraft

are given by

CL = CL0 + CL,αα+ CL,ββ + CL,pp+ CL,qq + CL,rr + CL,δaδa + CL,δeδe + CL,δrδr (4.27)

and

CS = CS0 + CS,αα+ CS,ββ + CS,pp+ CS,qq + CS,rr + CS,δaδa + CS,δeδe + CS,δrδr (4.28)

The aerodynamic moments in the body-fixed coordinate system acting on the baseline

aircraft are given by

C` = C`0 + C`,αα+ C`,ββ + C`,pp+ C`,qq + C`,rr + C`,δaδa + C`,δeδe + C`,δrδr (4.29)

Cm = Cm0 +Cm,αα+Cm,ββ+Cm,pp+Cm,qq+Cm,rr+Cm,δaδa+Cm,δeδe+Cm,δrδr (4.30)

and

Cn = Cn0 + Cn,αα+ Cn,ββ + Cn,pp+ Cn,qq + Cn,rr + Cn,δaδa + Cn,δeδe + Cn,δrδr (4.31)

Equations (4.27) – (4.31) constitute a linear aerodynamic model for the aerodynamic forces

and moments.

For the case of a symmetric aircraft at small sideslip angles, the change in longitudinal

aerodynamic forces and moments with respect to the sideslip angle, lateral rotation rates,

and lateral control surfaces are nearly zero

CL,β ≈ CL,p ≈ CL,r ≈ CL,δa ≈ CL,δr ≈ 0

Cm,β ≈ Cm,p ≈ Cm,r ≈ Cm,δa ≈ Cm,δr ≈ 0

(4.32)

These terms are nearly zero because changes in the lateral aerodynamic parameters about

60

the aircraft plane of symmetry (the lateral or x -z plane) will produce symmetrical effects

on aerodynamic forces and moments in the perpendicular (longitudinal or x -y) plane [91].

As an example, pure changes in sideslip on a symmetrical aircraft will produce identical

changes to the lift regardless of the sign of the change: that is, CL(β) = CL(−β). Taking the

derivative with respect to the sideslip angle, we have CL,β(β) = −CL,β(−β) by application

of the chain rule. By evaluating our model at a location very near to the zero sideslip

condition, we have that CL,β(ε) = −CL,β(ε) with ε ≈ 0. With β = 0 exactly, we have that

CL,β = 0; therefore, we can assume that small sideslip angles result in a derivative that is

nearly equal to zero, that is, CL,β ≈ 0.

By the same logic, the change in lateral aerodynamic forces and moments with respect

to the longitudinal aerodynamic parameters are approximately equal to zero

CS,α ≈ CS,q ≈ CS,δe ≈ 0

C`,α ≈ C`,q ≈ C`,δe ≈ 0

Cn,α ≈ Cn,q ≈ Cn,δe ≈ 0

(4.33)

Finally, an aircraft that is symmetric about the lateral plane can have no resulting lateral

forces and moments when the aerodynamic parameters are zero. Therefore, by symmetry

we also have that

CS0 = C`0 = Cn0 = 0 (4.34)

Applying the symmetric assumptions in Eqs. (4.32)-(4.34) to the model in Eqs. (4.27)-

(4.31) results in the linear model for the baseline aircraft,

CL = CL0 + CL,αα+ CL,qq + CL,δeδe (4.35)

CS = CS,ββ + CS,pp+ CS,rr + CS,δaδa + CS,δrδr (4.36)

C` = C`,ββ + C`,pp+ C`,rr + C`,δaδa + C`,δrδr (4.37)

61

Cm = Cm0 + Cm,αα+ Cm,qq + Cm,δeδe (4.38)

and

Cn = Cn,ββ + Cn,pp+ Cn,rr + Cn,δaδa + Cn,δrδr (4.39)

In the aerodynamic model presented thus far, the drag coefficient has been neglected.

From Prandtl’s lifting-line theory, the drag induced by the lift on an aircraft can be esti-

mated as [24]

CDi =
C2
L

πRAes
(4.40)

where

es =
1

1 + κD
(4.41)

The term κD is an induced drag factor can be estimated by referring to plots published by

Phillips [24].

Using Eq. (4.35) in Eq. (4.40), the drag can be written in 16 terms with various degrees

of non-linearity. Keeping only the linear terms, the induced drag can be written

CD = CD0 + CD,αα+ CD,qq + CD,δeδe (4.42)

This description of the drag coefficient neglects the effects of skin friction and parasitic

drag, which will affect each of the terms in Eq. (4.42) [92]. As such, the drag predicted by

Eq. (4.42) will under-predict the total drag acting on an aircraft in flight, but is still useful

for identifying expected trends using the linear model. In addition, the drag coefficient is

predominantly used as a way to identify a correct throttle setting for the aircraft.

Adjustments for the BIRE Aircraft

The aerodynamic model used for the BIRE variant differs from that of the baseline

aircraft in several ways. Most significantly, the rotation of the empennage by the angle

δB is an unconventional control mechanism, as it is not a flap deflection. If only small

62

deflections for δB were needed, it could be treated in the same way as the control surface

deflections in the baseline model; however, in order to provide sufficient lateral control,

we expect δB to be large in some cases where significant yawing moments are necessary.

To account for these large expected values of δB, we can instead allow the aerodynamic

coefficients to vary with the empennage rotation angle δB. Allowing each of the sensitivity

coefficients to vary with BIRE rotation angle produces a linear model of the form given in

Eqs. (4.27)–(4.31) for each value of δB.

Using the model outlined above requires the symmetry assumptions in Eqs. (4.32)-

(4.34) to hold. When the horizontal tail is rotated to an angle other than δB = 0◦ or

δB = ±180◦, the aircraft will no longer be symmetric. Since the relationships for the

coefficients in Eqs. (4.32)-(4.34) have not been studied analytically, they will have to be

estimated based on physical intuition. They will be estimated by considering the trade-off

between longitudinal and lateral control given by rotating the horizontal tail.

Changes in the coefficients in Eqs. (4.27)-(4.31) due to changes in BIRE rotation angle

can be estimated by assuming that the coefficient is periodic of the form

Ĉ = A sin (ωδB + ϕ) + ζ (4.43)

where the nomenclature Ĉ indicates that the aerodynamic coefficient is a function of the

BIRE rotation angle δB. The exact nature of these coefficients will be explored in further

detail when the coefficients are derived in Chapter 5.

While Eqs. (4.32)-(4.34) are not completely satisfied with the asymmetries present with

BIRE rotation, certain coefficients can be reasonably removed from Eqs. (4.27)-(4.31). In

terms of the effect of BIRE rotation on the lift coefficient, symmetry in the x -z plane

intuitively results in ĈL,p ≈ 0, since the increased angle of attack during rotation on one

side of the tail will equal that on the other side of the tail. Likewise, the change in lift due

to aileron deflection is small and thus ĈL,δa can be ignored. Since the drag coefficient in the

linear model is composed entirely of the effect on drag of the lift, its structure will mirror

that of the lift coefficient. The terms Ĉm,p and Ĉm,δa can be ignored for the same reason.

63

In terms of the lateral aerodynamic coefficients, Ĉ` is the least-impacted by tail rotation.

Again, the symmetry in the x -z plane means that Ĉ`0 ≈ Ĉ`,α ≈ Ĉ`,q ≈ Ĉ`,δe ≈ 0. Also, the

lateral coefficients in Ĉ` should remain relatively constant with BIRE rotation angle. The

same is true for ĈS,p and ĈS,δa along with the corresponding derivatives in yawing moment

coefficient. Changes in CS0 and Cn0 should also be very small and caused mostly by changes

in downwash, and will be neglected here. Finally, all terms related to the rudder will be

dropped from the model, since that control surface does not exist on the BIRE.

Applying the above assumptions gives the linear aerodynamic model for the BIRE as

ĈL = ĈL0 + ĈL,αα+ ĈL,ββ + ĈL,qq + ĈL,rr + ĈL,δeδe (4.44)

ĈS = ĈS,αα+ ĈS,ββ + CS,ppĈS,qq + ĈS,rr + CS,δaδa + ĈS,δeδe (4.45)

ĈD = ĈD0 + ĈD,αα+ ĈD,ββ + ĈD,qq + ĈD,rr + ĈD,δeδe (4.46)

Ĉ` = C`,ββ + C`,pp+ C`,rr + Ĉ`,δaδa (4.47)

Ĉm = Ĉm0 + Ĉm,αα+ Ĉm,ββ + Ĉm,qq + Ĉm,rr + Ĉm,δeδe (4.48)

and

Ĉn = Ĉn,αα+ Ĉn,ββ + Ĉn,qq + Ĉn,rr + Ĉn,δeδe (4.49)

4.2.2 A Non-Linear Aerodynamic Model

The aerodynamic model given in Eqs. (4.35)-(4.39) and (4.42) is accurate only for

small aerodynamic angles, nondimensional rotation rates, and control-surface deflections;

therefore, capturing relevant aerodynamics over a larger range of angles below stall requires

that some additional, nonlinear relationships be included. The nature of these relationships

can be understood by applying the results of analytical studies. For the sake of brevity

in this analysis, we will define a pseudo-lift coefficient that neglects changes in lift due to

64

sideslip, rotation rates, and control surface deflections as

CL1 ≡ CL0 + CL,αα (4.50)

We will also define a pseudo-side-force coefficient that neglects changes in side force due to

angle of attack, rotation rates, and control surface deflections as

CS1 ≡ CS0 + CS,ββ (4.51)

From lifting-line theory it can be shown that the effects of rolling rate and aileron

deflection on the yawing moment can each be approximated as a linear function of lift [20,93].

Hence, the influence of rolling rate on yawing moment given in Eq. (4.31), Cn,pp, can be

approximated as (Cn,LpCL1 + Cn,p) p. Likewise, the influence of aileron deflection on yawing

moment, Cn,δaδa can be approximated as (Cn,LδaCL1 + Cn,δa) δa. Additionally, an analytic

approximation by Phillips [20] shows that the change in rolling moment with respect to

yawing rate depends in a linear fashion on the lift coefficient of the main wing. Thus, the

influence of yawing rate on the rolling moment, C`,rr, can be written as (C`,LrCL1 + C`,r) r.

Other non-linear relationships have not been investigated analytically and instead apply

specifically to the baseline aircraft. These relationships are identified based upon trends

observed in wind tunnel data taken from the baseline aircraft as published by Nguyen et

al. [64]. Trends in the wind tunnel data indicate that the change in side force with respect

to the roll rate can be written as a function of lift as (CS,LpCL1 + CS,p) p. Applying all of

the preceding relationships to Eqs. (4.28), (4.29), and (4.31) yields

CS = CS1 + CS,αα+ (CS,LpCL1 + CS,p)p+ CS,qq + CS,rr

+ CS,δaδa + CS,δeδe + CS,δrδr

(4.52)

65

C` = C`0 + C`,αα+ C`,ββ + C`,pp+ C`,qq + (C`,LrCL1 + C`,r)r

+ C`,δaδa + C`,δeδe + C`,δrδr

(4.53)

and

Cn = Cn0 + Cn,αα+ Cn,ββ + (Cn,LpCL1 + Cn,p)p+ Cn,qq + Cn,rr

+ (Cn,LδaCL1 + Cn,δa)δa + Cn,δeδe + Cn,δrδr

(4.54)

Additional nonlinear terms can be included in our model for the drag coefficient by

using our understanding of the relationship that the drag has with the lift and side force.

From lifting-line theory and a host of computational and experimental results, it is well-

understood that drag below stall can be approximated as a quadratic function of the lift

coefficient [94–96]. As an extension of this principle, the effects of side force on drag can

also be approximated using a quadratic.

Therefore, an approximation for the drag coefficient can be expressed as

CD = CD0 + CD,LCL + CD,L2C2
L + CD,SCS + CD,S2C2

S (4.55)

where CD0 is the drag at zero lift and zero side force. Not only does writing the drag

coefficient in this form provide additional fidelity over the form given in Eq. (4.42), it

expands and highlights additional relationships between the drag and the aerodynamic

modeling parameters. Keeping all of the terms created by substituting Eqs. (4.27) and

(4.52) into Eq. (4.55) would result in 201 terms. Not only would an analysis of that

magnitude be extremely computationally costly, many of the terms would add very little to

the fidelity of the model. By removing terms based upon an order-of-magnitude analysis,

inconsequential terms can be removed from the expanded form of Eq. (4.55) to maintain

simplicity in the model and highlight larger-scale trends in the drag acting on the aircraft.

66

Using the psuedo-force coefficients from Eqs. (4.50) and (4.51) in Eqs. (4.27) and

(4.52), and applying the resulting expressions to Eq. (4.55) gives

CD = CD0 + CD,L
(
CL1 + CL,ββ + CL,pp+ CL,qq + CL,rr

+ CL,δaδa + CL,δeδe + CL,δrδr
)

+ CD,L2

(
CL1 + CL,ββ + CL,pp+ CL,qq + CL,rr

+ CL,δaδa + CL,δeδe + CL,δrδr
)2

+ CD,S
(
CS1 + CS,αα+ (CS,LpCL1 + CS,p)p+ CS,qq + CS,rr

+ CS,δaδa + CS,δeδe + CS,δrδr
)

+ CD,S2

(
CS1 + CS,αα+ (CS,LpCL1 + CS,p)p+ CS,qq + CS,rr

+ CS,δaδa + CS,δeδe + CS,δrδr
)2

(4.56)

The products of the aerodynamic angles, dimensionless rotation rates, and control-surface

deflections in Eq. (4.56) can be neglected in nearly all cases, since the terms themselves

are usually small. An exception to the neglected terms is the square of the elevator de-

flection, δ2
e , which is another instance of using familiarity with the wind tunnel data to

make informed modeling decisions. The reason for the importance of the δ2
e term is not

well-understood and is not the focus of this work [64]. Another example of utilizing trends

in the experimental data is that the change in drag with pitch rate can be a significant func-

tion of the square of the lift coefficient. Therefore, the term (CD,LqCL1 + CD,q) is expanded

to include CD,L2qC
2
L1
q, which better approximates trends in the experimental data.

In addition to neglecting terms with products of negligible influence, the drag model

can be simplified by combining and renaming redundant constants. As an example, the

combination of coefficients CD,LCL,p is equivalent to

CD,LCL,p =
∂CD
∂CL

∂CL
∂p

=
∂CD
∂p

= CD,p (4.57)

This coefficient shows that changes in drag are linearly related to the change in rolling

rate experienced by the aircraft. Equation (4.56) also contains the term CD,SCS,p, which

67

can also be simplified to CD,p. There is no additional fidelity added to the drag model by

keeping both of these terms. Whether the change in drag is due to the effect of rolling rate

on lift or its effect on side force is not important in the analysis that follows. By including

only the term CD,p, we capture the changes in drag due to changes in rolling rate caused

by either lift or side force. An application of this reasoning to other constants allows many

of the terms from Eq. (4.56) to be combined and renamed in a similar fashion.

Removing and combining the aforementioned coefficients results in a nonlinear drag

model for a general aircraft below stall of the form

CD = CD0 + CD,LCL1 + CD,L2C2
L1

+ CD,SCS1 + CD,S2C2
S1

+ CD,SαCS1α+ CD,LβCL1β

+ [CD,LpCL1 + (CD,Sp + CD,SLpCL1)CS1 + CD,p] p

+
(
CD,L2qC

2
L1

+ CD,LqCL1 + CD,SqCS1 + CD,q
)
q

+ (CD,LrCL1 + CD,SrCS1 + CD,r) r + (CD,LδaCL1 + CD,SδaCS1 + CD,δa) δa

+ (CD,LδeCL1 + CD,SδeCS1 + CD,δe) δe + CD,δ2eδ
2
e

+ (CD,LδrCL1 + CD,SδrCS1 + CD,δr) δr

(4.58)

A slightly simpler model can be obtained without significant loss of fidelity by neglecting

coupling terms between longitudinal and lateral components. Neglecting the terms CL1β,

CL1p, CL1r, CL1δa, CL1δr, CS1α, CS1q, and CS1δe gives

CD = CD0 + CD,LCL1 + CD,L2C2
L1

+ CD,SCS1 + CD,S2C2
S1

+ (CD,SpCS1 + CD,p) p+
(
CD,L2qC

2
L1

+ CD,LqCL1 + CD,q
)
q

+ (CD,SrCS1 + CD,r) r + (CD,SδaCS1 + CD,δa) δa

+ (CD,LδeCL1 + CD,δe) δe + CD,δ2eδ
2
e + (CD,SδrCS1 + CD,δr) δr

(4.59)

By retaining only 19 of the 201 coefficients from Eq. (4.55), this nonlinear drag model

retains enough fidelity to be useful for analysis while also remaining computationally ef-

ficient. Equations (4.27), (4.30), (4.59), and (4.52)–(4.54) constitute a general, nonlinear

68

aerodynamic model for the lift, side force, drag, and aerodynamic moments, respectively,

of an aircraft below stall. Since the baseline aircraft is symmetric about the x -z plane,

further simplifications, similar to those outlined in the description of the linear model, can

be made.

Symmetric Aircraft

With the assumptions of symmetry given in Eqs. (4.32)–(4.34) applied, the general

model outlined above can be simplified into a nonlinear aerodynamic model for symmetric

aircraft, given by

CL = CL0 + CL,αα+ CL,qq + CL,δeδe (4.60)

CS = CS,ββ + (CS,LpCL1 + CS,p)p+ CS,rr + CS,δaδa + CS,δrδr (4.61)

CD = CD0 + CD,LCL1 + CD,L2C2
L1

+ CD,S2C2
S1

+ CD,SpCS1p+
(
CD,L2qC

2
L1

+ CD,LqCL1 + CD,q
)
q + CD,SrCS1r

+ CD,SδaCS1δa + (CD,LδeCL1 + CD,δe) δe + CD,δ2eδ
2
e + CD,SδrCS1δr

(4.62)

C` = C`,ββ + C`,pp+ (C`,LrCL1 + C`,r)r + C`,δaδa + C`,δrδr (4.63)

Cm = Cm0 + Cm,αα+ Cm,qq + Cm,δeδe (4.64)

Cn = Cn,ββ + (Cn,LpCL1 + Cn,p)p+ Cn,rr + (Cn,LδaCL1 + Cn,δa)δa + Cn,δrδr (4.65)

where CL1 is given in Eq. (4.50) and CS1 is given in Eq. (4.51) with CS0 = 0. Equations

(4.60)–(4.65) comprise a reasonable aerodynamic model below stall for a symmetric aircraft

and will be used for the evaluation of the aerodynamics of the baseline aircraft in this work.

Adjustments for the BIRE Aircraft

As mentioned in the section treating the linear aerodynamic model, any nonzero value

of δB will result in an aircraft configuration that is not symmetric about the x-z plane, and

so we cannot apply the symmetric assumptions given in Eqs. (4.32)–(4.34). In this case,

69

the form of the BIRE aerodynamic model will follow that of Eqs. (4.27), (4.52), (4.59),

(4.53), (4.30), and (4.54). Removing the dependence on rudder and letting hats over the

coefficients represent each coefficient’s dependence on BIRE rotation angle, we can re-write

these equations as

ĈL = ĈL0 + ĈL,αα+ ĈL,ββ + ĈL,pp+ ĈL,qq + ĈL,rr + ĈL,δaδa + ĈL,δeδe (4.66)

ĈS = ĈS0 + ĈS,αα+ ĈS,ββ+
(
ĈS,LpĈL1 + ĈS,p

)
p+ ĈS,qq+ ĈS,rr+ ĈS,δaδa+ ĈS,δeδe (4.67)

ĈD = ĈD0 + ĈD,LĈL1 + ĈD,L2Ĉ2
L1

+ ĈD,SĈS1 + ĈD,S2Ĉ2
S1

+
(
ĈD,SpĈS1 + ĈD,p

)
p+

(
ĈD,L2qĈ

2
L1

+ ĈD,LqĈL1 + ĈD,q

)
q

+
(
ĈD,SrĈS1 + ĈD,r

)
r +

(
CD,SδaĈS1 + ĈD,δa

)
δa

+
(
ĈD,LδeĈL1 + ĈD,δe

)
δe + ĈD,δ2eδ

2
e

(4.68)

Ĉ` = Ĉ`0 + Ĉ`,αα+ Ĉ`,ββ + Ĉ`,pp+ Ĉ`,qq +
(
Ĉ`,LrĈL1 + Ĉ`,r

)
r + Ĉ`,δaδa + Ĉ`,δeδe (4.69)

Ĉm = Ĉm0 + Ĉm,αα+ Ĉm,ββ + Ĉm,pp+ Ĉm,qq + Ĉm,rr + Ĉm,δaδa + Ĉm,δeδe (4.70)

and

Ĉn =Ĉn0 + Ĉn,αα+ Ĉn,ββ +
(
Ĉn,LpĈL1 + Ĉn,p

)
p+ Ĉn,qq + Ĉn,rr

+
(
Ĉn,LδaĈL1 + Ĉn,δa

)
δa + Ĉn,δeδe

(4.71)

The pseudo-lift and -side force coefficients, CL1 and CS1 can be re-defined using this hat

notation to be

ĈL1 ≡ ĈL0 + ĈL,αα (4.72)

70

and

ĈS1 ≡ ĈS0 + ĈS,ββ (4.73)

These coefficients vary with the BIRE rotation angle according to the model given in Eq.

(4.43).

71

CHAPTER 5

EVALUATION OF THE AERODYNAMIC COEFFICIENTS

With the aerodynamic models presented, the individual coefficients can be evaluated

according to the methodologies referenced in Section 4.2. Recall that the coefficients in the

linear aerodynamic model will be evaluated using analytical relationships backed by physical

intuition to estimate the effect of tail rotation on the BIRE aerodynamics. Evaluation of the

coefficients in the linear model is not complete, but results for the longitudinal coefficients

are given in Appendix A. The physical intuition used here will be, in part, supported by

aerodynamic data from MachUpX, an in-house numerical lifting-line tool, which will be used

to estimate the coefficients in the nonlinear aerodynamic model for both aircraft geometries.

The resulting coefficients will then be used in their respective aerodynamic models

to estimate the aerodynamic forces and moments acting on each aircraft as a function

of the aerodynamic modeling parameters. The evaluation of each of these coefficients is

dependent on the aerodynamics of the airfoils which make up the lifting surfaces of each

aircraft. Therefore, before proceeding further with the coefficient evaluation, the airfoils

used in this study will be presented with an aerodynamic analysis justifying their modeling.

5.1 Airfoil Aerodynamics

The airfoils used on each lifting surface of the baseline and BIRE aircraft are included

in Tables 3.2 and 3.5, respectively. Fox and Forrest indicate that the horizontal and vertical

tails of the baseline aircraft are constructed with biconvex airfoils as indicated in Table 3.1

[62]. The available aerodynamic data for biconvex airfoils is limited; therefore, the baseline

aircraft and BIRE variant instead use thin, symmetric NACA airfoils of approximately the

same thickness-to-chord ratio as the biconvex airfoils indicated. Figure 5.1 shows each of

the airfoils given in Tables 3.2 and 3.5 and Tables 5.1–5.3 give the stations and ordinates

of the airfoils measured in percent-chord.

72

−5
0
5

NACA 64A204

−5
0
5

NACA 0005

0 10 20 30 40 50 60 70 80 90 100
Station, x/c %

−5
0
5

NACA 0004

O
rd

in
a
te

,
y
/
c

%

Fig. 5.1: Basic forms of the NACA 64A204, 0005, and 0004 airfoils. Measurements taken
as a percentage of the airfoil chord.

Upper Surface Lower Surface

Station, xu/c Ordinate, yu/c Station, xl/c Ordinate, yl/c

0 0 0 0
1.661 0.723 1.747 -0.434
6.647 1.507 6.751 -0.631
14.594 2.269 14.695 -0.751
24.96 2.882 25.04 -0.799
37.036 3.237 37.082 -0.759
49.998 3.212 50.002 -0.571
62.956 2.808 62.926 -0.274
75.026 2.148 74.974 -0.008
85.384 1.333 85.326 0.059
93.316 0.612 93.287 0.025
98.302 0.174 98.291 -0.03

100 -0.016 100 -0.016

Table 5.1: Stations and ordinates of the NACA 64A204 airfoil given in percent of airfoil
chord.

For the linear aerodynamic analysis, evaluating the aerodynamic coefficients requires

knowledge of several properties of each airfoil section. These include the lift slope, C̃L,α,

73

Upper Surface Lower Surface

Station, xu/c Ordinate, yu/c Station, xl/c Ordinate, yl/c

0 0 0 0
1.704 0.913 1.704 -0.913
6.699 1.673 6.699 -1.673
14.645 2.212 14.645 -2.212

25 2.476 25 -2.476
37.059 2.458 37.059 -2.458

50 2.206 50 -2.206
62.941 1.798 62.941 -1.798

75 1.317 75 -1.317
85.355 0.838 85.355 -0.838
93.301 0.429 93.301 -0.429
98.296 0.151 98.296 -0.151

100 0.052 100 -0.052

Table 5.2: Stations and ordinates of the NACA 0005 airfoil given in percent of airfoil chord.

Upper Surface Lower Surface

Station, xu/c Ordinate, yu/c Station, xl/c Ordinate, yl/c

0 0 0 0
1.704 0.73 1.704 -0.73
6.699 1.338 6.699 -1.338
14.645 1.769 14.645 -1.769

25 1.98 25 -1.98
37.059 1.966 37.059 -1.966

50 1.765 50 -1.765
62.941 1.438 62.941 -1.438

75 1.053 75 -1.053
85.355 0.67 85.355 -0.67
93.301 0.343 93.301 -0.343
98.296 0.121 98.296 -0.121

100 0.042 100 -0.042

Table 5.3: Stations and ordinates of the NACA 0004 airfoil given in percent of airfoil chord.

pitching moment about the aerodynamic center, C̃mac , zero-lift angle of attack, αL0 , and

the change in pitching moment with flap deflection, C̃m,δ. These coefficients overlap with

many of those required for the nonlinear aerodynamic model. The nonlinear aerodynamic

model coefficients will be calculated using MachUpX, which can characterize an airfoil

using a database, polynomial fit, or linear characteristics. To define the database and

74

polynomial fits used by MachUpX, the Airfoil Database1 python model can be used to

generate airfoil section data using XFOIL2. Unfortunately, the airfoils used by the baseline

and BIRE aircraft are so thin that XFOIL cannot converge consistently. Therefore, linear

airfoil characterizations for the NACA 64A204, 0005, and 0004 airfoils will be generated by

a combination of thin airfoil theory and available wind tunnel data.

To characterize a linear airfoil model in MachUpX, the following will be defined: the

zero-lift angle of attack, lift slope, pitching moment at zero lift, moment slope, and the

coefficients for the drag polar. From thin airfoil theory, the section lift slope is defined

as [97]

C̃L,α = 2π (5.1)

while the zero-lift angle of attack is given as [97]

αL0 =
1

π

π∫
θ=0

dyc
dx

(1− cos θ) dθ (5.2)

In Eq. (5.2), the term dyc
dx is the slope of the camber line in the chordwise direction and θ

represents a change of variables where

x(θ) =
c

2
(1− cos θ) (5.3)

with c equal to the chord of the airfoil. Using the coordinates for the outline of the NACA

64A204 airfoil in Table 5.1, the camber line can be estimated using an iterative method

included in the Airfoil Database module. A sampling of the camber line is included in

Table 5.4 nd can be numerically differentiated to find dyc
dx .

The main wing of each aircraft employs a NACA 6A-series airfoil designed to provide

a high critical Mach number while reducing the complexities of fabrication present in the

NACA 6-series [98]. Loftin Jr. provides aerodynamic data for several 6A-series airfoils, but

not that of the 64A204 used in the baseline aircraft [98]. Based on wind tunnel measure-

1https://github.com/usuaero/AirfoilDatabase
2http://web.mit.edu/drela/Public/web/xfoil/

https://github.com/usuaero/AirfoilDatabase
http://web.mit.edu/drela/Public/web/xfoil/

75

Station, xc/c Ordinate, yc/c Station, xc/c Ordinate, yc/c

0 0 51.02 1.321
2.041 0.169 53.061 1.32
4.082 0.299 55.102 1.316
6.122 0.409 57.143 1.308
8.163 0.507 59.184 1.297
10.204 0.594 61.224 1.282
12.245 0.674 63.265 1.264
14.286 0.747 65.306 1.241
16.327 0.813 67.347 1.214
18.367 0.875 69.388 1.183
20.408 0.931 71.429 1.147
22.449 0.983 73.469 1.105
24.49 1.03 75.51 1.058
26.531 1.074 77.551 1.003
28.571 1.113 79.592 0.939
30.612 1.149 81.633 0.861
32.653 1.181 83.673 0.772
34.694 1.21 85.714 0.68
36.735 1.235 87.755 0.587
38.776 1.257 89.796 0.491
40.816 1.276 91.837 0.391
42.857 1.292 93.878 0.29
44.898 1.304 95.918 0.191
46.939 1.313 97.959 0.089
48.98 1.319 100 -0.016

Table 5.4: Camber line for the NACA 64A204 airfoil sampled at 50 stations. All measure-
ments in percent-chord.

ments, Loftin Jr. found that the section lift slope of the 6A-series airfoils he studied were

nearly independent of airfoil thickness [98]. Figure 5.2 shows the lift slope taken from Loftin

Jr.’s wind tunnel results for three airfoils: the 64A210, 64A212, and 64A215, compared to

the results of thin airfoil theory [98]. The section lift slopes of the other 6A-series airfoils

are nearly the same as that predicted by thin airfoil theory , we can assume that the NACA

64A204 employed in the baseline and BIRE aircraft can reasonably be approximated using

thin airfoil theory.

The zero-lift angle of attack measured by Loftin Jr. for the three airfoils mentioned

previously are included in Fig. 5.3 in comparison with thin airfoil theory. Differences in

76

4 8 12 16 20

Maximum Airfoil Thickness, tmax

c
%

0.095

0.100

0.105

0.110

0.115

0.120

0.125

L
if

t
S

lo
p

e
,
C
L
,α

[1
/
d

e
g
]

THIN AIRFOIL THEORY

Loftin [97]

Fig. 5.2: A comparison of the section lift slope of three NACA 6A-series airfoils to thin
airfoil theory results.

zero-lift angle of attack between the wind tunnel data and thin airfoil theory are more

pronounced in this case than in Fig. 5.2. However, it is reasonable to assume that the trend

towards the thin airfoil theory value given by the airfoils of 12% and 10% thickness makes

the thin airfoil theory result an appropriate approximation for the 64A204.

Thin airfoil theory shows that the quarter-chord of an airfoil is the location of its

aerodynamic center [97]. Thus, the quarter-chord pitching moment is the pitching moment

about the aerodynamic center, and is independent of angle of attack [97]. From this knowl-

edge, thin airfoil theory suggests that the zero-lift pitching moment, C̃mL0
is equivalent to

the section quarter-chord pitching moment, calculated as [97]

C̃mc/4 =
1

2

π∫
θ=0

dyc
dx

[cos (2θ)− cos θ] dθ (5.4)

Loftin Jr. notes that the location of the aerodynamic center in the 64A-series airfoils he

studied were nearly constant and located just aft of the quarter-chord [98]. Therefore, for

77

4 8 12 16 20

Maximum Airfoil Thickness, tmax

c
%

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

Z
e
ro

-L
if

t
A

n
g
le

o
f

A
tt

a
ck

,
α
L

0
[d

e
g
]

THIN AIRFOIL THEORY

Loftin [97]

Fig. 5.3: A comparison of the section zero-lift angle of attack of three NACA 6A-series
airfoils to thin airfoil theory results.

the purposes of this study, the thin airfoil value of the quarter-chord pitching moment will

be considered equivalent to the zero-lift pitching moment. As a result, the section pitching

moment slope, C̃m,α, will be set to zero.

Finally, the characterization of the main wing airfoil can be completed by considering

the section drag polar for the 64A204 airfoil. Thin airfoil theory presents no way in which

to calculate the components of the drag polar. However, in comparing the 6A-series airfoils

to the 6-series airfoils, Loftin noted that the minimum drag coefficients are nearly identical

between series [98].

Under this assumption, additional 6-series airfoil data can be used to estimate the

minimum drag coefficient of the 64A204 airfoil. This data can be obtained by referring

to Abbot et al., who reported wind tunnel data for the 64-206 airfoil in their work [99].

The minimum drag coefficient from each of these airfoils follow a linear pattern and can

therefore be used to approximate the minimum drag coefficient, C̃D0 , for the 64A204 as

shown in Fig. 5.5.

78

4 8 12 16 20

Maximum Airfoil Thickness, tmax

c
%

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

Q
u

a
rt

e
r-

C
h

o
rd

P
it

ch
in

g
M

o
m

e
n
t

C
o
e
ffi

ci
e
n
t,
C
m
c
/
4
(α

=
0
)

THIN AIRFOIL THEORY

Loftin [97]

Fig. 5.4: A comparison of the section quarter-chord pitching moment of three NACA 6A-
series airfoils to thin airfoil theory results.

The linear and quadratic terms of the section drag polar must be estimated using drag

data from Loftin Jr. [98] and assumed to be linear in nature as well. Figure 5.6 shows this

data and the accompanying estimates for the 64A204. The data presented to this point is

sufficient to characterize a linear model of the NACA 64A204 airfoil for use in MachUpX.

All that remains is to perform a similar analysis on the NACA 0005 and 0004 airfoils for

the horizontal and vertical tails, respectively.

Since both the NACA 0005 and 0004 represent thin, symmetric airfoils, the analysis is

simplified from that of the 64A204. First, symmetric airfoils generate zero lift at zero degrees

angle of attack. Therefore, the zero-lift angle of attack is zero degrees. Since these airfoils

are so thin, it can also be assumed that thin airfoil theory correctly predicts the section lift

slope as C̃L,α = 2π. Symmetric airfoils also produce equivalent pressure distributions along

their upper and lower surfaces; therefore, they produce zero pitching moment at all angles

of attack and about all chord stations. Thus, C̃mL0
and C̃m,α can both be approximated to

be zero.

79

4 8 12 16 20

Maximum Airfoil Thickness, tmax

c
%

0.000

0.002

0.004

0.006

0.008

0.010

0.012

M
in

im
u

m
S

e
ct

io
n

D
ra

g
C

o
e
ffi

ci
e
n
t,
C
D

0

Loftin [97]

Abbott et al. [98]

64A204 Estimate

Fig. 5.5: Data representing the section minimum drag of three NACA 6A-series airfoils and
one 6-series airfoil with an approximation for the NACA 64A204 airfoil.

All that remains in the characterization of the 0005 and 0004 airfoils is to approximate

the section drag polar of each. Here, the same methodology that was used to characterize

the drag polar for the 64A204 airfoil can be used. In their work, Abbott et al. [99] included

wind tunnel data for the NACA 0006 and 0009 airfoils. Fitting a parabolic function to

this data results in the drag coefficients shown in Fig. 5.7, which can then be used to

estimate the section drag polar coefficients of the NACA 0004 and 0005 airfoils. The full

characterizations of each airfoil covered in this analysis are summarized in Table 5.5.

5.2 Linear Aerodynamic Model

The coefficients in the linear aerodynamic model for the baseline aircraft, given in

Eqs. (4.35)–(4.39), can be evaluated by considering the longitudinal and lateral forces and

moments acting on the aircraft separately in terms of the nondimensional aerodynamic

coefficients. Then, by following the methodology presented by Phillips, the coefficients can

be calculated [8]. Using the baseline aerodynamic coefficients, and intuition regarding the

80

−0.0014

−0.0012

−0.0010

−0.0008

−0.0006

C
D
,L

Loftin [97]

64A204 Estimate

4 8 12 16 20

Maximum Airfoil Thickness, tmax

c
%

0.003

0.004

0.005

0.006

0.007

C
D
,L

2

D
ra

g
D

e
ri

v
a
ti

v
e
s

Fig. 5.6: Data representing the drag derivatives of three NACA 6A-series airfoils with an
approximation for the NACA 64A204 airfoil.

Section Parameter 64A204 0005 0004

Zero-Lift Angle of Attack, αL0 [rad] -0.0222 0 0

Lift Slope, C̃m,α [1/rad] 2π 2π 2π

Zero-Lift Pitching Moment, C̃mL0
-0.0348 0 0

Pitching Moment Slope, C̃m,α 0 0 0

Minimum Drag Coefficient, C̃D0 0.0037 0.0045 0.0045

First Drag Coefficient Derivative, C̃D,L -0.0013 -0.0024 -0.0028

Second Drag Coefficient Derivative, C̃D,L2 0.0062 0.0076 0.0082

Table 5.5: Linear airfoil models for the NACA airfoils used in the baseline and BIRE aircraft.

effects of BIRE rotation angle, the coefficients in the linear aerodynamic model for the

BIRE, given in Eqs. (4.44)-(4.49), can be estimated. This process is covered in Appendix

A and includes results for the longitudinal forces and moments.

5.3 Non-Linear Aerodynamic Model

The coefficients in the non-linear aerodynamic model, given in Eqs. (4.60)–(4.65) for

the baseline aircraft and Eqs. (4.66)–(4.71) for the BIRE, are evaluated using a numerical

81

0.0045

0.0048

0.0051

C
D

0

Abbott et al. [98]

0004 Estimate

0005 Estimate

−0.004

−0.002

0.000
C
D
,L

4 8 12 16 20

Maximum Airfoil Thickness, tmax

c
%

0.003

0.006

0.009

C
D
,L

2D
ra

g
D

e
ri

v
a
ti

v
e
s

Fig. 5.7: Data representing the drag derivatives of two symmetric NACA 4-digit airfoils
with an approximation of the NACA 0005 and 0004 derivatives.

lifting-line code developed at USU called MachUpX. MachUpX was introduced previously

and further details about its development and use cases can be found in the work by Goates

and Hunsaker [90].

To use any numerical simulation tool, it is essential to ensure that properly grid-

resolved solutions are obtained; therefore, in this section a grid resolution study will be

presented first. Then, the method for approximating the aerodynamic sensitivity coefficients

in the non-linear model will be given along with the evaluated coefficients themselves. The

availability of experimental data from Nguyen et al. [64] for the baseline aircraft gives a

unique opportunity to compare the results of the aerodynamics generated by MachUpX to

those generated using the NASA wind tunnel data. In terms of trimming the aircraft in the

majority of the cases examined in this work, some of the coefficients are far more important

than others. Therefore, a coefficient sensitivity study is presented here using the trimming

techniques discussed in Chapter 6. Any terms that cause changes in trim results below a

specified threshold are not adapted to better match the wind tunnel data.

82

As indicated in Chapter 4, the aerodynamic sensitivity coefficients for the BIRE are

modeled as a function of BIRE rotation angle. The process of creating the periodic models is

discussed here and the resulting fits are discussed in terms of physical aerodynamic intuition.

The BIRE coefficients are shown in comparison to the sensitivity coefficients of the baseline

aircraft, further providing context for the physics shown in the coefficient fits.

5.3.1 Grid Resolution Study

MachUpX is an implementation of numerical lifting-line theory, which places horseshoe

vortices along a lifting surface to predict the aerodynamic forces and moments acting on

the surface [89,90]. In this case, the “grid” that needs to be properly resolved is the number

of horseshoe vortices used to represent a given wing segment.

To do so, the baseline and BIRE aircraft were modeled in MachUpX according to the

information given in Chapters 3 and 4. The input files3 for MachUpX for the baseline aircraft

and BIRE are given in Appendix B. Then, the aerodynamic coefficients were determined

for the case of zero sideslip angle, rotation rates, and control surface deflections with the

angle of attack at α = 5◦. In this configuration, Figures 5.8a and 5.8b were generated for

the baseline aircraft and Figures 5.9a and 5.9b for the BIRE, where n is the number of

horseshoe vortices on the surface. The convergence was measured by subtracting the lift

coefficient at each grid resolution from that obtained with n = 280 horseshoe vortices.

These figures show that an appropriate level of convergence is obtained even with only

80 horseshoe vortices on each surface. A difference of CL − (CL)n=280 = 10−4 is beyond

the level of resolution that the aerodynamics can reasonably be assumed to be accurate in

MachUpX, and therefore the main wing and horizontal tail of the baseline aircraft were

modeled with n = 80 horseshoe vortices. To ensure that this level of convergence was

maintained, even with the horizontal tail rotated in the BIRE, Fig. 5.9c was generated

evaluating the convergence of the lift coefficient with the BIRE rotation angle at δB = 45◦.

With the horizontal tail rotated, the convergence results are nearly identical; therefore the

BIRE horizontal tail can be set to 80 horseshoe vortices.

3https://machupx.readthedocs.io/en/latest/creating_input_files.html

https://machupx.readthedocs.io/en/latest/creating_input_files.html

83

80 120 160 200 240 280
Grid Refinement, n

10−8

10−7

10−6

10−5

10−4

C
L
−

(C
L
) n

=
2
8
0

2.0

2.5

3.0

3.5

4.0

R
u

n
T

im
e
,
t

[s
e
c]

(a) Main Wing

80 120 160 200 240 280
Grid Refinement, n

10−8

10−7

10−6

10−5

10−4

C
L
−

(C
L
) n

=
2
8
0

2.0

2.5

3.0

3.5

4.0

R
u

n
T

im
e
,
t

[s
e
c]

(b) Horizontal Tail

80 120 160 200 240 280
Grid Refinement, n

10−8

10−7

10−6

10−5

10−4

C
S
−

(C
S
) n

=
2
8
0

2.0

2.5

3.0

3.5

4.0

R
u

n
T

im
e
,
t

[s
e
c]

(c) Vertical Tail

Fig. 5.8: Grid convergence and run time of the component surfaces of the baseline aircraft.

Finally, under the condition of zero angle of attack, rotation rates, and control surface

deflections with a sideslip angle of β = 5◦, a convergence study on the vertical tail of the

baseline was conducted. The results of this study are shown in Fig. 5.8c. Again, the

level of fidelity is sufficient at n = 80 with a slightly-less monotonic decrease in side force

convergence than was seen in the lift.

5.3.2 Baseline Aircraft

A model for the baseline aircraft of the form given in Eqs. (4.60)–(4.65) requires that

we calculate the sensitivity coefficients for each force and moment coefficient in the model.

In this work, finite differences and linear regression techniques were used to estimate these

sensitivity coefficients. These techniques require aerodynamic data at many different flight

84

80 120 160 200 240 280
Grid Refinement, n

10−8

10−7

10−6

10−5

10−4

C
L
−

(C
L
) n

=
2
8
0

1.0

1.5

2.0

2.5

3.0

R
u

n
T

im
e
,
t

[s
e
c]

(a) Main Wing

80 120 160 200 240 280
Grid Refinement, n

10−8

10−7

10−6

10−5

10−4

C
L
−

(C
L
) n

=
2
8
0

1.0

1.5

2.0

2.5

3.0

R
u

n
T

im
e
,
t

[s
e
c]

(b) Horizontal Tail

80 120 160 200 240 280
Grid Refinement, n

10−8

10−7

10−6

10−5

10−4

C
L
−

(C
L
) n

=
2
8
0

1.0

1.5

2.0

2.5

3.0

R
u

n
T

im
e
,
t

[s
e
c]

(c) Horizontal Tail at δB = 45◦

Fig. 5.9: Grid convergence and run time of the component surfaces of the BIRE aircraft.

conditions. This aerodynamic data was evaluated using MachUpX and stored in a database

that was then used to estimate sensitivities.

A database of aerodynamic coefficients was created using MachUpX for the baseline

aircraft across a range of aerodynamic angles, rotation rates, and control surface deflections.

The parameters of the database, the parameter limits, and the number of points included

for each parameter in the database are shown in Table 5.6. Parameter limits and values

were chosen to coincide with the wind tunnel data given by Nguyen et al. [64] whenever

possible. This way, actual wind tunnel values could be used and linear assumptions would

not need to be made between data points. The difference in the number of data points in

the control surface deflection dimensions and body-fixed rate dimensions is primarily due

to limitations in the data reported by Nguyen et al. [64].

85

Table 5.6: Limits for each degree of freedom in the baseline fighter aircraft database.

Parameter Name Description Limits Number of Points, N

α Angle of Attack ±10◦ 5
β Sideslip Angle ±6◦ 7
δe Stabilator Deflection Angle ±10◦ 3
δa Aileron Deflection Angle ±20◦ 3
δr Rudder Deflection Angle ±30◦ 3
p Body-Fixed Roll Rate ±90 deg / s 3
q Body-Fixed Pitch Rate ±30 deg / s 3
r Body-Fixed Yaw Rate ±30 deg / s 3

In the case of the body-fixed rotation rates, changes in p, q, and r were not measured

by Nguyen et al. in their wind tunnel studies; rather, they measured the change in the

aerodynamic coefficients with the rotation rates at various angles of attack [64]. Thus, to

estimate the limits of the body-fixed rotation rates, simulation data presented by Nguyen et

al. was used wherein several common maneuvers were performed and the maximum rates

presented [64]. For the purposes of efficiency, the total number of data points indicated

by a strict combination of all possible cases was not used. Rather, the control surface

deflections and body-fixed rates were selectively run through angles of attack and sideslip

sweeps. Thus, the total number of cases for the baseline aircraft is calculated as

Nt = Nα (1 +Nδe +Nδa +Np +Nq +Nr) +Nβ (1 +Nδa +Nδr +Np +Nr) (5.5)

The database produced by MachUpX for the baseline aircraft is included in Table D.1 of

Appendix D.

Using the aerodynamic coefficients estimated by MachUpX, the coefficients in Eqs.

(4.60)–(4.65) can be approximated. When possible, a least-squares polynomial fit was used

to estimate the coefficients. For example, across a range of angles of attack, CL0 and CL,α

are the intercept and slope of the line given with α along the abscissa and the lift coefficient

along the ordinate. The coefficients CS,β, C`,β, Cm0 and Cm,α, and Cn,β can likewise be

used to approximate the intercepts and slopes of their respective relationships. The terms

of the drag polar in lift, CD0 , CD,L, and CD,L2 , and the terms of the drag polar in side force

86

CD,S and CD,S2 were estimated using a least-squares quadratic fit of the drag as a function

of lift and side force, respectively.

When the parameter ranges are more limited, i.e. for the deflection angles and rotation

rates, coefficients dependent on those parameters were calculated using a centered differ-

ence derivative approximation method [100]. Many of the component coefficients in the

aerodynamic model are also a slight function of the angle of attack or sideslip angle. These

changes are likely due to changes in downwash and sidewash. To better account for these

slight changes, the results of the centered difference approximations were averaged across

the angles of attack and sideslip angles present in the database.

For example, the coefficient CL,δe changes slightly as a function of angle of attack due

to the effects of downwash. From the database in Table D.1, the values of CL for all angles

of attack and stabilator deflections (5 × 3 = 15 data points in total) were taken. Then, a

centered difference for each angle of attack was calculated as

CL,δe [α] =

(
CL|δe=10◦ [α]− CL|δe=−10◦ [α]

)
2 (10◦ × π/180)

(5.6)

Taking the average of this set of 15 centered difference approximations gives a better ap-

proximation of the value of CL,δe that takes into account changes in downwash.

Coefficients in the nonlinear model that varied with lift; for example, the terms
(
CS,LpCL1

+CS,p
)
, required a combination of the centered difference scheme and a least-squares linear

fit. After performing the centered difference approximation across the range of angles of

attack or sideslip angle, a linear least-squares polynomial fit was performed on the resulting

derivatives. In our example above, the centered difference approximation produces CS,p as

a function of the angle of attack. The linear polynomial fit in terms of CL1 then produces

the coefficient CS,p, the y-intercept, and CS,Lp, the slope.

Performing these steps using both the MachUpX data and the wind tunnel data from

Nguyen et al. [64] gives the coefficients reported in Tables 5.7 and 5.8. These tables doc-

ument the coefficient as found in Eqs. (4.60)–(4.65), the value evaluated from MachUpX

data, the value evaluated using the NASA wind tunnel data, and the percent error nor-

87

malized by the NASA result. Note that there are substantial differences between certain

coefficients predicted by MachUpX when compared to the wind tunnel data. These differ-

ences can broadly be separated into three categories: errors in geometry modeling, errors

caused by the presence of important non-linear effects, and differences in drag modeling.

Table 5.7: A comparison of the aerodynamic force coefficients predicted by MachUpX and
the wind tunnel data in the non-linear aerodynamic model.

Coefficient MachUpX Wind Tunnel % Error Notes

CL0 0.0456 0.0935 -51.2% AM/LEV
CL,α 3.5791 3.8434 -6.9% –
CL,q 3.3916 28.9082 -88.3% LEV
CL,δe 0.7474 0.5652 32.2% CSM/LEV

CS,β -0.7224 -1.0793 -33.1% FE/VF
CS,p -0.0153 -0.0307 -50.1% LEV
CS,Lp 0.3318 0.2061 61.0% VF
CS,r 0.4357 0.8275 -47.3% LEV
CS,δa 0.1104 0.0656 68.3% CSM
CS,δr 0.1992 0.1698 17.3% CSM

CD0 0.0064 0.0218 -70.8% DM
CD,L -0.0036 -0.034 -89.4% LEV
CD,L2 0.112 0.1834 -38.9% LEV
CD,S2 0.4963 0.7199 -31.1% FE/VF
CD,Sp 0.0768 -0.1663 -146.2% LEV
CD,q 0.0368 -1.0947 -103.4% –
CD,Lq 0.775 4.6249 -83.2% LEV
CD,L2q -0.1844 6.0809 -103.0% LEV
CD,Sr -0.7239 0.7591 -195.4% LEV
CD,δe -0.0032 -0.0093 -65.5% –
CD,Lδe 0.1775 0.1557 14.0% –
CD,δ2e 0.2854 0.4418 -35.4% LEV

CD,Sδa 0.1118 0.0675 65.8% CSM
CD,Sδr 0.18 0.1603 12.3% –

AM - Airfoil Modeling
DM - Drag Modeling
CSM - Control Surface Modeling
FE - Fuselage Effects
LEV - Leading-Edge Vortices
VF - Ventral Fin Effects

88

Table 5.8: A comparison of the aerodynamic moment coefficients predicted by MachUpX
and the wind tunnel data in the non-linear aerodynamic model.

Coefficient MachUpX Wind Tunnel % Error Note

C`,β -0.0685 -0.0888 -22.8% LEV/VF
C`,p -0.3182 -0.3349 -5.0% –
C`,r 0.0469 0.0312 50.1% VF
C`,Lr 0.1067 0.217 -50.8% VF
C`,δa -0.0741 -0.1457 -49.1% AM/LEV
C`,δr 0.0257 0.028 -8.2% –

Cm0 0.0099 -0.0097 -202.4% AM/CGL
Cm,α -0.1099 0.1766 -162.2% CGL
Cm,q -4.8503 -4.2425 14.3% CGL
Cm,δe -0.8795 -0.5881 49.5% CGL/CSM

Cn,β 0.2752 0.2099 31.1% LEV/VF
Cn,p 0.0131 0.0345 -62.1% LEV
Cn,Lp -0.1607 -0.0402 299.3% LEV/VF
Cn,r -0.1787 -0.3565 -49.9% LEV/VF
Cn,δa -0.0398 -0.0276 44.2% CSM
Cn,Lδa -0.0177 0.0077 -329.7% CSM
Cn,δr -0.0899 -0.0877 2.5% –

AM - Airfoil Modeling
CGL - Center of Gravity Location
CSM - Control Surface Modeling
FE - Fuselage Effects
LEV - Leading-Edge Vortices
VF - Ventral Fin Effects

There are several potential sources of error from differences in geometry between the

NASA model and MachUpX. One important geometric difference is that the NASA test

vehicle included ventral fins, which were not modeled in MachUpX. Modeling the ventral fins

in MachUpX poses many potential problems, since lifting surfaces modeled in its numerical

lifting-line algorithm return the section lift coefficient to zero at the wing tips unless specified

as one piece-wise continuous lifting surface. The ventral fins are located on the under-

carriage of the baseline aircraft and forcing the lift distribution to zero at their root would

introduce physical inconsistencies. Likewise, extending them to the centerline of the aircraft

would likely cause more errors in estimating the aerodynamic coefficients.

In addition to modeling constraints, this work attempts to identify whether the BIRE

can provide the appropriate stability and control by itself. Ventral fins are generally used to

89

provide improved yaw stability across a variety of flight conditions and especially at large

sideslip angles [101]. Therefore, removing the ventral fins from the model allows for the

BIRE to be tested independent of the additional yaw stability offered by the fins.

The coefficients in Tables 5.7 and 5.8 that are primarily impacted by the lack of ventral

fins in the MachUpX model are those associated with lateral model parameters: specifically,

β, p, and r. In addition, since the ventral fins are unimpeded by the blanketing effects of

increased angle of attack [101], they are more important to lateral terms that change with

lift coefficient. The effects on the lateral coefficients from the ventral fins are very similar

to the lateral effects of the fuselage. Although some effort has been made to estimate

fuselage effects by extending the main wing, horizontal tail, and vertical tail to the fuselage

centerline, there is a margin of error to be expected by these estimates. Thus, only a

portion of the errors affecting the coefficients due to fuselage and ventral fin effects need to

be accounted for in any changes to the model.

As mentioned in Chapter 4, the geometric characteristics of the control surfaces were

among those that were estimated using drawings provided by Fox and Forrest [62]. The

accuracy of these drawings is unclear and therefore additional geometric modeling errors

can be introduced from estimations of the spanwise and chordwise fractions of the control

surfaces. From these uncertainties, many of the differences in control surface sensitivities

can reasonably be attributed to modeling differences between the NASA wind tunnel and

MachUpX models. Potential inaccuracies from interpreting the drawings also extend to the

relative location of the center of gravity to the lifting surfaces on the tail. Sensitivities in

the pitching moment are likely the most impacted by discrepancies in the location of lifting

surfaces with respect to the center of gravity. The above notes on ventral fins, control

surface sizing, center of gravity location, and fuselage effects can reasonably be expected to

produce errors in estimating aerodynamic coefficients.

In terms of non-linear physical effects, several have already been discussed. Lifting-

line theory does not model spanwise changes in the circulation of a lifting surface [102];

therefore, using numerical lifting-line to estimate aerodynamic coefficients on the baseline

90

aircraft and BIRE inevitably will introduce some errors in coefficients highly-sensitive to

spanwise flow. Additionally, MachUpX is not equipped to handle the any effects from

the generation of leading-edge vortices, which are common in highly-swept wings. Many

of the coefficients in Tables 5.7 and 5.8, both longitudinal and lateral, could easily be

effected by the leading-edge vortices shed from the main wing and vertical tail in particular.

Finally, the effects of flow separation are not modeled in numerical lifting-line, which can

the forces and moments produced by the sharp, transonic airfoils and highly-swept wings

at even moderate angles of attack. This could be the cause of the errors noted with the

elevator sensitivity coefficients, since the sharp leading-edges of the biconvex airfoils on the

wind tunnel model would produce rather large separation bubbles at low speeds. These

effects likely characterize most of the errors due to non-linear physics measured between

the MachUpX- and NASA-produced aerodynamic coefficients.

The final category of errors which can reasonably be attributed to differences in aero-

dynamic coefficients is the modeling of the drag coefficient. MachUpX estimates the effects

of induced and parasitic drag acting on an aircraft in flight using the airfoil drag polar. The

effects of drag from flow separation, interference at wing-body junctures, and other effects

are ignored. These drag effects may be responsible for some of the errors in the aerodynamic

drag coefficient components in Table 5.7.

It is reasonable to assume that a low-fidelity aerodynamic tool such as MachUpX will

vary by up to 20-30% from wind tunnel results with aircraft that are well-modeled using

numerical lifting-line. That is, where the effects of spanwise flow are small (RA > 4),

where the effects of separation are minimal (gradual changes in aircraft geometry), and

where sweep angles are small. In this case, we can expect, then, that the violation of

some of these constraints further increases the susceptibility of these coefficients to error.

The purpose of this research is to provide a preliminary look into the trim and control

characteristics of the BIRE aircraft. Therefore, it is sufficient that the trends of these

coefficients be accurately represented, rather than demanding accuracy in the values of the

coefficients themselves. Further, if the reported differences between the MachUpX model

91

and the NASA wind tunnel data do not substantively affect the results of trimming the

aircraft, those differences can be ignored when analyzing trim.

Coefficient Sensitivity Study

To provide a closer examination of the relative importance in the differences given in

Tables 5.7 and 5.8, a sensitivity study can be performed on each of the coefficients. This

study indicates how sensitive the results of trimming the aircraft in various conditions are

to changes in the aerodynamic model coefficients. Thus, the information in this section

requires the trim algorithm developed in Chapter 6 to fully explore. In the interest of

maintaining continuity, a discussion on the nature of the trim algorithm will be left until

Chapter 6 and its results will be used and referred to here without explanation.

The sensitivity study was conducted by trimming the aircraft in steady-heading sideslip

(Chapter 6 Section 6.2.4) and a steady, coordinated turn (Chapter 6 Section 6.2.3) using

the coefficients reported using MachUpX aerodynamic data. After trimming the aircraft,

the aerodynamic angles, body-fixed rotation rates, and control surface deflections required

to trim the aircraft in both trim states were considered. The coefficients were then changed

to represent those predicted using the NASA wind tunnel data and the required aero-

dynamic angles, body-fixed rotation rates, and control surface deflections to trim were

recorded. Maximum sensitivities for each coefficient were then reported by taking the max-

imum change in trim parameter between the case of steady-heading sideslip and steady,

coordinated turn.

Both the steady-heading sideslip and steady coordinated turn trim conditions were

performed with a climb angle of γ = 0◦ and a bank angle of φ = 5◦. In each case, the

aircraft was trimmed in a low-altitude, low-velocity condition (H = 1,000 ft and V =

222.51 ft/s) to maximize the deflections that would be required to trim. The differences

in the aerodynamic parameters required for trim in steady, level flight are shown in Table

5.9 for the aerodynamic force coefficients and in Table 5.10 for the aerodynamic moment

coefficients. From this trim sensitivity analysis, many coefficients predicted by MachUpX

that differed substantially from those predicted using the NASA data have relatively little

92

effect on the trim state of the aircraft. For example, CL,q differs by about 88% between the

MachUpX prediction and the NASA wind tunnel data. However, when the baseline aircraft

is trimmed in a steady, coordinated turn, changing the model to reflect the NASA-derived

coefficient impacts the trim state by less than a degree across all of the states. Therefore,

we can represent the coefficients in the nonlinear model with minimum loss of fidelity in

our trim calculations by keeping the MachUpX value in our model.

93

C
o
e
ffi

c
ie

n
t

E
rr

o
r

∆
α

,
(d

eg
)

∆
β

,
(d

eg
)

∆
δ a

,
(d

eg
)

∆
δ e

,
(d

eg
)

∆
δ r

,
(d

eg
)

∆
p
,

(d
eg

/
s)

∆
q,

(d
eg

/
s)

∆
r,

(d
eg

/
s)

C
L

0
-5

1.
2%

0.
75

76
0.

1
0
3
2

0
.0

1
1
5

0
.0

9
4
7

0
.3

0
7
8

0
.0

0
7
8

0
.0

0
0
5

0
.0

0
5
5

C
L
,α

-6
.9

%
1.

22
16

0.
1
6
3
2

0
.0

1
8
2

0
.1

5
2
7

0
.4

8
7

0
.0

1
2
6

0
.0

0
0
8

0
.0

0
8
8

C
L
, q

-8
8.

3%
0.

00
94

0
0

0
.0

0
1
2

0
0
.0

0
0
1

0
0
.0

0
0
1

C
L
,δ

e
32

.2
%

0.
07

43
0.

2
0
8
5

0
.0

2
4
2

0
.0

0
9
3

0
.6

2
4
7

0
.0

0
0
8

0
0
.0

0
0
5

C
S
,β

-3
3.

1%
0.

06
19

15
.8

8
8
3

1
.7

8
7

0
.0

0
7
7

4
7
.4

4
5

0
0

0
C
S
, p

-5
0.

1%
0

0.
0
0
0
8

0
.0

0
0
1

0
0
.0

0
2
5

0
0

0
C
S
,L
p

61
.0

%
0

0.
0
0
8

0
.0

0
0
9

0
0
.0

2
3
7

0
0

0
C
S
,r

-4
7.

3%
0

0.
0
6
4
9

0
.0

0
7
3

0
0
.1

9
3
8

0
.0

0
0
1

0
0

C
S
,δ

a
68

.3
%

0.
00

34
0.

7
3
8
4

0
.0

8
3

0
.0

0
0
4

2
.2

0
4
8

0
0

0
C
S
,δ

r
17

.3
%

0.
02

97
7.

9
5
6
4

0
.8

9
4
8

0
.0

0
3
7

2
3
.7

5
8
8

0
0

0
C
D

0
-7

0.
8%

0.
08

74
2.

0
1
3
1

0
.2

2
5
7

0
.0

1
0
9

6
.0

0
9
3

0
.0

0
0
7

0
0
.0

0
0
5

C
D
,L

-8
9.

4%
0.

28
98

11
.9

6
8
1

1
.2

9
1
6

0
.0

3
6
1

3
5
.5

9
9
4

0
.0

0
1
7

0
.0

0
0
1

0
.0

0
1
3

C
D
,L

2
-3

8.
9%

0.
47

5
7.

9
3
9
2

0
.8

8
9
8

0
.0

5
9
4

2
3
.6

9
8
8

0
.0

0
4
4

0
.0

0
0
3

0
.0

0
3
2

C
D
,S

2
-3

1.
1%

0.
10

38
2.

3
5
0
7

0
.2

6
3
5

0
.0

1
3

7
.0

1
7
1

0
0

0
C
D
,S
p

-1
46

.2
%

0
0

0
0

0
0

0
0

C
D
,q

-1
03

.4
%

0.
00

01
0

0
0

0
0

0
0

C
D
,L
q

-8
3.

2%
0.

00
05

0
0

0
.0

0
0
1

0
0

0
0

C
D
,L

2
q

-1
03

.0
%

0.
00

1
0

0
0
.0

0
0
1

0
0

0
0

C
D
,S
r

-1
95

.4
%

0
0

0
0

0
0

0
0

C
D
,δ

e
-6

5.
5%

0.
00

1
0.

0
2
5
4

0
.0

0
2
8

0
.0

0
0
1

0
.0

7
5
8

0
0

0
C
D
,L
δ
e

14
.0

%
0.

00
42

0.
1
0
5
4

0
.0

1
1
8

0
.0

0
0
5

0
.3

1
4
7

0
0

0
C
D
,δ

2 e
-3

5.
4%

0.
00

07
0.

0
1
8
2

0
.0

0
2

0
.0

0
0
1

0
.0

5
4
2

0
0

0
C
D
,S
δ
a

65
.8

%
0.

00
4

0.
1
0
2

0
.0

1
1
4

0
.0

0
0
5

0
.3

0
4
5

0
0

0
C
D
,S
δ
r

12
.3

%
0.

04
32

1.
0
4
2
7

0
.1

1
6
9

0
.0

0
5
4

3
.1

1
2
5

0
0

0

T
ab

le
5.

9:
T

ri
m

se
n

si
ti

v
it

y
an

al
y
si

s
of

th
e

b
as

el
in

e
ai

rc
ra

ft
fo

rc
e

co
effi

ci
en

ts
.

94

C
o
e
ffi

c
ie

n
t

E
rr

o
r

∆
α

,
(d

eg
)

∆
β

,
(d

eg
)

∆
δ a

,
(d

eg
)

∆
δ e

,
(d

eg
)

∆
δ r

,
(d

eg
)

∆
p
,

(d
eg

/
s)

∆
q,

(d
eg

/
s)

∆
r,

(d
eg

/
s)

C
`,
β

-2
2.

8%
0.

00
59

0
.9

5
.6

6
9
1

0
.0

0
0
7

6
.5

7
0
6

0
0

0
C
`,
p

-5
.0

%
0

0.
0
0
0
2

0
.0

0
2
6

0
0
.0

0
2
5

0
0

0
C
`,
r

50
.1

%
0

0.
0
0
0
7

0
.0

0
7
4

0
0
.0

0
7
1

0
0

0
C
`,
L
r

-5
0.

8%
0

0.
0
0
5
6

0
.0

6
1
6

0
0
.0

5
8
5

0
0

0
C
`,
δ
a

-4
9.

1%
0.

00
12

0.
1
9
1

1
.2

2
7
9

0
.0

0
0
2

1
.4

1
1
2

0
0

0
C
`,
δ
r

-8
.2

%
0.

00
18

0.
2
7
8

1
.8

1
0
.0

0
0
2

2
.0

6
9
1

0
0

0
C
m

0
-2

02
.4

%
0.

26
3

0.
0
6
9
5

0
.0

1
0
4

1
.3

1
2
1

0
.2

1
4
8

0
.0

0
2
7

0
.0

0
0
2

0
.0

0
1
9

C
m
,α

-1
62

.2
%

1.
14

14
0.

0
9
3
2

0
.0

0
6

5
.6

4
5
3

0
.2

4
6
3

0
.0

1
1
8

0
.0

0
0
7

0
.0

0
8
2

C
m
, q

14
.3

%
0.

00
02

0
0

0
.0

0
1

0
0

0
0

C
m
,δ

e
49

.5
%

0.
16

61
0.

0
3
9
6

0
.0

0
6
1

0
.8

3
1
4

0
.1

2
2
8

0
.0

0
1
7

0
.0

0
0
1

0
.0

0
1
2

C
n
,β

31
.1

%
0.

06
55

10
.6

7
7
2

4
.1

5
1
4

0
.0

0
8
2

4
0
.3

8
3
3

0
0

0
C
n
,p

-6
2.

1%
0

0.
0
0
2
5

0
.0

0
1
2

0
0
.0

1
0
2

0
0

0
C
n
,L
p

29
9.

3%
0

0.
0
1
6
3

0
.0

0
8
2

0
0
.0

6
6
9

0
0

0
C
n
,r

-4
9.

9%
0

0.
0
6
3
1

0
.0

3
1
6

0
0
.2

5
9

0
.0

0
0
1

0
0

C
n
,δ

a
44

.2
%

0.
00

48
0.

5
4
8
9

0
.1

7
6
4

0
.0

0
0
6

1
.9

6
9
5

0
0

0
C
n
,L
δ
a

-3
29

.7
%

0.
01

34
1.

5
1
5
9

0
.4

7
7
3

0
.0

0
1
7

5
.4

1
0
5

0
0

0
C
n
,δ

r
2.

5%
0.

02
81

3.
0
8
3
6

0
.9

3
7
1

0
.0

0
3
5

1
0
.9

0
8
6

0
0

0

T
ab

le
5.

10
:

T
ri

m
se

n
si

ti
v
it

y
an

al
y
si

s
of

th
e

b
as

el
in

e
ai

rc
ra

ft
m

om
en

t
co

effi
ci

en
ts

.

95

On the other hand, note that only a 2.5% difference in the value for Cn,δr produces

a 10 degree difference in rudder angle required to trim. This difference is likely driven by

trimming in steady-heading sideslip, which requires substantial rudder deflection [103]. To

better represent the aerodynamics of the baseline aircraft, and therefore provide a good

comparison with the BIRE aircraft, these coefficients can be adjusted to match the values

given by the wind tunnel results when appropriate. The appropriateness of any adjustment

to the aerodynamic coefficients should be motivated by identifying a reasonable source of

error produced by either modeling or limitations in the physics accounted for in MachUpX.

After identifying the coefficients in Tables 5.9 and 5.10 that impacted the trim state

by more than 1◦, each coefficient was adjusted to account for the errors that were just

enumerated. Since these adjustments to the coefficients are applied to the BIRE coefficients

as well, the effects of the ventral fins were ignored when making adjustments. For example,

the coefficient CS,β differs between MachUpX and NASA data by 33%, likely due to fuselage

effects and the lack of ventral fins in the MachUpX model. However, since the ventral fins

are not modeled in either the baseline aircraft or BIRE in MachUpX, the effect that they

have on CS,β should be ignored when applying an adjustment to the coefficient. Therefore,

it was determined that only 50% of the adjustment should be made to include the effects

of the fuselage without also including the effects of the ventral fins.

Table 5.11 shows the adjustments made to the components of the aerodynamic force

coefficients in the non-linear model for the baseline aircraft. The adjustments are labeled

∆C so that each coefficient, Ci, in the non-linear aerodynamic model for the baseline aircraft

is defined as

(Ci)adj = (Ci)MUX + ∆Ci (5.7)

Thus, the error between the NASA-produced coefficients and the adjusted MachUpX coef-

ficients is

εadj = 100×
(Ci)adj − (Ci)NASA

(Ci)NASA

% (5.8)

The adjusted error predicted by Eq. (5.8) is included in Table 5.11 as well as the adjustments

96

∆C . Table 5.12 shows the adjusted moment coefficients for the baseline aircraft along with

the adjusted error and coefficient adjustments, just as in Table 5.11.

Table 5.11: Adjustments made to the aerodynamic force component coefficients in the
baseline non-linear model.

Coefficient MachUpX MachUpX Adjusted Adjusted Error ∆C

CL0 0.0456 0.0456 -51.2% –
CL,α 3.5791 3.5791 -6.9% –
CL,q 3.3916 3.3916 -88.3% –
CL,δe 0.7474 0.5652 0% -0.1822

CS,β -0.7224 -0.9008 17% -0.1785
CS,p -0.0153 -0.0153 -50.1% –
CS,Lp 0.3318 0.3318 61.0% –
CS,r 0.4357 0.4357 -47.3% –
CS,δa 0.1104 0.0656 0% -0.0448
CS,δr 0.1992 0.1698 0% -0.0294

CD0 0.0064 0.0218 0% 0.0154
CD,L -0.0036 -0.0036 0% -0.0304
CD,L2 0.112 0.1834 0% 0.0714
CD,S2 0.4963 0.6081 16% 0.1118
CD,Sp 0.0768 0.0768 -146.2% –
CD,q 0.0368 0.0368 -103.4% –
CD,Lq 0.775 0.775 -83.2% –
CD,L2q -0.1844 -0.1844 -103.0% –
CD,Sr -0.7239 -0.7239 -195.4% –
CD,δe -0.0032 -0.0032 -65.5% –
CD,Lδe 0.1775 0.1775 14.0% –
CD,δ2e 0.2854 0.2854 -35.4% –

CD,Sδa 0.1118 0.1118 65.8% –
CD,Sδr 0.18 0.1604 0% -0.0196

5.3.3 BIRE Aircraft Coefficients

The non-linear aerodynamic model for the BIRE aircraft follows the form given in

Eqs. (4.66)–(4.71). Again, a database was created using MachUpX for the BIRE aircraft

according to the dimensions and numbers of points given in Table 5.13. A truncated version

of this database is included in Table D.2 of Appendix D. Note that the number of BIRE

rotation angles is much larger than the other dimensions of the database to ensure that the

97

Table 5.12: Adjustments made to the aerodynamic moment component coefficients in the
baseline non-linear model.

Coefficient MachUpX MachUpX Adjusted Adjusted Error ∆C

C`,β -0.0685 -0.0787 11% -0.0101
C`,p -0.3182 -0.3182 -5.0% –
C`,r 0.0469 0.0469 50.1% –
C`,Lr 0.1067 0.1067 -50.8% –
C`,δa -0.0741 -0.0741 -49.1% –
C`,δr 0.0257 0.0257 -8.2% –

Cm0 0.0099 -0.0077 0% -0.0196
Cm,α -0.1099 0.1375 0% 0.2865
Cm,q -4.8503 -4.8503 14.3% –
Cm,δe -0.8795 -0.5881 0% 0.2914

Cn,β 0.2752 0.2426 16% -0.0326
Cn,p 0.0131 0.0131 -62.1% –
Cn,Lp -0.1607 -0.1005 150% 0.0602
Cn,r -0.1787 -0.1787 -49.9% –
Cn,δa -0.0398 -0.0276 0% 0.0122
Cn,Lδa -0.0177 0.0077 0% 0.0254
Cn,δr -0.0899 -0.0877 2.5% –

change in linear coefficients with BIRE rotation angle are correctly identified. Also, the

limits of BIRE rotation angle are from δB = −180◦ to δB = 180◦. It is expected that for

the majority of trim conditions, |δB| ≤ 90◦; however, in some cases it may be necessary for

the force exerted on the tail to switch rapidly. Allowing the BIRE to rotate beyond 90◦ will

be useful in these instances.

Table 5.13: Limits for each degree of freedom in the baseline fighter aircraft database.

Parameter Name Description Limits Number of Points

α Angle of Attack ±10◦ 5
β Sideslip Angle ±6◦ 7
δe Stabilator Deflection Angle ±10◦ 3
δa Aileron Deflection Angle ±20◦ 3
δB BIRE Rotation Angle ±180◦ 73
p Body-Fixed Roll Rate ±90 deg / s 3
q Body-Fixed Pitch Rate ±30 deg / s 3
r Body-Fixed Yaw Rate ±30 deg / s 3

98

Calculating the coefficients of the nonlinear aerodynamic model for the BIRE proceeds

in much the same way as the baseline model. Two key differences include the presence of

additional coefficients that were not in the baseline model and that each of these fits were

performed at all BIRE rotation angles. The additional coefficients in the BIRE model are

fit using least-square linear and quadratic fits as well as the centered-differences described

previously. That is, a term such as CL,β is estimated by fitting a line through the lift

coefficients produced at various sideslip angles and a given BIRE rotation angle. Terms

like CL,p that were not calculated in the baseline model are estimated using the average

of centered-differences. Finally, the only new term requiring a quadratic fit is the drag

sensitivity coefficients with respect to side force, CD,S and CD,S2 .

From a fundamental aerodynamic understanding, the BIRE control system presents a

trade-off between longitudinal and lateral control as the horizontal tail rotates. Therefore,

longitudinal coefficients will suffer a reduction is effectiveness with BIRE rotation when

rotated from δB = 0◦ to δB = 90◦. Conversely, lateral coefficients will become more

effective as the tail is rotated across the same range. It can be intuitively assumed that

most of these coefficients will follow a periodic pattern and can therefore be modeled as

Ĉi = Ai sin (ωiδB + ϕi) + ζi + ∆Ci (5.9)

following the hat notation from Chapter 4 and with i representing the model sensitivity

identifiers; that is, for example, i = L,α for the sensitivity of lift to angle of attack.

After collecting the aerodynamic force and moment coefficients in the database, each

was examined through a coefficient sensitivity study to determine whether modeling the

periodic behavior of the sensitivity coefficient made a significant impact on the total aero-

dynamic force or moment to which it contributed. To make this determination, one percent

of the average magnitude of each aerodynamic coefficient in the database was calculated.

That is, the sensitivity parameter for each aerodynamic force and moment coefficient, ςCi ,

99

was calculated as

σCi = 0.01|Ci| = 0.01
1

N

N∑
i=1

|Ci| (5.10)

where N is the total number of cases in the database and is calculated

Nt = NδBNt,base (5.11)

where Nt,base is determined using Eq. (5.5).

The sensitivity parameters can then be compared to the maximum contribution of

each sensitivity coefficient to the total aerodynamic force and moment. If the maximum

contribution of a particular sensitivity coefficient is less than or equal to the sensitivity

parameter ςCi , then that coefficient was left constant as a function of δB. The maximum

contribution of each sensitivity coefficient was calculated as the difference between the

maximum and minimum values of Eq. (5.9) (2Ai) multiplied by the maximum of the

sensitivity parameter in the database. For example, the maximum contribution of the

sensitivity coefficient CS,Lp is

ΩS,Lp = |2AS,Lp (CL1)max (p)max | (5.12)

with (CL1)max calculated from the lift coefficients in the database where all parameters

except the angle of attack are zero and (p)max taken from Table 5.13. Table 5.14 shows each

coefficient in the BIRE aerodynamic model along with the sensitivity parameter, maximum

contribution of the coefficient, and whether it was modeled as a periodic function.

In light of the sensitivity analysis performed above, the coefficients at each BIRE

rotation were fit to a function of the form given in Eq. (4.43). The amplitude of the sine way,

A, its frequency, ω, the phase shift ϕ, the coefficient shift ζ, and the coefficient correction ∆C

are each given for the aerodynamic forces in Table 5.15 and for the aerodynamic moments

in Table 5.16. The adjustments indicated in Tables 5.11 and 5.12 were added to the BIRE

coefficients to make the comparison between the two aircraft reasonable given the additional

physics that the adjustments represent.

100

Table 5.14: Sensitivity to tail rotation angle study for the aerodynamic coefficients of the
BIRE aircraft.

Coefficient σC ΩC Periodic Coefficient σC ΩC Periodic

ĈL0

0.0027

0.0289 Yes Ĉ`0

0.0002

0.0004 Yes

ĈL,α 0.0762 Yes Ĉ`,α 0.0016 Yes

ĈL,β 0.2519 Yes Ĉ`,β 0.0006 Yes

ĈL,p 0.0021 No Ĉ`,p 0.0008 Yes

ĈL,q 0.0540 Yes Ĉ`,q 0.0001 No

ĈL,r 0.0480 Yes Ĉ`,r 0.0001 No

ĈL,δa 0.0004 No Ĉ`,Lr 0.0002 No

ĈL,δe 0.6672 Yes Ĉ`,δa 0.0105 Yes

ĈS0

0.0004

0.2120 Yes Ĉ`,δe 0.0011 Yes

ĈS,α 0.1280 Yes Ĉm0

0.0005

0.0385 Yes

ĈS,β 0.2376 Yes Ĉm,α 0.0867 Yes

ĈS,p 0.0004 No Ĉm,β 0.2897 Yes

ĈS,Lp 0.0030 Yes Ĉm,p 0.0022 Yes

ĈS,q 0.0530 Yes Ĉm,q 0.0627 Yes

ĈS,r 0.0433 Yes Ĉm,r 0.0541 Yes

ĈS,δa 0.0011 Yes Ĉm,δa 0.0006 Yes

ĈS,δe 0.6416 Yes Ĉm,δe 0.7954 Yes

ĈD0

0.0004

0.0002 No Ĉn0

0.0002

0.0096 Yes

ĈD,L 0.0004 No Ĉn,α 0.0649 Yes

ĈD,L2 0.0052 Yes Ĉn,β 0.1109 Yes

ĈD,S 0.0081 Yes Ĉn,p 0.0001 No

ĈD,S2 0.0155 Yes Ĉn,Lp 0.0012 Yes

ĈD,p 0.0001 No Ĉn,q 0.0245 Yes

ĈD,Sp 0.0001 No Ĉn,r 0.0204 Yes

ĈD,q 0.0004 No Ĉn,δa 0.0002 No

ĈD,Lq 0.0077 Yes Ĉn,Lδa 0.0094 Yes

ĈD,L2q 0.0002 No Ĉn,δe 0.3078 Yes

ĈD,r 0.0001 No

ĈD,Sr 0.0003 No

ĈD,δa 0.0059 Yes

ĈD,Sδa 0.0059 Yes

ĈD,δe 0.0053 Yes

ĈD,Lδe 0.1187 Yes

ĈD,δ2e 0.0362 Yes

101

Table 5.15: Fit parameters for the BIRE aerodynamic force coefficients.

Coefficient A ω ϕ ζ ∆C

ĈL0 -0.0144 2 1.5708 0.0621 –

ĈL,α 0.1091 2 1.5708 3.5469 –

ĈL,β -0.7216 2 0 0 –

ĈL,p 0 0 0 0 –

ĈL,q 2.0262 2 1.5708 1.5469 –

ĈL,r 0.6798 2 0 0 –

ĈL,δa 0 0 0 -0.0007 –

ĈL,δe 0.7646 1 1.5708 0 -0.1822

ĈS0 -0.0106 2 0 0 –

ĈS,α 0.1834 2 0 0 –

ĈS,β 0.6805 2 1.5708 -0.6708 -0.1785

ĈS,p 0 0 0 -0.0022 –

ĈS,Lp 0.0192 2 1.5708 0.2233 –

ĈS,q 1.9916 2 0 0 –

ĈS,r -0.6134 2 1.5708 0.5976 –

ĈS,δa 0.0015 2 1.5708 -0.0076 -0.0448

ĈS,δe 0.7352 1 0 0 –

ĈD0 0 0 0 0.0055 0.0154

ĈD,L 0 0 0 -0.0028 -0.0304

ĈD,L2 0.0047 4 1.5708 0.1053 0.0714

ĈD,S 0.0255 2 0 -0 –

ĈD,S2 0.3082 2 1.5708 0.5246 0.1118

ĈD,p 0 0 0 0 –

ĈD,Sp 0 0 0 0.0013 –

ĈD,q 0 0 0 0.0261 –

ĈD,Lq 0.3883 2 1.5708 0.37 –

ĈD,L2q 0 0 0 -0.0303 –

ĈD,r 0 0 0 0 –

ĈD,Sr 0 0 0 -0.1146 –

ĈD,δa -0.0079 2 0 0 –

ĈD,Sδa 0.0492 2 1.5708 -0.0381 –

ĈD,δe -0.0061 1 1.5708 0.0015 –

ĈD,Lδe 0.183 1 1.5708 0 –

ĈD,δ2e -0.095 1 1.5708 0.4244 –

102

Table 5.16: Fit parameters for the BIRE aerodynamic moment coefficients.

Coefficient A ω ϕ ζ ∆C

Ĉ`0 0.0002 2 0 0 –

Ĉ`,α -0.0023 4 0 0 –

Ĉ`,β 0.0017 2 1.5708 -0.0182 -0.0101

Ĉ`,p 0.004 2 1.5708 -0.3069 –

Ĉ`,q 0 0 0 0 –

Ĉ`,r 0 0 0 0.0062 –

Ĉ`,Lr 0 0 0 0.1104 –

Ĉ`,δa 0.014 2 1.5708 -0.1065 –

Ĉ`,δe 0.0017 1 0 0 –

Ĉm0 0.0164 2 1.5708 -0.0022 -0.0196

Ĉm,α -0.1381 2 1.5708 -0.0145 0.2865

Ĉm,β 0.8299 2 0 0 –

Ĉm,p -0.0102 2 0 0 –

Ĉm,q -2.3551 2 1.5708 -2.5457 –

Ĉm,r -0.7667 2 0 0 –

Ĉm,δa 0.0008 2 0 -0.0007 –

Ĉm,δe -0.9115 1 1.5708 0 0.2914

Ĉn0 0.0048 2 0 0 –

Ĉn,α -0.0929 2 0 0 –

Ĉn,β -0.3176 2 1.5708 0.313 -0.0326

Ĉn,p 0 0 0 0.001 –

Ĉn,Lp -0.0074 2 1.5708 -0.1223 0.0602

Ĉn,q -0.9205 2 0 0 –

Ĉn,r 0.2894 2 1.5708 -0.2789 –

Ĉn,δa 0 0 0 0.0009 0.0122

Ĉn,Lδa -0.0169 2 1.5708 0.0157 0.0254

Ĉn,δe -0.3527 1 0 0 –

103

A Discussion on the BIRE Coefficient Fits

Figures 5.10–5.21 show each of the fits listed in Tables 5.15 and 5.16, along with the

BIRE coefficients at each tail rotation angle and the value of the baseline coefficient given in

Tables 5.11 and 5.12. These figures are separated into longitudinal and lateral components

and certain trends can be noted immediately this way.

Note that, while the trends seen in these figures are largely periodic, there are certain

instances of outliers in this data set. In general, these outliers have two reasonable impli-

cations. The first of these is that MachUpX, as a numerical lifting-line code, calculates the

aerodynamic coefficients acting on an aircraft configuration using trailing sheets of vortic-

ity. If the vorticity sheets from any two surfaces ever intersect, non-physical jumps in the

aerodynamic coefficients can occur [89,104]. Thus, the intersection of these sheets in certain

instances can cause outliers in the calculated sensitivity coefficients.

The other reason these outlier exist is more interesting from a research perspective.

Since the aerodynamics of a rotating empennage have seen such limited analysis, there is a

potential that these outliers represent physical non-linearities that require further study to

understand. Thus, while these results represent a preliminary study into the aerodynamics

of a rotating empennage, these trends require more study and research to understand the

nature of the aerodynamic coefficients to a greater extent.

Beginning with the longitudinal lift coefficients in Fig. 5.10, we note that each of

these coefficients are an even function of the BIRE rotation angle. The coefficients ĈL,α

and ĈL,q follow a trend that will be seen often in the rest of the coefficients; they reach

a maximum when the rotating tail is horizontal and a minimum when δB = 90◦. This

trend explicitly shows the trade-off between longitudinal and lateral stability and control

produced by rotating the horizontal tail.

The change in lift coefficient with elevator deflection represents another trend that is

seen commonly with elevator sensitivities when rotating the horizontal tail. Note that ĈL,δe

reaches a maximum with a horizontal tail and a minimum when the tail is reversed at

δB = ±180◦, crossing zero at approximately δB = 90◦. The trends in the three longitudinal

104

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

0.03

0.04

0.05

0.06

0.07

0.08

0.09
C
L

0

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(a) ĈL0

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

3.15

3.30

3.45

3.60

3.75

3.90

4.05

C
L
,α

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(b) ĈL,α

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−1

0

1

2

3

4

5

C
L
,q̄

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(c) ĈL,q

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

C
L
,δ
e

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(d) ĈL,δe

Fig. 5.10: Longitudinal BIRE Lift coefficient fits.

coefficients examined thus far are intuitive aerodynamically. However, ĈL0 shows a trend

that may, at first, appear counter-intuitive, since one would assume that the lift should

attain a maximum when the tail is oriented horizontally. The effects of downwash are

key to understanding this trend, as the downwash from the horizontal tail will produce a

negative lift coefficient on the horizontal tail that is gradually rotated out of the downwash

region until only the lift from the main wing is considered. This understanding makes the

trend in Fig. 5.10a understandable and appropriate.

Figure 5.11 shows the lateral BIRE lift coefficients, which are all odd functions of the

BIRE rotation angle. The coefficients ĈL,p and ĈL,δa all vary so little with tail rotation that

they are considered constant at their average values. Coefficients ĈL,β and ĈL,r represent

105

another common trend with the BIRE fits, achieving a maximum magnitude at δB =

±45◦ and crossing zero when the tail is horizontal or vertical. This is logical, since these

coefficients represent coupling between a longitudinal coefficient and a lateral aerodynamic

parameter.

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

C
L
,β

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(a) ĈL,β

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.045

−0.030

−0.015

0.000

0.015

0.030

0.045

C
L
,p̄

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(b) ĈL,p

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

C
L
,r̄

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(c) ĈL,r

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.003

−0.002

−0.001

0.000

0.001

0.002

0.003

C
L
,δ
a

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(d) ĈL,δa

Fig. 5.11: Lateral BIRE Lift coefficient fits.

For example, the coefficient ĈL,β does not influence the lift at δB = 0◦, since changes in

sideslip produce equivalent changes in lift, regardless of the direction. This aligns with the

assumption given in Eq. (4.32). When the horizontal tail is rotated to the vertical position,

the same is true; however, at δB = 45◦, sideslip angles produce a maximum change in the

lift coefficient due to the change in lift developed by the tail at positive and negative sideslip

106

angles. The difference in sign between Figs. 5.11a and 5.11c are simply a matter of the

definition of positive and negative sideslip and yaw rotation rate.

Examining now the side force coefficients, we see that the longitudinal side force coeffi-

cients in Fig. 5.12 follow the same odd-function pattern explored in the lateral components

of the lift coefficient. That is, they reach a maximum at δB = 45◦ for all but the change in

side force with respect to elevator deflection, which will be covered momentarily. Since a

positive BIRE rotation angle moves the right-half of the horizontal tail downwards, the side

force produced is positive as the longitudinal parameters α and q increase and produces a

positive coefficient. In terms of pure side force, however, a positive tail rotation produces

negative side force from the downwash on the main wing, which is demonstrated in the sign

of ĈS0 . Finally, ĈS,δe reaches its maximum magnitude at δB = ±90◦, when the horizon-

tal tail becomes essentially a large rudder and positive rotations with positive stabilator

deflections produce a positive side force.

As the lateral components of the side force coefficient are sensitivities relating a lateral

coefficient to lateral aerodynamic parameters, they follow the same patterns introduced in

the longitudinal coefficients of lift. The coefficients ĈS,β, ĈS,Lp, and ĈS,δa each reach their

maximum values when the tail is horizontal. As the tail is rotated vertically, the side force

generated by the sideslip angle, lift and roll rate combination, and aileron deflection becomes

more negative. For ĈS,β, this is because the increased vertical surface area generates more

side force as the horizontal tail becomes a large vertical tail. As the vertical surface area

of the tail increases, the lift differential induced from aileron deflections will create a more

net-negative side force acting on an increasingly vertical tail, thus creating the same trend

in ĈS,δa . The reduction in the magnitude of ĈS,Lp as the tail is rotated is for a similar

reason: the vertical surface area introduced from tail rotation yields a negative side force

component from the downwash and sidewash acting on the vertical tail.

Though we see similar trends with tail rotation for the coefficients ĈS,p and ĈS,r, the

effect of changes in ĈS,p is negligible. When the tail is completely horizontal, ĈS,r provides

no change to the total side force coefficient. However, when rotated to δB = 90◦, the tail

107

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.012

−0.008

−0.004

0.000

0.004

0.008

0.012
C
S

0

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(a) ĈS0

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

C
S
,α

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(b) ĈS,α

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−3

−2

−1

0

1

2

3

C
S
,q̄

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(c) ĈS,q

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

C
S
,δ
e

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(d) ĈS,δe

Fig. 5.12: Longitudinal BIRE Side Force coefficient fits.

provides a side force of the same sign as the direction of yawing rate. Of note is that both

ĈS,β and ĈS,r both reach magnitudes larger than the baseline aircraft at around δB = 45◦.

This observation will be repeated again for later lateral coefficients, indicating that, in

terms of total lateral control, the BIRE has more lateral control authority than the baseline

aircraft. This will be explored in greater detail in Chapter 7.

The abundance of drag coefficients necessitates a slightly longer discussion on the lon-

gitudinal and lateral components of its makeup. Emphasis here is placed on the changes in

drag between the baseline and BIRE configurations, though the reader should be reminded

that the drag model used focuses entirely on the drag induced by pressure differences and

neglects the effects of skin friction and viscous drag, among others. Figure 5.14 shows the

108

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5
C
S
,β

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(a) ĈS,β

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

C
S
,p̄

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(b) ĈS,p

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

0.15

0.20

0.25

0.30

0.35

0.40

0.45

C
S
,L
p̄

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(c) ĈS,Lp

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

0.0

0.3

0.6

0.9

1.2

1.5

1.8

C
S
,r̄

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(d) ĈS,r

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

C
S
,δ
a

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(e) ĈS,δa

Fig. 5.13: Lateral BIRE Side Force coefficient fits.

components of the drag coefficient related to longitudinal parameters. Here, it is immedi-

ately noted that the inherent drag on the BIRE aircraft, given with ĈD0 is not modeled with

109

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

0.015

0.020

0.025

0.030

0.035

0.040

0.045
C
D

0

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(a) ĈD0

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.042

−0.039

−0.036

−0.033

−0.030

−0.027

−0.024

C
D
,L

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(b) ĈD,L

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

0.16

0.18

0.20

0.22

0.24

0.26

0.28

C
D
,L

2

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(c) ĈD,L2

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

C
D
,q̄

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(d) ĈD,q

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.3

0.0

0.3

0.6

0.9

1.2

1.5

C
D
,L
q̄

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(e) ĈD,Lq

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

C
D
,L

2
q̄

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(f) ĈD,L2q

Fig. 5.14: Longitudinal BIRE Drag coefficient fits.

BIRE rotation (which would be largely expected) and is significantly less than that of the

baseline aircraft. The shift in minimum drag location, ĈD,L is also a very weak function of

110

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015
C
D
,δ
e

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(g) ĈD,δe

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

C
D
,L
δ
e

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(h) ĈD,Lδe

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
D
,δ

2 e

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(i) ĈD,δ2e

Fig. 5.14: Longitudinal BIRE Drag coefficient fits (continued).

tail rotation and is similar in value to that of the baseline aircraft. Finally, the overall drag

polar of the BIRE is more shallow than the baseline aircraft with a lower value of ĈD,L2 .

An interesting phenomena is shown in Fig. 5.14c, with the most shallow drag polar in lift

existing at δB = ±45◦ and ±135◦. This may be an effect caused by downwash, though

further investigation would be required to confirm this.

Of the quadratic coefficients in pitch rate for drag, both ĈD,q and ĈD,L2q are not

a strong function of BIRE rotation angle. In fact, these coefficients are each lower in

magnitude than their baseline aircraft counterparts, indicating that changes in pitch rate,

in general, create a smaller increment in drag than for the baseline aircraft. The only

term in this quadratic that varies significantly with BIRE rotation angle is ĈD,Lq, given

111

in Fig. 5.14e. This value is maximized when the tail is horizontal and reaches a value of

ĈD,Lq ≈ 0 when rotated vertically. Thus, rotating the horizontal tail in the BIRE reduces

the drag caused by changes in pitch rate, though it will be shown when examining the

lateral components of drag that this too represents a longitudinal-lateral trade-off in the

BIRE design. Note that the pattern developed in ĈD,q could be better represented with a

fit of the form sin(|δB|) instead of a pure sine wave. Future analysis could determine the

effect of additional fit types on the aerodynamics of the aircraft.

Finally, the last three longitudinal components of drag are each related to the stabilator

deflection. The trends shown in Figs. 5.14g–5.14i are each symmetric functions about

a horizontal tail configuration. The data trends in Fig. 5.14g represent an example of

the benefit of further analysis, since the pattern is periodic in nature, but is not exactly

represented by a sinusoid. Downwash is likely a contributing factor to the behavior of

the coefficient ĈD,δe near the horizontal position and beyond δB = ±90◦. When the tail

reaches a vertical position, note again that a sensitivity coefficient with a value of zero does

not mean that there is no change in drag with stabilator deflection at this point. Rather,

control surface deflection in this position have an identical effect on the drag, whether the

deflections are positive or negative.

The coupling of lift and stabilator deflection represented by the coefficient ĈL,δe has a

similar transition from positive to negative when passing through a vertical tail configura-

tion. This change in sign is a result of the direction of positive stabilator deflection when

the tail is inverted. Maintaining a positive drag contribution requires that when a positive

deflection creates negative lift that the coefficient itself attains a negative value. Lastly,

ĈD,δ2e shows an interesting trend, with the drag paid for stabilator deflection increasing

consistently with the square of elevator deflection for all angles other than the horizontal.

This term indicates another area where additional understanding of the aerodynamics at

play with a rotating tail could help develop intuition into the cause of this trend.

With the longitudinal elements of the drag coefficient of the BIRE addressed, the lateral

components of the drag given in Fig. 5.15 can be discussed. The coefficient representing

112

the shift in minimum drag from side force, ĈD,S , is better represented by a shifted tangent

function. However, for this analysis, it was determined that the consistency in definition

between coefficients will be helpful when a linearized controller is analyzed in Chapter 8.

The same trend in data is shown in ĈD,p, though the function is not modeled based on the

results of the sensitivity study in Table 5.14. The results here are clear; according to this

model, asymmetries in the aircraft due to tail rotation will result in an increase in the drag

experienced by the aircraft.

Trends for the quadratic term in the drag-side force polar, ĈD,S2 , show that tail rotation

decreases this term until it reaches its vertical position. This is another case of trade-

off between longitudinal and lateral effects, since referring to Fig. 5.14c shows that the

corresponding lift term is maximized at δB = ±90◦. The changes in ĈD,Sp, ĈD,r, and ĈD,Sr

were determined to be negligible from the sensitivity study in Table 5.14 and therefore are

considered constant as a function of tail rotation.

The term ĈD,δa is another that measures asymmetry in the aircraft, and its variation

with tail rotation can reasonably be concluded to be caused by downwash effects. Lastly for

the lateral drag coefficients is ĈD,Sδa , which reaches a minimum when the tail is vertical and

is nearly zero when horizontal according to the fit. Again, this is a term that is not well-

understood from physical intuition alone. It can reasonably be assumed that the negative

value of this coefficient (causing a decrement in drag about the linearized point) is a result

of the flow being oriented so as to produce less lift, which is the primary cause of increase

in pressure drag as modeled by MachUpX.

Transitioning now to the model of the aerodynamic moments, several trends will be

repeated from the analysis of the aerodynamic forces. For example, Ĉ`0 in Fig. 5.16 varies

will tail rotation as a representation of asymmetries, just like ĈS0 and ĈD,S in Figs. 5.12a

and 5.15a, respectively. It is likely primarily caused by downwash effects, as is Ĉ`,α. This

term cycles twice as fast as Ĉ`0 and could potentially be caused by the shed wing-tip

vortices combined with downwash effects, since the added zeros at δB = ±45◦ correspond

to locations where the y-and z - components of distance from the centerline of the aircraft

113

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.18

−0.12

−0.06

0.00

0.06

0.12

0.18
C
D
,S

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(a) ĈD,S

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
D
,S

2

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(b) ĈD,S2

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.0009

−0.0006

−0.0003

0.0000

0.0003

0.0006

0.0009

C
D
,p̄

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(c) ĈD,p

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

C
D
,S
p̄

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(d) ĈD,Sp

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.012

−0.008

−0.004

0.000

0.004

0.008

0.012

C
D
,r̄

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(e) ĈD,r

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

C
D
,S
r̄

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(f) ĈD,Sr

Fig. 5.15: Lateral BIRE Drag coefficient fits.

are equal. Further study, in addition to a higher fidelity physical model, would need to be

conducted to understand these trends completely.

114

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015
C
D
,δ
a

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(g) ĈD,δa

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

C
D
,S
δ
a

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(h) ĈD,Sδa

Fig. 5.15: Lateral BIRE Drag coefficient fits (continued).

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.00075

−0.00050

−0.00025

0.00000

0.00025

0.00050

0.00075

C
`

0

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(a) Ĉ`0

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.012

−0.008

−0.004

0.000

0.004

0.008

0.012

C
`
,α

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(b) Ĉ`,α

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

C
`
,q̄

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(c) Ĉ`,q

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.006

−0.004

−0.002

0.000

0.002

0.004

0.006

C
`
,δ
e

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(d) Ĉ`,δe

Fig. 5.16: Longitudinal BIRE Rolling Moment coefficient fits.

115

The term Ĉ`,q cycles at the same rate as Ĉ`,α and could be caused by similar effects.

However, this term was determined to be inconsequential by the sensitivity study conducted

for the BIRE coefficients and therefore is kept constant across the BIRE rotation angles.

Last for the longitudinal components of the rolling moment coefficient is Ĉ`,δe , which shows

the slower frequencies characteristic of the elevator deflection. As a longitudinal-lateral

coupling term, it crosses zero when the tail is horizontal, in contrast to ĈL,δe and ĈD,δe .

The trend seen for this coefficient is likely due to the direction of the strong wing-tip

vortices shed from the main wing, which will cause the upward-facing portion of the tail to

experience an increased angle of attack when compared to the lower portion. This result

would yield the rolling moment coefficient patterns shown in Fig. 5.16d.

The lateral terms associated with the rolling moment coefficient are shown in Fig. 5.17.

Sensitivities to yawing rate, given by Ĉ`,r and Ĉ`,Lr are modeled as constants, while the

terms Ĉ`,β, Ĉ`,p, and Ĉ`,δa follow similar trends. These three coefficients reach a maximum

when the tail is horizontal and a minimum when the tail is vertical. The roll stability

derivative, Ĉ`,β, is dominated by the effect of the main wing; however, the orientation of

the tail increases the stability of the BIRE about the roll axis when vertical. This is likely

due again to the effects of wing tip vortices, which will produce a subtle increase in rolling

moment under sideslip.

The effect of rolling rate on the rolling moment coefficient is also dominated by the main

wing, since the lift it produces increases the discrepancy in lift on each semispan caused by

plunging. However, this same effect is produced by the tail as well, and is augmented when

the tail is rotated out of the downwash of the main wing. This could be the main cause of

variations in the coefficient Ĉ`,p. Finally, the rolling moment control derivative, Ĉ`,δa , likely

varies for nearly the same reason. When rotated out of the downwash of the main wing,

the rolling moment produced by aileron deflections (and subsequently the anti-symmetric

deflections of the horizontal tail) increases in magnitude. From this analysis, it should be

noted that the rolling moment coefficient components are perhaps those that would benefit

the most from understanding gained by higher-fidelity studies. Various interpretations have

116

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.090

−0.075

−0.060

−0.045

−0.030

−0.015

0.000
C
`
,β

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(a) Ĉ`,β

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.375

−0.350

−0.325

−0.300

−0.275

−0.250

−0.225

C
`
,p̄

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(b) Ĉ`,p

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.02

0.00

0.02

0.04

0.06

0.08

C
`
,r̄

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(c) Ĉ`,r

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

C
`
,L
r̄

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(d) Ĉ`,Lr

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.20

−0.16

−0.12

−0.08

−0.04

0.00

0.04

C
`
,δ
a

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(e) Ĉ`,δa

Fig. 5.17: Lateral BIRE Rolling Moment coefficient fits.

been given here, but further research is required to understand the mechanisms behind the

coefficients’ variation with tail rotation.

117

The final two aerodynamic moments, the pitching and yawing moments, are perhaps

the most important to the aircraft in terms of the effects of a rotating tail. Both are

dominated by tail effects and play crucial roles in stability and control. Figure 5.18 shows the

longitudinal components of the pitching moment coefficient. They are each even functions

of the BIRE rotation angle, with only Ĉm0 varying in its trends. The nominal pitching

moment coefficient, represented by Ĉm0 , attains a maximum when the tail is horizontal and

a minimum when vertical. A positive nominal pitching moment is produced by the aircraft

when the tail is horizontal due to the positive lift produced by the main wing forward of

the center of gravity and the downwash on the tail producing a further positive moment.

Rotating the horizontal tail out of the way removes its effect and lowers the nominal pitching

moment accordingly. This allows the nominal pitching moment to sink even below that of

the baseline aircraft, since the effects of downwash no longer push the pitching moment in

the positive direction from that of the main wing.

In contrast, the pitching moment slope, pitch damping derivative, and pitch control

derivative each have a minimum when the tail is horizontal and increase to a maximum

when vertical. In the case of Ĉm,α, this results in an aircraft configuration at δB = 90◦ that

is unstable in pitch (Cm,α > 0) due to a lack of the contributions from a horizontal tail [9].

This cross-over point occurs at approximately δB = 45◦, indicating that tail rotation could

be an interesting way to adjust aircraft stability mid-flight. The interesting behavior of

this coefficient near the horizontal position suggests that further research may be fruitful

in uncovering additional understanding of the physics of a rotating tail.

Since the horizontal tail contributes primarily to pitch damping in an aircraft, rotating

the tail causes large changes in the pitch damping derivative, as shown in Fig. 5.18c.

This illustrates another intuitive trade-off for the BIRE aircraft, which is that rotating

the tail produces a decrease in the pitch damping of the aircraft, essential for favorable

characteristics in the short-period and phugoid dynamic modes of the aircraft [12,13].

Rounding out the longitudinal components of the pitching moment coefficient is the

pitch control derivative, which follows a very intuitive pattern in its change with BIRE

118

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01
C
m

0

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(a) Ĉm0

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
m
,α

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(b) Ĉm,α

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−5

−4

−3

−2

−1

0

1

C
m
,q̄

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(c) Ĉm,q

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.6

−0.3

0.0

0.3

0.6

0.9

1.2

C
m
,δ
e

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(d) Ĉm,δe

Fig. 5.18: Longitudinal BIRE Pitching Moment coefficient fits.

rotation angle. The difference in its minimum value when compared to the baseline aircraft

is likely due entirely to the lack of dihedral in the BIRE design. This allows the stabilators to

be even more effective at generating pitching moment through deflection. Passing through

a vertical orientation causes the pitch control coefficient to become completely ineffective

at generating a pitching moment in this linear model, which becomes a concerning trade-off

in terms of control authority for the BIRE design.

The lateral components of the pitching moment model shown in Fig. 5.19 are each odd

functions of the BIRE rotation angle. When rotated in the positive direction, the horizontal

tail in sideslip will generate lift and side force in the negative direction, causing a nose-up

pitching moment as shown in Fig. 5.19a. Similarly oriented, the coefficient Ĉm,δa barely

119

contributes above the sensitivity parameter given in Eq. (5.10). Its variation with BIRE

rotation angle is likely due to the effects of downwash from the main wing, since it is unclear

how aileron deflections would affect the pitching moment otherwise.

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

C
m
,β

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(a) Ĉm,β

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

C
m
,p̄

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(b) Ĉm,p

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

C
m
,r̄

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(c) Ĉm,r

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.003

−0.002

−0.001

0.000

0.001

0.002

0.003

C
m
,δ
a

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(d) Ĉm,δa

Fig. 5.19: Lateral BIRE Pitching Moment coefficient fits.

Sensitivity of the pitching moment to roll rate is shown in Fig. 5.19b. The resulting fit

shows an interesting coupling between changes in roll rate and the pitching moment. It is

likely that the lowered tail semispan in rotation generates more lift (creating a nose-down

pitching moment) due to the combined effects of downwash and a larger perceived angle of

attack to the flow. This would explain the negative pitching moment generated by a positive

roll rate with the tail at δB = 45◦. When rotated vertically, the tail contributes nothing

120

to the pitching moment, as noted in Ĉm,r as well. The sensitivity of pitching moment to

yawing rate follows the same pattern as that given by Ĉm,β with only a change in sign. This

results from the definition of positive yaw rate and the movement of the flow, which will be

in the opposite direction to the flow incidence seen by the tail under conditions of sideslip.

The final aerodynamic moment coefficient is the yawing moment, whose longitudinal

components are shown in Fig. 5.20. As expected at this stage of the analysis, these cross-

coupled terms are odd functions of the BIRE rotation angle. Due to the similar effect exerted

by angle of attack and pitching rate, the terms Ĉn,α and Ĉn,q follow identical patterns and

reach a minimum at δB = 45◦. Yet again, this demonstrates a trade-off between longitudinal

and lateral control offered by the BIRE rotation. When rotated through an angle of attack

or experiencing a pitching rate, a positively rotated horizontal tail generates a positive side

force behind the center of gravity, which, in turn, generates a negative yawing moment.

The nominal yawing moment, Ĉn0 , can be assumed to vary with BIRE rotation angle

purely based on downwash and sidewash from the main wing. Thus, when rotated in the

positive direction, the lowered right-half semispan of the tail would produce a negative

side force, thus creating a positive yawing moment due to its position behind the center

of gravity. Perhaps one of the most important control derivatives of the BIRE is Ĉn,δe ,

since it has effectively replaced rudder control in the BIRE design. Unsurprisingly, it has

its maximum effect on the yawing moment when the tail is oriented vertically. Using the

information in Table 5.16 and the baseline value for the yaw control derivative Cn,δr in Table

5.12, a quick calculation reveals that the BIRE can achieve an equivalent control derivative

with only 14 degrees of BIRE deflection. This provides a positive benchmark for the BIRE

as a control concept, since one concern is the rate at which the BIRE would need to rotate

to be able to control the aircraft in yaw. Additional analysis will be performed in later

chapters, but this provides an initial point of reference for those discussions.

The lateral components of the yawing moment coefficient can be seen in Fig. 5.21. The

coefficients Ĉn,p and Ĉn,δa are not modeled due to their low contribution to the total yawing

moment, but are both nearly zero. Ĉn,δa is an important coefficient component, since it is

121

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.006

−0.004

−0.002

0.000

0.002

0.004

0.006
C
n

0

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(a) Ĉn0

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

C
n
,α

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(b) Ĉn,α

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−1.2

−0.8

−0.4

0.0

0.4

0.8

1.2

C
n
,q̄

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(c) Ĉn,q

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

C
n
,δ
e

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(d) Ĉn,δe

Fig. 5.20: Longitudinal BIRE Yawing Moment coefficient fits.

generally used to describe the adverse yaw characteristics of an aircraft. Adverse yaw was

described in Chapter 2, and is generally an unfavorable characteristic for an aircraft. In

this case, due to the adjustments to the MachUpX coefficients, the BIRE produces even

a small amount of proverse yaw and is not a significant function of BIRE rotation angle.

This is an assumption that will need to be verified with further testing, though the lack of

a vertical tail may mitigate some of the adverse yaw.

The yaw stability coefficient, unsurprisingly, increases from zero when horizontal to

above the value of the baseline aircraft when vertical. Referring again to Tables 5.8 and

5.16, the BIRE rotation angle required to produce the same yaw stability present in the

baseline aircraft is approximately δB = ±46◦. Referring back to the pitch stability in Fig.

122

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
C
n
,β

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(a) Ĉn,β

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

C
n
,p̄

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(b) Ĉn,p

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

C
n
,L
p̄

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(c) Ĉn,Lp

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

C
n
,r̄

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(d) Ĉn,r

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

C
n
,δ
a

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(e) Ĉn,δa

−180 −135 −90 −45 0 45 90 135 180
BIRE Rotation, δB [deg]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

C
n
,L
δ
a

BIRE Coefficient

BIRE Fit

Baseline Coefficient

(f) Ĉn,Lδa

Fig. 5.21: Lateral BIRE Yawing Moment coefficient fits.

5.18b, we see that this still represents an aircraft with “relaxed” longitudinal stability. Also,

the pitch control derivative at this BIRE rotation angle is approximately on par with that

123

given by the baseline aircraft according to Fig. 5.18d. Again, this indicates that the BIRE

should be able to maintain its yaw stability, pitch stability, and control in similar manner

to that of the baseline aircraft.

The non-linear effect of lift and roll rate on the yawing moment is increased in mag-

nitude slightly from the baseline aircraft with a horizontal tail. This is likely due to the

fact that the horizontal tail generates more lift without the dihedral, which in turn is com-

bined with roll rate to induce a negative yawing moment. When rotated vertically, the

lift produced by the tail decreases, thus decreasing the magnitude of the coefficient Ĉn,Lp.

Also dependent on lift is the coefficient Ĉn,Lδa , which follows the same pattern as Ĉn,Lp for

similar reasons.

The yaw damping derivative, Ĉn,r, is another important derivative to the dynamics

of the aircraft as well as its control capabilities [22, 23]. It is again insightful to calculate

the BIRE rotation angle required to match the damping of the baseline aircraft. Using the

values from Tables 5.8 and 5.16, a BIRE rotation angle of approximately δB = ±35◦ will

give the BIRE an equivalent yaw damping derivative as the baseline aircraft. These angles

have not been prohibitive thus far, and could allow the BIRE to match exactly the damping

and control derivatives achieved by the baseline aircraft when necessary with a reasonable

actuation device.

In conclusion, several consistent patterns can be found from examining Figs. 5.10–

5.21. The first is that nearly all of the sensitivity coefficients dealing with the aerodynamic

angles, rotation rates, and aileron deflection have the same frequency when measuring their

variation with tail rotation. This is an interesting pattern that could provide insight into

the underlying physics connecting each of the coefficients. Each of the nominal coefficients

also share this frequency of variation. In contrast, the variation frequency of all sensitivity

coefficients in stabilator deflection is half of that given to the other coefficients.

Second, coefficients representing cross-coupling (e.g. a longitudinal aerodynamic coef-

ficient sensitivity with respect to a lateral parameter) are each modeled best, in terms of

the form given in Eq. (4.43), by un-shifted sine waves. This makes them odd-functions

124

of the BIRE rotation angle, usually passing through zero when the tail is horizontal. In

addition to these observations, note that the coefficients that reach a maximum magnitude

at δB = 45◦ are those that represent small trade-offs between longitudinal and lateral sta-

bility and control. In contrast, those that reach a maximum magnitude when vertical or

horizontal dominate the stability and control characteristics of the aircraft. Lastly, it will

again be emphasized that there are several coefficients that are not represented exactly by

a sine wave. There remains much work to be done in terms of understanding these patterns

and the physical mechanisms which control their variation with tail rotation angle.

125

CHAPTER 6

SIX-DEGREE-OF-FREEDOM STATIC TRIM

The aerodynamic models for the baseline aircraft and its BIRE variant defined in

Chapters 4 and 5 allow for several studies to be performed comparing the two aircraft.

This work will focus on three of these studies: a static trim investigation over various

flight conditions, a comparison of the control authority of each aircraft using an attainable

moment set analysis, and the effectiveness of a linear feedback controller on disturbance

rejection. Additional analysis can be performed using the aerodynamic models presented in

this work, but these three have been chosen to answer some fundamental questions about

the effectiveness of a BIRE control system.

The fundamental questions that the static trim study in this chapter aims to answer

is two-fold. First, does the longitudinal-lateral trade-off presented by the BIRE inhibit the

trim envelope of the aircraft when compared to the trim envelope of the baseline aircraft?

Intuitively, the BIRE should be able to produce nearly the same forces and moments as the

baseline aircraft. As shown in Fig. 6.1, a traditional empennage generates individual forces

and moments on the horizontal and vertical surfaces, shown in grey, that can be summed

together to yield a net force and moment, shown in red. Using a combination of symmetric

deflection, antisymmetric deflection, and tail rotation, the BIRE should be able to produce

an equivalent net force and moment, except when large combinations of pitch and yaw

moments are required simultaneously. Therefore, by leveraging an additional degree-of-

freedom compared to that of a common horizontal tail, the BIRE is able to produce the

lateral moments generally created by a vertical tail and rudder with only two aerodynamic

lifting surfaces. The difference is that a traditional empennage can generate its maximum

pitch and yaw moments independently of one another, while the BIRE may suffer reduced

maximums due to their coupling.

126

Traditional Empennage BIRE Design

Fig. 6.1: The BIRE design can create the same net force and moment (red) in many
situations as a traditional empennage using the additional degree-of-freedom provided by
rotation of the empennage.

To determine whether the intuition presented above holds up, two different trim con-

ditions will be examined: a steady, coordinated turn and steady-heading sideslip. A steady,

coordinated turn is one of the most basic trim conditions employed by aircraft and has the

added benefit of being able to explore various aerodynamic loadings by changing the bank

angle of trim [105]. Steady-heading sideslip is a trim state generally used in crosswind land-

ings and is a valuable test of several lateral aerodynamic derivatives [106]. Each of these

trim conditions requires various amounts of longitudinal-lateral coupling and are necessary

flight conditions for any aircraft. Thus, an analysis using these two trim conditions will

provide valuable information towards understanding the benefits and limitations to trim of

using a rotating tail design.

The second fundamental question that can be answered using a static trim analysis

concerns the increased chance of a tail strike posed by rotating the tail. Landing in a

crosswind is one of the fundamental sizing constraints of yaw control mechanisms such

as the rudder and is especially relevant for tailless aircraft without a rudder [107, 108].

The yawing moment necessary to balance the forces of a crosswind landing is substantial;

therefore, if the BIRE rotation angle required to provide this moment is large enough,

the design could be at a greater risk for tail strike than the baseline aircraft. Trim in a

steady-heading sideslip condition will provide one way in which to analyze the risk of tail

127

strike. Additional studies, such as landing simulations and landing using crab, are required

to completely rule out the possibility of tail strike during a crosswind.

In general, the problem of static trim is to calculate the aerodynamic angles, rotation

rates, and control surface deflections required to place the aircraft in equilibrium. For the

two trim conditions examined in this work, the trim state of an aircraft is a function of the

flight condition of the aircraft. In this case, the flight condition is specified by the altitude,

H, velocity or Mach number, V or M , and the orientation of the aircraft, given by the bank

angle φ and elevation angle, θ. Thus, to accurately represent the trim analysis provided

here, it is important to understand the salient flight conditions at which the baseline aircraft

operates.

6.1 Flight Conditions

Since the literature available detailing a control system such as the BIRE is limited, its

relevant flight conditions are not well-defined. However, both Roetman et al. [6] and Dorsett

and Mehl [7] presented tailless fighter aircraft designs and denoted the flight conditions they

deemed most important to study. Therefore, the flight conditions analyzed in this work will

be largely influenced by their choices.

Figure 6.2 shows an estimate for the flight envelope of a supersonic fighter aircraft

based on that given by Conners and Sims [109]. Included in Fig. 6.2 are operational points

of interest identified from the work of Roetman et al. and Dorsett and Mehl [6, 7]. The

relevant flight condition information taken from Fig. 6.2, including altitude, velocity, Mach

number, and Reynolds number, are tabulated in Table 6.1. Each of the flight conditions in

Table 6.1 are also given a label to identify the purpose of the flight condition in assessing

aircraft performance.

One may quickly note that neither transonic nor supersonic flight conditions are in-

cluded in Fig. 6.1 and Table 6.1. Although the baseline aircraft is capable of flight in both

of these regimes, the limitations on the baseline aerodynamic model necessitate a restriction

to subsonic flight conditions with Mach number M ≤ 0.8 for the compressibility corrections

to be accurate. A higher-fidelity model is required to examine transonic and supersonic

128

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Mach Number, M

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

A
lt

it
u

d
e
,
H

[f
t]

Subsonic

Transonic

Supersonic

T1

T2

C1

C2

C3

Fig. 6.2: Estimated flight envelope for the baseline aircraft with operational points of interest
identified.

Table 6.1: Flight conditions considered in the static trim analysis.

Condition
Label

Altitude, [ft] Velocity,
[ft/s]

Mach
Number

Reynold’s
Number

T1 1,000 222 0.2 15,641,000
T2 15,000 201 0.19 9,919,000
C1 1,000 890 0.8 62,563,000
C2 15,000 634 0.6 31,324,000
C3 30,000 796 0.8 25,828,000

T1 – Takeoff and Approach
T2 – Power-On Departure Stall
C1 – Turbulent Penetration Speed
C2 – Air Combat Maneuver Condition
C3 – Maximum Sustained Load Factor

flight conditions, which are important for understanding the effects of extensive compress-

ibility on aircraft trim. Nonetheless, the subsonic study in this work likely represents the

majority of control-sizing cases for both the baseline aircraft and BIRE [107]. Thus, while

studies in the transonic and supersonic regime are necessary in completely understanding

the capabilities of the BIRE aircraft, the subsonic study provided in this work provides key

129

information for determining the viability of the BIRE aircraft in terms of trim and control

along a variety of flight conditions.

Each of the above flight conditions has a particular purpose in testing the static trim

capabilities of the baseline and BIRE aircraft. The takeoff and approach flight condition

(T1) is the flight condition at which most takeoff and landing is performed. Therefore, trim

results at flight condition T1 are essential to understanding the impacts of BIRE rotation on

trimmed flight in a crosswind. Increasing altitude to 15,000 ft while maintaining a nearly-

constant Mach number from the takeoff and approach condition leads to the power-on

departure stall condition (T2). Static analysis at this condition allows for control properties

to be analyzed at higher angles of attack and also allows for an analysis of landing at airstrips

at higher altitudes. These two conditions represent the takeoff and landing conditions of

interest presented in this work.

There are three cruise flight conditions given in Fig. 6.2 and Table 6.1. These conditions

include the turbulent penetration speed (C1), the air combat maneuver condition (C2),

and the maximum sustained load factor (C3). Flight at the turbulent penetration speed

represents the maximum speed at which the aircraft should be flown in the presence of

turbulence [110]. Thus, this condition represents an upper limit on the subsonic flight

regime for low-altitude flight.

The air combat maneuver condition represents the condition at which the limit load

can be imposed by gusts or full deflection of the control surfaces without damage to the

aircraft [103]. It too represents an upper limit on airspeed in the subsonic regime, but occurs

in mid-altitude flight. Finally, the maximum sustained load factor condition represents the

point at which the aircraft can be expected to maintain high-loads for longer periods of

time. The baseline aircraft is rated for a positive load limit of 9 -g’s according to Fox and

Forrest [62]. At this condition we can test whether that represents the maximum sustained

load factor for the baseline aircraft and also determine whether the BIRE can achieve similar

loading levels.

130

Each of the flight conditions in Table 6.1 and Fig. 6.2 will be explored in this work

by trimming the aircraft across a range of velocities and the three altitudes presented.

The flight conditions identified here are not particular to the baseline aircraft and are only

estimates. However, it is reasonable to expect that these conditions are still appropriate for

comparison between the baseline and BIRE aircraft.

6.2 Procedure for Finding the Trim State at a Given Flight Condition

The equations of motion for a rigid-body aircraft were given in Eqs. (4.1)–(4.2). In a

trim state, the equations of motion must be satisfied such that the body-fixed translational

velocities and rotation rates do not change with time. This requires that the left-hand side

of Eqs. (4.1) and (4.2) are zero. Additionally, there must be no changes in the bank and

elevation angles with time. Therefore, the first two equations within the system of equations

given in Eq. (4.4) are zero. Applying these constraints, Eqs. (4.1), (4.2), and (4.4) can be

rearranged to yield the trim equations of motion

Fxb

Fyb

Fzb

 = −W

−sθ
sφcθ

cφcθ

−
W

g

rv − qw

pw − ru

qu− pv

 (6.1)

Mxb

Myb

Mzb

 = −

0 −hz hy

hz 0 −hx
−hy hx 0

p

q

r

−

(Iyy − Izz)qr + Iyz(q
2 − r2) + Ixzpq − Ixypr

(Izz − Ixx)pr + Ixz(r
2 − p2) + Ixyqr − Iyzpq

(Ixx − Iyy)pq + Ixy(p
2 − q2) + Iyzpr − Ixzqr

(6.2)

p = −(qsφ + rcφ)tθ (6.3)

and

q = rtφ (6.4)

Equations (6.1)–(6.4) represent the core system of eight equations for trim and must be

satisfied for an aircraft in equilibrium.

131

Given mass, propulsion, gyroscopic, and aerodynamic information for an aircraft, the

unknowns in these equations include the bank angle, φ, elevation angle, θ, roll rate, p,

pitch rate, q, and yaw rate, r. The aerodynamic models can be used in Eqs. (4.5) and

(4.6) to define the aerodynamic coefficients in terms of five additional unknowns: the angle

of attack, α, sideslip angle, β, stabilator deflection, δe, aileron deflection, δa, and rudder

deflection, δr, or BIRE rotation angle, δB. Thus, when considering the aerodynamic forces

and moments, the eight equations given in Eqs. (6.1)–(6.4) are under-determined when

compared to the ten unknowns present.

The aerodynamic forces and moments only constitute part of the pseudo-aerodynamic

forces and moments on the left-hand side of Eqs. (6.1) and (6.2). Equations (4.5) and

(4.6) show that the forces and moments generated by the propulsive forces of the aircraft

must also be considered. To completely define these pseudo-aerodynamic forces, including

the effects of thrust, in each body-fixed direction, a model for the propulsive force in the

body-fixed coordinate system is required. Again, the wind tunnel data provided by Nguyen

et al. [64] is invaluable here, as the authors included data for the engine of the baseline

aircraft as a function of both Mach number and altitude. Using this data, a thrust model

can be developed to determine the propulsive forces and moments produced by the aircraft

as given in Eqs. (4.5) and (4.6).

6.2.1 Thrust Model

Assuming that the engine is mounted along the centerline of the aircraft, the only force

that it will produce will be in the body-fixed x -direction and there will be no corresponding

propulsive moments developed. Therefore, FPy = FPz = MPx = MPy = MPz = 0 and

only FPx needs to be considered. The thrust produced by the engine will be modeled as

a quadratic with respect to airspeed and a power function with respect to density [111].

This model allows the thrust to vary with both airspeed and altitude and follows the trends

given in the data provided by Nguyen et al. [64]. Thus, the model of the thrust is given by

T =

(
ρ

ρ0

)a (
T0 + T1V + T2V

2
)

(6.5)

132

where ρ is the density at the altitude H, ρ0 is the density at sea level, and a, T0, T1, and

T2 are constants determined by the thrust profile of the engine.

The thrust data provided by Nguyen et al. [64] is given as a function of Mach number

and altitude at three thrust levels: idle, military, and maximum. When flying the aircraft,

the pilot controls a throttle setting, τ , which determines how the engine produces its thrust.

The relationship between the throttle setting and the power delivered by the engine, denoted

P1 in units of percent-power, is given in a table by Nguyen et al. [64]. Stevens and Lewis [69]

provide the engine power P1 as a function of throttle setting τ in equation form as

P1 =

 64.94τ , τ ≤ 0.77

217.38τ − 117.38 , τ > 0.77
(6.6)

The engine power can then be converted to total thrust through the relationship [64,69]

FPx =

 Tidle + (Tmil − Tidle)
P1
50 , P1 < 50

Tmil + (Tmax − Tmil)
P1−50

50 , P1 ≥ 50
(6.7)

What remains is to provide a description for the thrust settings, Tidle, Tmil, and Tmax,

as a function of altitude. Fits of the form given in Eq. (6.5) were made at every altitude

for each thrust level and are shown in Fig. 6.3. Each thrust model coefficient given in Eq.

(6.5) is plotted as a function of altitude in Fig. 6.4 for each thrust setting. The data for all

thrust settings in Fig. 6.4 can be well-described as a quadratic. A quadratic fit denoted by

Ti = c0 + cHH + cH2H2 (6.8)

where Ti represents each of the thrust model coefficients and c0, cH , and cH2 represent the

quadratic fit coefficients for each thrust model parameter, was used to fit each thrust setting

as a function of altitude.

The values of c0, cH , and cH2 for each of the thrust model coefficients are given in

Table 6.2 at idle, military, and maximum thrust settings. Section C.4 of Appendix C shows

133

0.2 0.4 0.6 0.8 1.0
Mach Number, M

−4000

−3000

−2000

−1000

0

1000

2000
Id

le
T

h
ru

st
,
T

id
le

[l
b

f]

H =0 ft

H =10000 ft

H =20000 ft

H =30000 ft

H =40000 ft

H =50000 ft

(a) Idle Thrust

0.2 0.4 0.6 0.8 1.0
Mach Number, M

2000

4000

6000

8000

10000

12000

14000

M
il

it
a
ry

T
h

ru
st

,
T

m
il

[l
b

f]

H =0 ft

H =10000 ft

H =20000 ft

H =30000 ft

H =40000 ft

H =50000 ft

(b) Military Thrust

0.2 0.4 0.6 0.8 1.0
Mach Number, M

0

5000

10000

15000

20000

25000

30000

M
a
x

T
h

ru
st

,
T

m
a
x

[l
b

f]

H =0 ft

H =10000 ft

H =20000 ft

H =30000 ft

H =40000 ft

H =50000 ft

(c) Maximum Thrust

Fig. 6.3: Thrust fits according to Eq. (6.5) for three thrust levels at six altitudes.

the code used to evaluate these coefficients of the thrust model. With this information, the

propulsive thrust in the body-fixed x -direction is calculated as follows. First, the throttle

setting is used in Eq. (6.6) to determine the power delivered to the engine. The percent-

power delivered to the engine, P1, is then used to determine the thrust delivered according

to Eq. (6.7), with Tidle, Tmil, and Tmax determined based on altitude using the fit coefficients

in Table 6.2 in Eq. (6.8).

The thrust model therefore contributes one more unknown in the trim equation, the

throttle setting, τ , assuming that the altitude is provided. With eleven unknowns and

only eight independent equations, additional information is required to guarantee a closed

system with a single solution. Two of the required equations are provided by specifying

information on the orientation of the aircraft directly. That is, the orientation can be given

134

0

15000

30000

45000

60000

T0

−30

−20

−10

0

10

T1

0 150003000045000

−0.03

0.00

0.03

0.06

0.09

T2

0 150003000045000

1.0

1.2

1.4

1.6

1.8
a

Tidle

Tmil

TmaxT
h

ru
st

M
o
d

e
l

C
o
e
ffi

ci
e
n
ts

Altitude, H [ft]

Fig. 6.4: Thrust coefficients and their fits as a function of altitude for three thrust levels.

Table 6.2: Thrust model coefficient fits as a function of altitude.

Parameter Tidle Fit Tmil Fit Tmax Fit

T0

c0 3145 11716 20341
cH -0.4185 0.1156 0.1454

cH2 × 105 1.8313 0.3474 0.9283

T1

c0 -4.3491 3.5689 1.9886
cH × 104 -4.9703 0.1409 6.3926
cH2 × 108 1.3557 -0.3982 -2.4428

T2

c0 × 103 -0.2321 -3.9793 3.5201
cH × 107 5.5629 2.6931 0.7574
cH2 × 1011 -2.0550 0.5281 2.6665

a
c0 1.0104 1.0148 1.0225

cH × 105 2.9484 3.1355 3.1984
cH2 × 1010 -3.8270 -4.2106 -4.3617

in terms of the elevation angle or climb angle and the bank angle or normal load factor.

These two options will be explored in detail in the following subsection.

135

6.2.2 Specifying Aircraft Orientation

It is often more convenient for a pilot to specify the orientation of an aircraft in terms

of the climb rate Vc or climb angle γ rather than an elevation angle θ. Sometimes it is also

convenient to specify the load factor instead of the bank angle, since certain load factors

determine the design of an aircraft. These two sets of parameters are related: the climb

angle to the elevation angle and the bank angle to the load factor. Therefore, it is only a

matter of preference for which of these parameters are specified to the trim algorithm. The

trim algorithm given in this work will require the user to input the climb angle and bank

angle. Given a climb angle and bank angle, the associated elevation angle and load factor

can be computed as follows.

Elevation Angle for a Given Climb Angle

The climb rate is defined as the change in vertical location with respect to time, i.e.

Vc ≡ −żf , and the climb angle is related to the climb rate according to

Vc = V sγ = −żf (6.9)

The climb rate can be related to the aircraft orientation and velocity components using the

third equation within Eq. (4.3)

żf = −sθu+ sφcθv + cφcθw (6.10)

Using Eq. (6.9) in Eq. (6.10) gives a relationship between the climb angle, bank angle,

elevation angle, and body-fixed velocity components

V sγ = usθ − (vsφ + wcφ)cθ (6.11)

136

Equation 6.11 can be rearranged and solved for the elevation angle using the quadratic

formula to yield

sθ =
uV sγ ± (vsφ + wcφ)

√
u2 + (vsφ + wcφ)2 − V 2s2

γ

u2 + (vsφ + wcφ)2
(6.12)

Note that solving a quadratic always yields two solutions, which may be mathematically

valid but physically inconsistent. The physically-consistent elevation angle is the root that

satisfies Eq. (6.11). Therefore, provided that the aerodynamic velocity components of the

aircraft are known, Eq. (6.12) can be used to solve for a pair of elevation angles and Eq.

(6.11) can be used to determine which is physically consistent with the climb angle specified.

Normal Load Factor for a Given Bank Angle

The term load factor is nearly universally defined as the ratio of lift to weight, i.e. L/W

[112, 113]. Note that this is the ratio of the aerodynamic force (Eq. (4.24)) perpendicular

to the direction of flight to the aircraft weight. However, in application and discussion, it

is treated nearly universally as the ratio of pseudo-aerodynamic force (Eq. (4.5)) in the

lift direction to the weight. This is an important difference, since the pseudo-aerodynamic

force includes thrust, whereas the lift is the aerodynamic force without thrust. Therefore,

the normal load factor is more specifically defined as

n ≡ −Fzs
W

=
−Fzw
W

=
−Fzbcα + Fxbsα

W
(6.13)

In a trim condition, the load factor is related to the bank angle through the third

equation in Eq. (4.4). Using the first and third equations from Eq. (4.4) in Eq. (6.13) gives

the relationship

n = [cθcφ + (qu− pv)/g] cα + [sθ − (rv − qw)/g] sα (6.14)

137

For a given bank angle and trim solution, the load factor at the trim condition can be

computed from either Eq. (6.13) or (6.14).

By specifying the climb angle and bank angle, thus removing the elevation angle and

bank angle from the list of unknowns, only one equation remains to completely close the

trim system of equations. This final equation comes from the choice in trim condition itself.

That is, the steady, coordinated turn and steady-heading sideslip conditions each prescribe

an additional trim equation by definition. Therefore, the steady, coordinated turn and

steady-heading sideslip trim conditions are defined as follows.

6.2.3 Steady, Coordinated Turn

In a steady, coordinated turn, the side force due to gravity and the bank angle perfectly

balance the side force produced by rotational velocities [112]. Therefore, the aerodynamic

side force on the vehicle is zero, i.e. Fyb = 0, since there is no contribution from the

propulsion system in this direction. Referring to the second equation from Eq. (6.1), this

restriction on the side force requires

gsφcθ = ru− pw (6.15)

Thus, from the definition of the steady, coordinated turn, Eq. (6.15) constitutes the closing

constraint on the trim system of equations.

Combining Eqs. (6.3), (6.4), and (6.15) gives three equations that can be solved for

the rotation rates in the steady-coordinated turn as a function of the body-fixed velocities

and aircraft orientation. These equations are written as

p

q

r

 =
gsφcθ

ucθcφ + wsθ

−sθ
sφcθ

cφcθ

 (6.16)

Equations (6.1), (6.2), and (6.16) comprise a full set of nine equations and nine unknowns

(α, β, p, q, r, δa, δe, δr or δB, and τ) for a steady-coordinated turn. In this work, an

138

additional two equations with satisfied unknowns are given by specifying the climb angle

and bank angle.

6.2.4 Steady-Heading Sideslip

Steady-heading sideslip is a trim condition in which the aircraft maintains its heading,

ψ, sideslip angle, β, airspeed, and altitude [106]. This trim condition can be solved by

specifying either the sideslip angle or bank angle. However, once one of these angles is

specified, the other becomes a dependent variable and is fixed. For this work, we will

examine only the case where the bank angle is specified. Examining the last equation in

Eq. (4.4), we can see that, for any condition besides steady, level flight, a steady heading

angle requires that the aircraft has no rotational velocity. Therefore, the constraint which

closes our system of equations in steady, heading sideslip is given by

p

q

r

 = 0 (6.17)

Equations (6.1), (6.2), and (6.17) comprise our full set of nine equations for steady-heading

sideslip.

6.2.5 Trim Algorithm

To solve the non-linear trim system of equations for its nine unknowns, an iterative

trim algorithm can be implemented. Here we consider the case when the flight condition is

specified by a freestream velocity, altitude, bank angle, and climb angle. With the freestream

velocity, altitude, bank angle, and climb angle specified, the following iterative algorithm

can be employed to solve for the aerodynamic angles, body-fixed rotation rates, control

surface deflections, and throttle setting.

(1) Begin with the initial guess of all aerodynamic angles and controls set to zero (α =

β = δa = δe = δr = δB = τ = 0).

139

(2) Initialize the rotation rates to zero (p = q = r = 0).

(3) Calculate the body-fixed velocities from Eq. (4.18).

(4) Calculate the elevation angle using Eqs. (6.12) and (6.11).

(5) For the case of a steady-coordinated turn, use Eq. (6.16) to compute the rotation

rates. These remain equal to zero in steady-heading sideslip.

(6) Use the compressibility-corrected aerodynamic model to find the aerodynamic angles,

throttle setting, and control-surface deflections that satisfy Eqs. (6.1) and (6.2).

(7) Using the updated values for the aircraft orientation, aerodynamic angles, throttle set-

ting, and control-surface deflections, repeat steps (3)–(6) until the solution converges

below a desired tolerance.

Note that there are several differences here between the algorithm for the baseline

aircraft and the BIRE variant. The first is that the states initialized in step (1) differ by

specifying the rudder deflection δr for the baseline aircraft and the BIRE rotation angle

δB for the BIRE variant. Secondly, step (6) uses the aerodynamic model specified in Eqs.

(4.60)–(4.65) for the baseline aircraft and Eqs. (4.66)–(4.71) for the BIRE variant. Finally,

the inertial information for the BIRE aircraft differs from the baseline aircraft according to

the information in Tables 3.4 and 3.8. Since the inertial components are functions of the

BIRE rotation angle, the value of the inertia must be modified in step (6) according to the

value of δB.

6.2.6 Solving For the States of the Aerodynamic Model

There are many ways in which to solve for the aerodynamic angles, throttle setting, and

control surface deflections in step (6). Two simple options include a fixed-point iteration

and a multi-variate Newton-Raphson method [100]. The fixed-point iteration method has

linear convergence in comparison to quadratic convergence for the Newton-Raphson method.

While the difference in convergence would suggest that the Newton-Raphson method is more

140

efficient, in a multi-variate implementation the effect of an inverted matrix multiplication

is required. Thus, in some cases the cost of such a calculation makes the Newton-Raphson

method more computationally costly than a fixed-point iteration method.

In this section, both of these solution methods for step (6) will be given. In most

situations, the Newton-Raphson method is preferable, so it will be treated first. One area

where the Newton-Raphson method performs poorly is in the situation where multiple roots

are present [100]. By referring back to Fig. 6.1, we can see that the BIRE likely has several

configurations that will result in the same forces and moments as the traditional empennage.

Thus, it is reasonable to assume that there are multiple configurations of the tail that will

result in a trim state, the most trivial of which is that all BIRE rotation angles can be

rotated by an additional 2π radians to result in the exact same configuration.

To counteract this, limits can be placed on the BIRE rotation angle returned by the

trim algorithm; for example, restricting −90◦ ≤ δB ≤ 90◦. Certain levels of analysis also

allow for the trim solution to be “soft-started” by replacing the initial guess of 0 in steps

(1) and (2) with the solution of a similar trim condition. In particular, this approach

will be used for most of the analysis performed in this chapter. Regardless, the fixed-

point iteration method will be described first, followed by a description of the multi-variate

Newton-Raphson method for solving step (6).

To use fixed-point iteration, each equation in Eqs. (6.1) and (6.2) is solved in suc-

cession for the unknown that is dominant in that particular equation. Each equation is

dependant on each of the unknown aerodynamic angles, throttle setting and control surface

deflections. However, especially in the case of the baseline aircraft, each of these parameters

is predominantly used to control one particular aerodynamic force or moment acting on the

aircraft. For example, the angle of attack, α, is the main source of changes in the lift acting

on the aircraft. In this light, Table 6.3 shows the presumed dominant terms for each of the

pseudo-aerodynamic forces and moments.

Given the values of the aerodynamic angles, throttle setting, and control surface deflec-

tions at any iteration i, improved estimates for the aerodynamic parameters can be obtained

141

Table 6.3: Dominant terms in the pseudo-aerodynamic forces and moments.

Pseudo-Aerodynamic
Dominant Term

Force/Moment

Fxb τ
Fyb β
Fzb α
Mxb δa
Myb δe
Mzb δr or δB

from

τi+1 = τi − λ
[
Fxb −Wsθ + (rv − qw)W/g

FPx

]
(6.18)

where FPx is defined using Eq. (6.7),

αi+1 = αi + λ

[
Fzb +Wcφcθ + (qu− pv)W/g

1
2ρV

2SwCL,αcα

]
(6.19)

βi+1 = βi − λ
[
Fyb +Wsφcθ + (pw − ru)W/g

1
2ρV

2SwCS,βcβ

]
(6.20)

δai+1 = δai − λ
[
Mxb − hzq + hyr + (Iyy − Izz)qr + Iyz(q

2 − r2) + Ixzpq − Ixypr
1
2ρV

2SwbwC`,δa

]
(6.21)

δei+1 = δei − λ
[
Myb + hzp− hxr + (Izz − Ixx)pr + Ixz(r

2 − p2) + Ixyqr − Iyzpq
1
2ρV

2SwcwCm,δe

]
(6.22)

and

δri+1 = δri − λ
[
Mzb − hyp+ hxq + (Ixx − Iyy)pq + Ixy(p

2 − q2) + Iyzpr − Ixzqr
1
2ρV

2SwbwCn,δr

]
(6.23)

or

δBi+1 = δBi − λ
[
Mzb − hyp+ hxq + (Ixx − Iyy)pq + Ixy(p

2 − q2) + Iyzpr − Ixzqr
1
2ρV

2SwbwCn,δB

]
(6.24)

depending on if the aircraft being trimmed is the baseline or BIRE aircraft, respectively.

In Eqs. (6.18)–(6.24), the term λ is a relaxation factor between 0 and 1 that allows for

142

an additional level of convergence control. This is another way in which the problem of

multiple roots in the BIRE aircraft can be addressed in the trim algorithm. The right-hand

side of each of Eqs. (6.18)–(6.24) is computed using the current estimate for the set of

unknown aerodynamic parameters.

For the BIRE rotation angle in Eq. (6.24), the value of Cn,δB can be evaluated in

many ways. With an analytical solution given in Eq. (4.71) and the form of the sensitivity

coefficients provided by Eq. (4.43), Cn,δB can be evaluated analytically. It can also easily

be computed using a finite difference [100]. Regardless, Eqs. (6.18)–(6.24) can be used in

the iterative solution process discussed above to solve for the aerodynamic angles, throttle

setting, and control-surface deflections needed in Step (6).

A multi-variate Newton-Raphson method can be developed to solve step (6) in the

trim algorithm as follows. The residual, R, can be expressed as a vector of the unknown

aerodynamic parameters using Eqs. (6.1) and (6.2) as

R ≡ f(G) =

Fxb −Wsθ + (rv − qw)W/g

Fyb +Wsφcθ + (pw − ru)W/g

Fzb +Wcφcθ + (qu− pv)W/g

Mxb − hzq + hyr + (Iyy − Izz)qr + Iyz(q
2 − r2) + Ixzpq − Ixypr

Myb + hzp− hxr + (Izz − Ixx)pr + Ixz(r
2 − p2) + Ixyqr − Iyzpq

Mzb − hyp+ hxq + (Ixx − Iyy)pq + Ixy(p
2 − q2) + Iyzpr − Ixzqr

(6.25)

For the baseline aircraft, G = {α, β, δa, δe, δr, τ} and for the BIRE, G = {α, β, δa, δe, δB, τ}.

The residual represents the difference between the left- and right-hand sides of the trim

equations of motion in Eqs. (6.1) and (6.2). Thus, to satisfy those equations, the residual

must be driven to zero. A linear Taylor series expansion of the residual about G is given as

f(G + ∆G) ≈ f(G) + J(G)∆G (6.26)

143

where J is the Jacobian of the residual and is defined as

J =
∂fi
∂Gj

(6.27)

Again, the Jacobian of the residual can be calculated using analytical methods on the

aerodynamic models presented in Chapter 4 or by using a finite difference routine.

Recall that R ≡ f(G) and therefore Eq. (6.26) should be driven to zero to satisfy the

trim equations of motion. To this end, the Newton step, ∆G, can be calculated

∆G = −J−1R (6.28)

which can also be relaxed at each iteration to provide additional control over convergence.

The final iterative scheme for solving Step (6) is given with the relaxation factor λ as

Gi+1 = Gi + λ∆G (6.29)

The solution can be iterated upon until the residual (i.e. the trim equations of motion)

converges to zero.

Note that the solution method in Eq. (6.29) requires that the Jacobian of the residual

be invertible. Therefore, in cases where gradients are very large or very small, the Newton-

Raphson method may not be able to produce a trim solution. Adjusting the relaxation

factor can help with this, though this often-times has to be addressed on a case-by-case

basis. Using either fixed-point iteration or the Newton-Raphson method, the aerodynamic

parameters in step (6) can be determined and a convergent trim solution for the nine

unknowns can be given.

6.2.7 Example Trim Cases

Consider the baseline aircraft at the takeoff and approach flight condition (T1 in Table

6.1) with a climb angle of 10 degrees and a bank angle of 6.5 degrees. The baseline and

BIRE aircraft are trimmed in a steady-heading sideslip trim condition with a relaxation

144

factor of Γ = 0.5 using Newton’s method. This case was chosen because places the baseline

aircraft in a condition with nearly maximum rudder deflection (δr = 30◦). Results for the

trim parameters at this flight condition in steady-heading sideslip are shown in Table 6.4 for

the baseline aircraft and 6.5 for the BIRE. Note that, in this example, the BIRE rotation

angle required to trim the BIRE variant is much larger than the required rudder of the

baseline aircraft shown in Table 6.4. These trends will be examined in more detail with the

static trim analysis that follows, but is likely due to the low speed of the and the relatively

large climb angle.

Parameter Description Trim Parameter Trim Value

Elevation Angle, [deg] θ 26.8922
Bank Angle, [deg] φ 6.5

Angle of Attack, [deg] α 15.6506
Sideslip Angle, [deg] β 10.9877
Roll Rate, [deg/s] p 0
Pitch Rate, [deg/s] q 0
Yaw Rate, [deg/s] r 0

Aileron Deflection, [deg] δa -1.2742
Stabilator Deflection, [deg] δe 2.9090
Rudder Deflection, [deg] δr 29.9305

Throttle Setting τ 0.3992
Thrust, [lbf] T 7264.8914
Load Factor n 0.9753
Iterations – 45

Table 6.4: Example steady-heading sideslip trim solution for the baseline aircraft.

At the same condition, but in a steady, coordinated turn, Tables 6.6 and 6.7 give the

trim state of the baseline aircraft and BIRE, respectively. The differences in this condition

between the baseline aircraft and the BIRE are very minor and mostly due to differences

in geometry between the two aircraft.

6.3 Shifting the Center of Gravity

The trim results shown to this point have each considered the center of gravity to

be located at its nominal position. Aircraft often denote aft and forward limits on the

145

Parameter Description Trim Parameter Trim Value

Elevation Angle, [deg] θ 27.7915
Bank Angle, [deg] φ 6.5

Angle of Attack, [deg] α 16.5807
Sideslip Angle, [deg] β 10.8665
Roll Rate, [deg/s] p 0
Pitch Rate, [deg/s] q 0
Yaw Rate, [deg/s] r 0

Aileron Deflection, [deg] δa -3.5872
Stabilator Deflection, [deg] δBe 14.9963

BIRE Rotation, [deg] δB 67.5351
Throttle Setting τ 0.4756

Thrust, [lbf] T 8333.2010
Load Factor na 0.9755
Iterations – 51

Table 6.5: Example steady-heading sideslip trim solution for the BIRE aircraft.

Parameter Description Trim Parameter Trim Value

Elevation Angle, [deg] θ 25.8268
Bank Angle, [deg] φ 6.5

Angle of Attack, [deg] α 15.9181
Sideslip Angle, [deg] β 0.0100
Roll Rate, [deg/s] p -0.3754
Pitch Rate, [deg/s] q 0.0878
Yaw Rate, [deg/s] r 0.7706

Aileron Deflection, [deg] δa 0.1778
Stabilator Deflection, [deg] δe 2.9497
Rudder Deflection, [deg] δr -0.0885

Throttle Setting τ 0.3928
Thrust, [lbf] T 7176.3606
Load Factor n 0.9901
Iterations – 45

Table 6.6: Example steady, coordinated turn trim solution for the baseline aircraft.

center of gravity location for performance reasons. For example, Nguyen et al. [64] and

Clayton et al. [114] both indicate that the baseline aircraft may have an aft center of

gravity limit located at around 40% of the mean aerodynamic chord. In addition, the

baseline aircraft is part of a line of fighter aircraft with “relaxed” static-stability, meaning

that the center of gravity is located such that the aircraft is intentionally destabilized to

improve maneuverability [64]. The BIRE design is likely to be highly sensitive to changes

146

Parameter Description Trim Parameter Trim Value

Elevation Angle, [deg] θ 26.8827
Bank Angle, [deg] φ 6.5

Angle of Attack, [deg] α 16.9793
Sideslip Angle, [deg] β 0.0072
Roll Rate, [deg/s] p -0.3861
Pitch Rate, [deg/s] q 0.0862
Yaw Rate, [deg/s] r 0.7566

Aileron Deflection, [deg] δa 0.1554
Stabilator Deflection, [deg] δBe -3.1044

BIRE Rotation, [deg] δB 0.2750
Throttle Setting τ 0.3958

Thrust, [lbf] T 7218.0537
Load Factor n 0.9900
Iterations – 46

Table 6.7: Example steady, coordinated turn trim solution for the BIRE aircraft.

in center of gravity location and thus the trim algorithm given previously must be modified

slightly to allow for these changes.

Changes in the center of gravity have a substantial impact to the aerodynamic mo-

ments produced by the aerodynamic angles, body-fixed rotation rates, and control surface

deflections. The body-fixed aerodynamic moments resulting from a change in center of

gravity location given by ∆cg = {∆xcg,∆ycg,∆zcg} are given as

Mxb =
1

2
ρV 2SwbwC` − Fzb∆ycg + Fyb∆zcg (6.30)

Myb =
1

2
ρV 2SwCmcw − Fxb∆zcg + Fzb∆xcg (6.31)

and

Mzb =
1

2
ρV 2SwbwCn − Fyb∆xcg + Fxb∆ycg (6.32)

Thus, whenever the center of gravity is shifted, Eqs. (6.30)–(6.32) should be used in Eqs.

(6.2), (6.18)–(6.24), and (6.25). In this study, changes in center of gravity location will be

limited to shifts forward and aft in the body-fixed x -direction; that is, ∆yb = ∆zb = 0.

Thus, whenever the center of gravity is shifted

147

6.4 Static Trim Analysis

The results and analysis contained in this section will be split between the two trim

conditions that have been described in Sections 6.2.3 and 6.2.4: a steady, coordinated turn

and steady-heading sideslip. In the steady, coordinated turn analysis, each of the points in

Fig. 6.2 and Table 6.1 will be examined across a range of load factors. The steady-heading

sideslip analysis will be performed at the same altitudes and Mach numbers as the steady,

coordinated turn analysis, but will instead look at how change in the trim bank angle affect

the results. Trim in steady-heading sideslip is generally a condition used while landing an

aircraft. Therefore, an altitude of 1,000 ft is a good candidate for this type of analysis and

an altitude of 15,000 ft roughly matches the altitude of the highest-altitude airport in the

world [115]. Although the steady-heading sideslip trim condition is generally used only in

landing scenarios, there are situations, such as mid-air refueling, that require an aircraft to

maintain its heading in sideslip. Thus, the altitude of the maximum sustained load flight

condition (C3) will also be examined in the steady-heading sideslip trim study.

6.4.1 Steady, Coordinated Turn Analysis

To produce various load factors across the range of Mach numbers and altitudes given

in Fig. 6.2, the bank angle of each aircraft can be adjusted using the relationship in Eq.

(6.14) to produce a given load factor. This required an optimization routine that would

vary the bank angle, find the trim condition of each aircraft, and then converge to the given

load factor. In this analysis, the climb angle, γ is set equal to zero. Code containing this

process is included in Section C.4 of Appendix C.

The results of the comparison between the trim condition of the baseline and BIRE

aircraft are given in Fig. 6.5. Contours for the rudder and stabilator deflections of the

baseline aircraft as well as the BIRE rotation angle and BIRE stabilator deflection angle

(given a superscript B) are shown at each altitude given in Table 6.1. The stall region

was calculated using a maximum lift coefficient of CLmax = 1.9 for the baseline aircraft

as measured in Nguyen et al.’s wind tunnel results [64]. As the lift was determined across

given load factors, any region where the lift coefficient exceeded the maximum lift coefficient

148

was deemed to be in the stall region. As expected, we note that the stall region increases

with altitude, due to the difference in the ambient dynamic pressure. Thus, higher Mach

numbers are required by the aircraft to maintain trim as the altitude increases.

1 2 3 4 5 6 7 8 9
Load Factor, n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
a
ch

N
u

m
b

e
r,
M

-0.2

-0.1

0
0.1

-0.
5

0

0.5 1

2

-0.5

-1

1

0.5

1

-2

-3
-4

Stall Region

δr
δe
δB

δBe

(a) Altitude : 1,000 ft

1 2 3 4 5 6 7 8 9
Load Factor, n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
a
ch

N
u

m
b

e
r,
M

-0
.0

5

0

0.05

0

1

2
3

-0
.5

0.
5

0.5

-2

-3

Stall Region

δr
δe
δB

δBe

(b) Altitude : 15,000 ft

1 2 3 4 5 6 7 8 9
Load Factor, n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
a
ch

N
u

m
b

e
r,
M

-0
.0

5

0

0.05

0

1 2

3

0.
5

0.5

-2 -3
-4

Stall Region
δr
δe
δB

δBe

(c) Altitude : 30,000 ft

Fig. 6.5: Steady, coordinated turn analysis with the center of gravity at its nominal position.

The takeoff and approach condition (T1) is located at the bottom left corner of Fig.

6.5a. In general, an aircraft must takeoff and land be 10% higher than the stall speed for

the aircraft [111]. In Fig. 6.5a, we can see that this trend is approximately held for both

the baseline aircraft and the BIRE. Flight condition T2, which is the power-on departure

stall condition is located at the bottom left corner of Fig. 6.5b. As expected, at this flight

condition both aircraft will be very nearly stalled in steady, level flight (n = 1).

149

Flight condition C1, located at the turbulent penetration speed, is represented by a

horizontal line at M∞ = 0.8 in Fig. 6.5a. The magnitude of the deflection contours in

this region of the figure are quite small and can vary rapidly at intermediate to larger load

factors. In the presence of turbulence, deviations to the angle of attack and sideslip could

easily require changes in deflections that rival those in this plot. Therefore, the analysis

here seems to indicate that this does, indeed, represent a volatile limit in the each aircraft’s

flight envelope. In fact, the BIRE deflection angle is much more sensitive to deviations in

this region than the rudder.

Lastly, there is a discrepancy between the general shape of the contours between the

baseline aircraft and BIRE in Fig. 6.5a. The baseline aircraft has very gradual contours

in both the Mach number and load factor directions. That is, a pilot does not need to

change the rudder angle substantially to coordinate a turn at many different load factors.

On the other hand, the magnitude of the BIRE rotation angles are slightly larger and have

sharper gradients in both directions at low to intermediate Mach numbers. This indicates

a sensitivity to small demands in lateral-directional control that are to be expected when

coupling pitch and yaw. Fortunately, the magnitude of these deflections are still very small,

so a pilot or on-board computer system could achieve these trim conditions with reasonably-

sized actuators.

The air combat maneuver condition (C2), is located at M∞ = 0.6 in Fig. 6.5b. From

Fig. 6.5b, we note that both the BIRE and the baseline aircraft can produce large load

factors with small control-surface deflections without much risk of stall. At this altitude,

the difference in magnitude of deflection between the rudder and tail rotation are much

more pronounced. It is worth pointing out, however, that this level of sensitivity requires

much more precision for the baseline aircraft. Therefore, the larger magnitudes of deflection

for the BIRE may be a benefit to the aircraft, at least when in trim state dominated by

longitudinal control.

Finally, at M∞ = 0.8 in Fig. 6.5c, we see that the maximum load factor that can

be sustained by the baseline aircraft and BIRE variant is approximately n = 8.5, an 8.5-g

150

loading. This is reasonably consistent with the 9-g loading for which the baseline aircraft

is structured [64]. Again, a similar level of magnitude difference between the rudder and

BIRE rotation is measured here and the increase in dynamic pressure has squeezed the

contours closer together when compared to 6.5b.

We note in Figs. 6.5a and 6.5b that there are regions where the contours are not smooth

for deflection angles of the BIRE aircraft. These areas are regions where the trim algorithm

is very sensitive and are generally located where the BIRE transitions from one direction of

deflection to another. This is likely due to sensitivities in the aerodynamic model and can

be caused by large gradients in δB. In addition, since each trim condition is soft-started

using the previous trim state, changing the direction of the BIRE can cause the algorithm

to over-step a trim state. Further improvements to the trim algorithm, such as moving to

a higher-fidelity root-finding method, could improve these sensitivities.

One way in which the sensitivity to BIRE rotation angle may be reduced is by shifting

the location of the center of gravity. By doing so, the load acting on the tail can be

manipulated to ensure that it is consistently acting in the same direction. Figure 6.6 shows

the baseline aircraft rudder and elevator deflection, BIRE rotation angle, and BIRE elevator

deflection as a function of the change in CG location, ∆xcg, for various load factors. The

data in Fig. 6.6 is all taken at the stall velocity for each given altitude and the ordinate

on the left corresponds to all angles except the BIRE rotation angle, whose axis is on the

right. Note that ∆xcg = 0 indicates that the aircraft is at its nominal CG location of 35%

of the mean aerodynamic chord.

In examining Fig. 6.6, note that as the center of gravity moves forward, the deflections

predicted by the BIRE become closer to those of the baseline aircraft. In addition, there is

a position just forward of the nominal CG location where the BIRE deflection angle changes

rapidly. To understand whether this was caused by multiple possible trim points or is a

sensitivity to CG location unique to the BIRE control surface, each trim solution was soft-

started with the solution obtained with a CG location immediately forward of the current

CG location. Therefore, it can be reasonably assumed that the jump seen in each figure

151

−0.5 0.0 0.5 1.0 1.5
CG Shift, ∆xcg [ft]

−120

−80

−40

0

40

80

120
A

n
g
le

[d
e
g
]

δr
δe
φ

δB

δBe

−180

−120

−60

0

60

120

180

B
IR

E
R

o
ta

ti
o
n

A
n

g
le

,
δ
B

[d
e
g
]n = 1

n = 5

n = 9

(a) Altitude : 1,000 ft

−0.5 0.0 0.5 1.0 1.5
CG Shift, ∆xcg [ft]

−120

−80

−40

0

40

80

120

A
n

g
le

[d
e
g
]

δr
δe
φ

δB

δBe

−180

−120

−60

0

60

120

180

B
IR

E
R

o
ta

ti
o
n

A
n

g
le

,
δ
B

[d
e
g
]n = 1

n = 5

n = 9

(b) Altitude : 15,000 ft

−0.5 0.0 0.5 1.0 1.5
CG Shift, ∆xcg [ft]

−120

−80

−40

0

40

80

120

A
n

g
le

[d
e
g
]

δr
δe
φ

δB

δBe

−180

−120

−60

0

60

120

180

B
IR

E
R

o
ta

ti
o
n

A
n

g
le

,
δ
B

[d
e
g
]n = 1

n = 5

n = 9

(c) Altitude : 30,000 ft

Fig. 6.6: Control surface deflections for the baseline aircraft and its BIRE variant as a
function of center of gravity location at stall speed.

is a result of sensitivities of the BIRE to CG location rather than a issue with the trim

algorithm. With a center of gravity shift of approximately one foot forward, the baseline

aircraft and BIRE see similar stabilator deflection angles and are sufficiently far forward

of the sharp change in BIRE rotation angle observed near the nominal position to ensure

that these sensitivities are avoided. This location for the center of gravity can be further

explored by repeating the study shown in Fig. 6.5 with the center of gravity relocated.

Moving the CG forward by one foot on each aircraft results in the Mach-versus-load

factor plots shown in Fig. 6.7. Note that, comparing Fig. 6.5 to Fig. 6.7, the BIRE variant

is much better behaved and even has trends similar to the stabilator deflections. Therefore,

152

1 2 3 4 5 6 7 8 9
Load Factor, n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
a
ch

N
u

m
b

e
r,
M

-0.2

-0.1

0
0.1

-2

-4

-6

-8

-0.1

-0.5 -2

-8

-6
-4

-2

Stall Region

δr
δe
δB

δBe

(a) Altitude : 1,000 ft

1 2 3 4 5 6 7 8 9
Load Factor, n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
a
ch

N
u

m
b

e
r,
M

-0
.1 0

0.1

-2

-8
-6

-4

-0.1

-0.5

-2 -4

-4

-6 -8

Stall Region

δr
δe
δB

δBe

(b) Altitude : 15,000 ft

1 2 3 4 5 6 7 8 9
Load Factor, n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
a
ch

N
u

m
b

e
r,
M

-0
.0

5
0

0.05

-2

-4

-6

-8

-0
.1 -0.

5

-2-5
-7

-1
0 Stall Region

δr
δe
δB

δBe

(c) Altitude : 30,000 ft

Fig. 6.7: Steady, coordinated turn analysis with the center of gravity moved forward.

large changes in load factors are less likely to be experienced with small deviations of the

BIRE rotation angle. In addition, the BIRE rotation angle does not change directions with

the center of gravity moved forward, presumably because the tail always carries a negative

load to trim. The benefits of moving the CG forward in this way will be explored further

in the next section, which will focus on the steady-heading sideslip trim analysis.

6.4.2 Steady-Heading Sideslip Analysis

The steady-heading sideslip conditions of the baseline aircraft and the BIRE can be

compared by first examining the control surface deflections required to maintain steady-

heading sideslip across a range of velocities and bank angles. Again, the climb angle is set

153

to zero for this entire analysis. Figure 6.8 shows the stabilator deflections for each aircraft,

as well as the rudder deflection and BIRE rotation angle at 1,000, 15,000, and 30,000 ft

altitude. Only data up to the maximum rudder deflection of the baseline aircraft is reported

so as to better compare the trim capabilities of each aircraft.

0 5 10 15 20 25 30 35 40 45
Bank Angle, φ [deg]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
a
ch

N
u

m
b

e
r,
M

5
10 15

20
25

30

-0.5

3

0

2

1

2 5 10

-5

0

1
-3

5

3

δr
δe
δB

δBe

(a) Altitude : 1,000 ft

0 5 10 15 20 25 30 35 40 45
Bank Angle, φ [deg]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
a
ch

N
u

m
b

e
r,
M

5

10
15

20

25 30

-0.5

0

2

6

2

5

10 20
-5

-2

0

3

5

-4 δr
δe
δB

δBe

(b) Altitude : 15,000 ft

0 5 10 15 20 25 30 35 40 45
Bank Angle, φ [deg]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
a
ch

N
u

m
b

e
r,
M

5

10
15 20

25 30

7

5

3

1

0

5

10 20

-2
-5

-3

10
51

δr
δe
δB

δBe

(c) Altitude : 30,000 ft

Fig. 6.8: Steady-Heading sideslip analysis with the center of gravity at its nominal position.

One immediate benefit shown by the rotating tail in these figures is the direction of

the gradients. The deflections of the rudder at each altitude have a strong gradient in

the dimension of the bank angle and a smaller gradient in the Mach number dimension.

In contrast, the BIRE rotation angles has nearly an equal gradient in each direction and

these gradients are nearly independent of the altitude. Thus, it appears from Fig. 6.8

154

that the BIRE has a much larger trim envelope than the baseline aircraft in steady-heading

sideslip. While certainly a promising result, the impacts of this increase in trim envelope

are dependent on the aircraft requirements themselves, which is outside the scope of the

current analysis.

Intuition indicates that in steady level flight (φ = 0), the trends in stabilator deflection

for both the BIRE and baseline aircraft would be similar. Steady level flight is an entirely

longitudinal state, and therefore the rotating tail of the BIRE would be expected to be in

the horizontal position (δB = 0). At first, it may be hard to see this pattern, due to a large

discontinuity near Mach 0.3, 0.4, and 0.6 in Figures 6.10a, 6.10b, and 6.10c, respectively.

However, examining either above or below the discontinuity, it can be noted that the BIRE

rotation angle approaches zero and the stabilator deflections of the BIRE are approaching a

horizontal state. Thus, in steady-level flight, the BIRE acts exactly the same as a traditional

stabilator configuration, as expected.

The large discontinuity that exists at moderate Mach numbers for the BIRE aircraft in

Fig. 6.8 is again a result of the location of the center of gravity. That is, the load required

to trim the aircraft switches direction and thus the horizontal tail must rapidly rotate to

a new orientation. This can be investigated in a similar manner as was performed when

examining the influence of center of gravity location in a steady, coordinated turn.

The maximum crosswind landing condition that can be maintained by the baseline

aircraft is limited by its maximum rudder deflection. Since this is a crucial landing condition,

the effect of changes in the position of the center of gravity will be studied at the stall speed

and with a bank angle that corresponds to the maximum rudder deflection. This ensures

that the baseline aircraft is in its maximum crosswind landing position. Figure 6.9 shows

the rudder deflection, bank angle, BIRE rotation angle, and stabilator deflections of both

aircraft as a function of the change in CG location, ∆xcg. Again note that all angles except

for the BIRE rotation angle are plotted using the scale on the left-hand side.

Note that the lack of a discontinuity near the stall speed in Figs. 6.10a–6.10c results

in no discontinuities across any of the figures in Fig. 6.9. Also worth noting is that the

155

−0.5 0.0 0.5 1.0 1.5
CG Shift, ∆xcg [ft]

−30

−20

−10

0

10

20

30
A

n
g
le

[d
e
g
]

δr

φ

δe

δBe
−90

−60

−30

0

30

60

90

B
IR

E
R

o
ta

ti
o
n

A
n

g
le

,
δ
B

[d
e
g
]

δB

(a) Altitude : 1,000 ft

−0.5 0.0 0.5 1.0 1.5
CG Shift, ∆xcg [ft]

−30

−20

−10

0

10

20

30

A
n

g
le

[d
e
g
]

δr

φ

δe

δBe
−90

−60

−30

0

30

60

90

B
IR

E
R

o
ta

ti
o
n

A
n

g
le

,
δ
B

[d
e
g
]

δB

(b) Altitude : 15,000 ft

−0.5 0.0 0.5 1.0 1.5
CG Shift, ∆xcg [ft]

−30

−20

−10

0

10

20

30

A
n

g
le

[d
e
g
]

δr

φ

δe

δBe
−90

−60

−30

0

30

60

90

B
IR

E
R

o
ta

ti
o
n

A
n

g
le

,
δ
B

[d
e
g
]

δB

(c) Altitude : 30,000 ft

Fig. 6.9: Control surface deflections for the baseline aircraft and its BIRE variant as a
function of center of gravity location at maximum crosswind landing.

maximum crosswind condition is nearly independent of altitude, as each of the figures are

virtually identical. If, instead, this study were performed at the Mach number corresponding

to the discontinuities in Figs. 6.10a–6.10c, it would certainly show a discontinuity like that

shown in Fig. 6.6c.

Moving the CG 1 foot forward from its nominal position results in the contour plot

shown in Fig. 6.10. Note that the discontinuities that were present in Fig. 6.8 are no longer

visible across the range of bank angles and Mach numbers considered here. Secondly, the

BIRE rotation angle contours are nearly identical in trend with the rudder deflection angles,

only with slightly larger magnitudes. Finally, the overall magnitudes of the BIRE rotation

156

angle contours are reduced, indicating that the BIRE is able to control within the same

envelope as the baseline aircraft with much smaller deflections. From this study, we note

the benefits of moving the center of gravity forward in the BIRE aircraft. Doing so allows

the benefits of the rotating tail to be highlighted in comparison to a traditional empennage

design.

0 5 10 15 20 25 30 35 40 45
Bank Angle, φ [deg]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
a
ch

N
u

m
b

e
r,
M

5

10

15
20

25 30

-1.5

-4

-3

-2
-1

-2

-4

-0
.5

-1

-2

-4

-6

δr
δe
δB

δBe

(a) Altitude : 1,000 ft

0 5 10 15 20 25 30 35 40 45
Bank Angle, φ [deg]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
a
ch

N
u

m
b

e
r,
M

5

10

15 20 25 30

-2

-3

-6

-0
.5 -1

-2

-3

-1.5

-3

-5

-10

δr
δe
δB

δBe

(b) Altitude : 15,000 ft

0 5 10 15 20 25 30 35 40 45
Bank Angle, φ [deg]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
a
ch

N
u

m
b

e
r,
M

5

10
15 20

25
30

-8

-5

-3

-1 -3

-6

-3

-5

-1
0

-1
5

δr
δe
δB

δBe

(c) Altitude : 30,000 ft

Fig. 6.10: Steady-heading sideslip analysis with the center of gravity moved forward.

From the trim analysis thus far, one of the fundamental questions that were posed

at the beginning of this chapter has been answered. It has been shown in both a steady,

coordinated turn and in steady-heading sideslip that the trim capabilities of the BIRE

aircraft are roughly equal to those of the baseline aircraft. When the center of gravity

157

is moved forward, the benefits of the BIRE design are particularly apparent, as its trim

envelope extends much farther than the baseline aircraft with a similar shift in center of

gravity location. The question that remains to be answered concerns the potential of an

increased risk of tail strike in the BIRE design.

6.4.3 Tail Strike Analysis

The steady-heading sideslip analysis performed previously allows for an initial estimate

for the risk of tail strike when landing in a crosswind. Figure 6.11 shows the baseline and

BIRE aircraft when landing in steady-heading sideslip. While landing, the aircraft can

assume an elevation angle, bank angle, and have the stabilators deflected, each of which

can present the aircraft with an opportunity to strike the ground. The BIRE can also have

its tail rotated while landing, which will be a primary focus of this study. In this study,

three points of potential contact will be considered: the engine and the trailing corner of

each semispan of the stabilator.

𝜃
𝛿𝑒

𝑥LG

𝑧LG

𝑥TE

𝑧E

𝑥E
𝜙

𝛿𝐵 𝑦𝐿𝐺

Fig. 6.11: Aircraft configuration while landing in steady-heading sideslip.

To proceed with a tail strike analysis, information about the landing gear on the baseline

and BIRE aircraft must be known or assumed. When referencing the drawings provided by

Fox and Forrest [62], the ventral fin is cut off at an angle that suggests it may be influenced

158

by tail strike considerations. Therefore, a line projected along the ventral fin to the ground

gives an estimate for the axial position of the main landing gear.

An estimate of the distance in the body-fixed z -direction from the center of gravity to

the portion of the landing gear in contact with the ground must also be determined. This

distance will be estimated by assuming that the landing gear height from the undercarriage

of the aircraft is approximately equal to the distance from the centerline of the aircraft to

its undercarriage. Estimations of each of these distances can be made by referencing the

drawings provided by Fox and Forrest [62].

Figure 6.12 shows the coordinate systems of interest in the scenario of a tail strike. A

tail strike will occur if any of the points of interest shown in Fig. 6.12 fall below the landing

gear. Thus, the coordinates for the landing gear, engine, and the trailing-edge corner of each

semispan of the horizontal tail must be determined and the appropriate rotations applied

to determine if this is the case.

CG

LG

P/EMP

TC E

Fig. 6.12: Coordinate systems considered in the tail strike analysis.

Based on the location of the drawings from Fox and Forrest, and assuming that the

landing gear has the same cant angle as that given for the ventral fins (15◦), the location of

the landing gear in relation to the center of gravity is given in Table 6.8 [62]. The location

of the portion of the engine on the undercarriage of the aircraft (point E in Fig. 6.12) must

159

also be approximated by referencing the aircraft drawings given by Fox and Forrest [62].

Calculating the vector from the landing gear gives the results in Table 6.8.

Table 6.8: Vectors from the landing gear to points of interest in a tail strike for each aircraft
in level flight.

Point of Interest
Vector From Landing Gear

Baseline BIRE
x [ft] y [ft] z [ft] x [ft] y [ft] z [ft]

Center of Gravity 0.3063 1.5570 -5.8120 0.3063 1.5570 -5.8120
Engine -18.4037 1.5570 -4.1330 -18.4037 1.5570 -4.1330

Center of Empennage – – – -14.5002 1.557 -5.8120
Left Stabilator Pivot -14.5002 -1.8430 -5.8120 -14.5002 -1.8430 -5.8120

Right Stabilator Pivot -14.5002 4.9570 -5.8120 -14.5002 4.9570 -5.8120
Left Stabilator TE -18.8112 -7.5549 -4.2144 -18.8112 -7.6430 -5.8120

Right Stabilator TE -18.8112 10.6689 -4.2144 -18.8112 10.7570 -5.8120

Due to the BIRE rotations, the location the center of the empennage rotations is

required. This vector is determined by adding the vector from the landing gear to the

center of gravity to the vector made by following the fuselage centerline to the pivot of the

horizontal tail. Butcher provides the location of the pivot to be at 46 % of the root chord

of the horizontal stabilizer [63]. Thus, the vector from the center of gravity to the center of

the empennage is given by
x

y

z

EMP

=

−lh − 0.21crh

0

0

 (6.33)

where lh and crh are given in Table 3.2. Adding this vector to that given in Table 6.8 for

the vector to the center of gravity gives the resulting center of empennage vector in Table

6.8.

In level flight, the vector from the center of gravity to the pivot point (P in Fig. 6.12)

of the horizontal stabilizer is identical for both aircraft. Equation (6.33) gives the vector

from the center of gravity to the location of the pivot along the vehicle centerline. Thus,

to find the vector from the center of gravity to either the left or right pivot, the body-fixed

160

y-distance from the centerline to the root of the stabilator (given in Figs. 3.2a and 3.3)

need only be added to Eq. (6.33). This yields

x

y

z

PL,R

=

x

y

z

EMP

+

0

±bhf
0

 (6.34)

where bhf is the distance in the body-fixed y-direction from the centerline to the root of

the stabilator and can be determined using Fig. 3.2a.

Finally, the distance from the pivot to the trailing-edge of the horizontal stabilator

must be determined. Unlike the previous vectors, this particular vector differs between the

baseline and BIRE aircraft by virtue of the anhedral in the baseline. The vector spans from

the pivot to the trailing corner of the stabilator, thus covering the remaining root of the

stabilator and its remaining span. Thus, the vector from the pivot to the trailing-corner of

the wing for the baseline aircraft is

x

y

z

TCL,R

=

x

y

z

PL,R

+

−0.54crh

±(bh − bhf) cos (Γh)

−(bh − bhf) sin (Γh)

 (6.35)

where the negative sign in front of the z -component is to account for the negative dihedral

angle.

For the BIRE, this relationship is much simpler, and is simply

x

y

z

TCL,R

=

−0.54crh

±(bh − bhf)

0

 (6.36)

Each of the vectors determined using Eqs. (6.33)–(6.34) are reported in Table 6.8 by adding

the vector from the landing gear to the center of gravity. In contrast, Eq. (6.35) and (6.36)

must be added to the resultant vector from Eq. (6.34).

161

When in a steady-heading sideslip trim condition, each vector must be rotated through

the bank angle, φ, the elevation angle, θ, as well as the elevator deflection, δe or δBe .

Furthermore, the BIRE aircraft must undergo an additional rotation through the BIRE

rotation angle, δB. The order of the rotations is not commutative, and therefore a consistent

order must be established. For this work, we will use the traditional order adopted in flight

mechanics for Euler angle rotations, which is to rotate first through the heading angle, ψ,

then through the elevation angle, θ, and finally through the bank angle, φ [78]. Afterward,

the rotations through the control deflections are made, first through the BIRE rotation

angle and then through the elevator deflection. Technically, each aircraft will also assume

an anti-symmetric tail deflection, δa; however, these are generally quite small and will be

neglected in this study.

As an example, assume that, when trimmed in steady-heading sideslip, the baseline

aircraft assumes a bank angle, φ, an elevation angle, θ, and a stabilator deflection, δe. With

each vector being denoted as ~x, the vector from the landing gear to the engine is given by

~xLG−E = RθRφ~xE (6.37)

where

Rθ =

cθ 0 sθ

0 1 0

−sθ 0 cθ

 (6.38)

and

Rφ =

1 0 0

0 cφ −sφ
0 sφ cφ

 (6.39)

If the z -component of this vector is greater than zero (recall that the z -axis in the landing

gear frame is pointed downward), then the engine has struck the ground.

162

The vector from the landing gear to the trailing corner of the left stabilator is given by

~xLG−TCL
= RθRφ [~xPL

+Rδe~xTCL
] (6.40)

where

Rδe =

cδe 0 sδe

0 1 0

−sδe 0 cδe

 (6.41)

Likewise, the vector from the landing gear to the trailing corner of the right stabilator is

given by

~xLG−TCR
= RθRφ [~xPR

+Rδe~xTCR
] (6.42)

Again, if either of these vectors have a z -component greater than zero, they will have struck

the ground.

The only modification that must be made for the BIRE is with regards to Eqs. (6.40)

and (6.42). In its case, it must also rotate through the BIRE rotation angle. Thus, the

vector from the landing gear to the trailing corner of the left BIRE stabilator is

~xLG−TCL
= RθRφ [~xEMP +RδB (~xPL

+ {Rδe~xTCL
})] (6.43)

where

RδB =

1 0 0

0 cδB −sδB
0 sδB cδB

 (6.44)

The corresponding vector to the right BIRE stabilator is also calculated as

~xLG−TCR
= RθRφ [~xEMP +RδB (~xPR

+ {Rδe~xTCR
})] (6.45)

With the ability to determine whether the engine or either trailing-edge tip of the

stabilator has struck the ground, the information from the steady-heading sideslip analysis

163

can then be employed to determine whether a tail strike will occur. Since landing will occur

at either condition T1 or T2, only the data with M = 0.2 will be used. Figures 6.13 and

6.14 show the distance to the ground for each point of interest in the baseline and BIRE

aircraft as a function of bank angle. Recall that these points of interest are the engine and

each trailing corner of the horizontal tail.

0 2 4 6 8 10
Bank Angle, φ [deg]

−4

−3

−2

−1

0

1

2

3

4

D
is

ta
n

ce
to

G
ro

u
n

d
,
z

g
[f

t]

Ground

Baseline

BIRE

zE

zTE,L

zTE,R

zE

zTE,L

zTE,R

Fig. 6.13: Distances to the ground of the points of interest of each aircraft at flight condition
T1.

The trends shown in each of these figures indicate that both the baseline aircraft and

the BIRE will strike their tails when landing. Note that this is certainly not the case,

especially at zero bank angle; however, this analysis has neglected the effect of leading-edge

flaps and other high-lift devices that would be engaged when landing. High-lift devices

would require each aircraft to assume a lower elevation angle, which moves each of the lines

to a larger y-intercept in Figs. 6.13 and 6.14. Thus, we can see why this would not be a

favorable condition for either the baseline aircraft or the BIRE to attempt to land.

164

0 2 4 6 8 10
Bank Angle, φ [deg]

−6

−4

−2

0

2

4

D
is

ta
n

ce
to

G
ro

u
n

d
,
z

g
[f

t]

Ground

Baseline

BIRE

zE

zTE,L

zTE,R

zE

zTE,L

zTE,R

Fig. 6.14: Distances to the ground of the points of interest of each aircraft at flight condition
T2.

The fundamental question at hand is whether the BIRE carries a greater risk of tail

strike in this trim condition. Ignoring the engine strike scenario, both Figs. 6.13 and 6.14

show that, for bank angles less than φ = 4◦, the BIRE has a more favorable distance to the

ground from each tail than the baseline aircraft. There are two reasons to which this result

may be attributed. The first is that the BIRE lacks the anhedral present in the baseline

aircraft, which explains the difference in each plot at φ = 0◦. This difference amounts to

about 1.5 ft, when referring to Table 6.8.

The other reason that the BIRE may pose less of a chance of tail strike than the BIRE

when at low bank angles is that the tail can rotate against the imposed bank angle. Each of

the trim conditions along the M = 0.2 curve for the BIRE aircraft, as shown in Figs. 6.10a

and 6.10b require negative BIRE angles, which lift the right semispan of the tail above

the horizon. This rotation increases the distance between the tail and the ground when

assuming a positive bank angle.

165

It stands to reason that shifting the center of gravity may affect the chance of a tail

strike, given that the trim conditions changed rather drastically when analyzing a steady-

heading sideslip condition. Thus, Figs. 6.15 and 6.16 show this data as a function of bank

angle. Note in this analysis that the range of bank angles at which the tail of the BIRE

aircraft is above the lines given by the baseline aircraft is reduced from φ ≈ 4◦ to φ ≈ 2◦

for Fig. 6.15 and φ ≈ 1◦ for Fig. 6.16. Thus, for realistic bank angles during flight, the

BIRE poses a greater risk of tail strike than the baseline aircraft with the center of gravity

moved forward.

0 2 4 6 8 10
Bank Angle, φ [deg]

−4

−2

0

2

4

6

D
is

ta
n

ce
to

G
ro

u
n

d
,
z

g
[f

t]

Ground

Baseline

BIRE

zE

zTE,L

zTE,R

zE

zTE,L

zTE,R

Fig. 6.15: Distances to the ground of the points of interest of each aircraft at flight condition
T1 with the CG forward.

In reality, fighter aircraft generally do not land with a bank angle, and instead crab

into the wind during a crosswind landing. Then, once the aircraft has touched down, the

pilot deflects the rudder to point the nose straight on the runway. By referring to Figs.

6.13–6.16, one can easily see why this is the case. This kind of dynamic landing maneuver

is not one that can be analyzed using the tools presented in this work. Therefore, future

166

0 2 4 6 8 10
Bank Angle, φ [deg]

−6

−4

−2

0

2

4

6

D
is

ta
n

ce
to

G
ro

u
n

d
,
z

g
[f

t]

Ground

Baseline

BIRE

zE

zTE,L

zTE,R

zE

zTE,L

zTE,R

Fig. 6.16: Distances to the ground of the points of interest of each aircraft at flight condition
T2 with the CG forward.

studies will be necessary to examine landing by crabbing into a crosswind. Nevertheless,

this analysis has shown that tail strike is a concern for the BIRE aircraft that requires

further study to properly characterize.

167

CHAPTER 7

ATTAINABLE MOMENT SET ANALYSIS

In Chapter 6, the static trim analysis provided context for some situations in which

longitudinal and lateral control were both involved in a trim situation. Particularly, the

steady-heading sideslip trim condition required both lateral and longitudinal control. It

was shown throughout the chapter that the BIRE not only provided the control required to

trim, but expanded the trim envelope beyond that of the baseline aircraft. However, steady-

heading sideslip is still predominantly a lateral trim maneuver, while a steady, coordinated

turn is predominantly a longitudinal maneuver. Thus, the exact nature of the trade-off

between lateral and longitudinal control remains unclear, while it has been determined that

it does not substantially reduce trim capability.

One method that can be used to more directly identify the trade-off between lateral and

longitudinal control is by looking at static control authority. Trimming either aircraft, even

in steady level flight, requires a portion of the control authority available to the aircraft to

be sacrificed to maintain equilibrium. In the case of steady level flight, the control authority

remaining in the pitch axis is limited based on the deflection of the stabilator. Thus, by

calculating the moments that each aircraft is able to produce while remaining trimmed in

pitch will give a good indication of the lateral and longitudinal trade-offs available to each

aircraft.

The analysis just proposed is very similar to an attainable moment set (AMS) analysis.

Durham first performed an attainable moment set analysis by assuming that each moment

was a linear function of the controls used to produce that moment [116,117]. The purpose of

this analysis was to solve a control allocation problem, determining the best way to produce

a given moment with constraints on the available control surface deflections. Bolender and

Doman extended Durham’s work by allowing the relationship between the control effectors

and the moments to be nonlinear [118].

168

The attainable moment set, as defined in this work, is a bounded volume in moment-

space (where the dimensions are given by the aerodynamic moments on the aircraft) com-

posed of all possible moment combinations that can be achieved by the aircraft while re-

maining trimmed in pitch. Thus, this analysis differs from that presented by Durham and

Bolender and Doman, in that there is no particular focus on finding an appropriate control

allocation, though that certainly could be the focus of future work. Rather, the intent

of this AMS analysis is to highlight the trade-off presented by the BIRE control system

between longitudinal and lateral control.

7.1 Moment Set Generation

To compare the attainable moment sets between the baseline and BIRE aircraft, a

“cloud” of moment set combinations must be generated in moment-space. These points

are calculated in reference to a trim condition, determined to be steady, level flight at each

flight condition in Table 6.1. After being trimmed at each flight condition, each aircraft

was allowed to deflect each of its control surfaces while maintaining the pitching moment

required for trim. This process was repeated across a range of pitching moment coefficients

determined by the maximum and minimum pitching moments able to be produced by the

BIRE. The pitching moments produced by the BIRE were determined to be the largest by

a small margin, due to the lack of anhedral in the horizontal tail.

Thus, the moment set generation problem can be summarized for the baseline aircraft

as

max
δa,δe,δr

(C`, Cn)

s.t. − 25◦ ≤ δe ≤ 25◦

− 21.5◦ ≤ δa ≤ 21.5◦

− 30◦ ≤ δr ≤ 30◦

Cm = Ĉm

(7.1)

Equation (7.1), in essence, provides a Pareto front of rolling moment and yawing moment

169

coefficients at each pitching moment coefficient, given by Ĉm. The definition of the moment

set generation for the BIRE is nearly identical, given as

max
δa,δe,δB

(C`, Cn)

s.t. − 25◦ ≤ δe ≤ 25◦

− 21.5◦ ≤ δa ≤ 21.5◦

− 90◦ ≤ δB ≤ 90◦

Cm = Ĉm

(7.2)

where the only difference between Eq. (7.1) and Eq. (7.2) is that the BIRE uses the BIRE

rotation angle δB as its third control input rather than the rudder of the baseline aircraft.

The aerodynamic models given in Eqs. (4.60)–(4.65) and Eqs. (4.66)–(4.71) were used to

determine the lateral Pareto front for the baseline and BIRE aircraft, respectively.

Equations (7.1) and (7.2) were implemented using the bounded, Sequential Least

Squares Programming (SLSQP) method [119]. Thus, by constraining the stabilator angle

and prescribing the aileron, rudder or BIRE angle, and desired pitching moment coeffi-

cient, the optimization routine would find the elevator deflection that would produce the

appropriate pitching moment. For the baseline aircraft, sweeping through the aileron and

rudder angles required no change in elevator angle from that prescribed to produce a given

pitching moment. However, the coupled nature of the longitudinal and lateral moments

when rotating the BIRE would cause changes in the control surface deflections to require

adjustments to the stabilator deflection.

Figure 7.1 shows the moment set combinations for the baseline and BIRE aircraft at

flight condition T1 in the form of a point cloud in moment space. While viewing the moment

sets in this way can be helpful, more detail on any given set of moment combinations can be

found by examining two-dimensional slices of moment space. In this case, it is convenient

to view these slices at only the outer-edge of the control moment volume. Outlining the

extreme points of each slice is readily performed using the mathematical concept of a convex

hull.

170

C`

−0.04−0.02
0.00

0.02
0.04C

m

−0.4−0.2
0.0

0.2
0.4

C
n

−0.2

−0.1

0.0

0.1

0.2

Baseline

BIRE

Fig. 7.1: Moment set combinations for the baseline and BIRE aircraft at flight condition
T1.

A convex hull, as the name suggests, is a mathematical construct that creates a convex

bound around a set of data [120]. However, Fig. 7.1 and the rest of the moment set

combinations at other flight conditions is not convex in all dimensions, and therefore the

convex hull will not accurately show the bounding moment for any concave sections of

data. A computational extension of the convex hull in two-dimensions that can account for

concavity, called an alpha shape, was presented by Akkiraju et al. [121]. By adjusting the

parameter α in the alpha shape routine, the algorithm can be adjusted to accommodate

different levels of concavity in a data set and identify its extreme points.

7.2 Attainable Moment Set Comparison

Figure 7.2 shows the alpha shapes for two-dimensional slices along each moment axis

in Fig. 7.1. The coefficient in the perpendicular direction at which the slice is taken is

denoted in the legend for each plot. To distinguish between the attainable moment sets

of the baseline aircraft and the BIRE, the baseline slices are colored black while the BIRE

171

slices are gray. Note that Fig. 7.2a is scaled in the rolling moment coefficient direction for

visibility reasons, while Figs. 7.2b and 7.2c are given by the aspect ratio corresponding to

the data.

−0.4 −0.2 0.0 0.2 0.4
Pitching Moment Coefficient, Cm

−0.04

0.00

0.04

R
o
ll

in
g

M
o
m

e
n
t

C
o
e
ffi

ci
e
n
t,
C
`

Cn =0.045

Cn =0.026

Cn =0.007

Cn =-0.012

Cn =-0.030

(a) Pitch/Roll (Scaled)

−0.05 0.00 0.05
Rolling Moment Coefficient, C`

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

Y
a
w

in
g

M
o
m

e
n
t

C
o
e
ffi

ci
e
n
t,
C
n

Cm =-0.215

Cm =-0.213

Cm =-0.054

Cm =0.106

Cm =0.265

(b) Roll/Yaw

−0.4 −0.2 0.0 0.2 0.4
Pitching Moment Coefficient, Cm

−0.15
−0.10
−0.05

0.00
0.05
0.10
0.15

Y
a
w

in
g

M
o
m

e
n
t

C
o
e
ffi

ci
e
n
t,
C
n

C` =0.009

C` =-0.002

C` =-0.013

C` =-0.025

C` =-0.036

(c) Pitch/Yaw

Fig. 7.2: Attainable moment sets at flight condition T1. Black lines correspond to the
baseline aircraft and grey lines to the BIRE.

From Fig. 7.2a, it is noted that the BIRE is centered on the rolling moment axis, while

the baseline aircraft steadily shifts from being centered on a negative rolling moment to

centering on a positive rolling moment as the yawing moment decreases. This fact will be

made more clear in conjunction with an analysis of Fig. 7.2b, which will be covered shortly.

In terms of trade-offs between roll and pitch, it can be noted that the BIRE loses only

minimum roll authority at large yawing moments and has a small loss in pitch authority at

172

large, positive yawing moments. This is to be expected from the coupling between yaw and

pitch, but the magnitude of the loss is fairly small. As with the analysis in Chapter 6, the

impact of these trade-offs are dependent on the operating envelope of the aircraft, which

has not been examined in detail here. Further research is required to determine whether

these trade-offs are detrimental to the mission of the aircraft.

The information in Fig. 7.2b provides interesting insight into the relationship between

the lateral moments of the baseline and those of the BIRE. Contours for the baseline aircraft

are constant with pitching moment, since there is no coupling between the lateral and

longitudinal degrees of freedom induced by the controls. Note, however, that the baseline

contours are angled, with a negative correlation between the rolling and yawing moments.

This is the exact same coupling that causes adverse yaw to occur when an aircraft turns

during flight. The BIRE contours, however, do not have the same level of bias towards a

negative correlation. In Chapter 2, it was mentioned by Thomas that tail rotations could be

used to counteract adverse yaw [26]. Trends in Fig. 7.3b could provide additional evidence

of the veracity of that statement.

Finally, Fig. 7.2c highlights the trade-offs between longitudinal and lateral control in

the BIRE. While the baseline aircraft changes very little in its attainable yawing moments

with changes in pitching moment, the BIRE has substantially reduced yaw control when

trimmed in steady level flight (Cm = 0). The overall pitching moment accessible to the

BIRE is similar to that of the baseline, with the pitching moment offset of the BIRE alpha

shape in Fig. 7.2c caused by the increased negative stabilator deflection required for trim.

This analysis can be repeated for each of the flight conditions in Table 6.1, which are

shown in Figs. 7.3–7.6. Many of the trends discussed in Fig. 7.2 are repeated at these other

flight conditions, but a few special cases will be mentioned. The trade-offs between pitch

and roll are nearly constant with flight condition, with the only noticeable difference being

that the slices in yawing moment for the BIRE are more centered and vary less with yawing

moment at higher altitudes. This is likely corresponding to the change in trim condition,

which reduces pitching moment offsets in the pitch and yaw trade-offs as well.

173

−0.4 −0.2 0.0 0.2 0.4
Pitching Moment Coefficient, Cm

−0.04

0.00

0.04
R

o
ll

in
g

M
o
m

e
n
t

C
o
e
ffi

ci
e
n
t,
C
`

Cn =0.043

Cn =0.024

Cn =0.005

Cn =-0.013

Cn =-0.032

(a) Pitch/Roll (Scaled)

−0.05 0.00 0.05
Rolling Moment Coefficient, C`

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

Y
a
w

in
g

M
o
m

e
n
t

C
o
e
ffi

ci
e
n
t,
C
n

Cm =-0.184

Cm =-0.184

Cm =-0.081

Cm =0.078

Cm =0.237

(b) Roll/Yaw

−0.4 −0.2 0.0 0.2 0.4
Pitching Moment Coefficient, Cm

−0.15
−0.10
−0.05

0.00
0.05
0.10
0.15

Y
a
w

in
g

M
o
m

e
n
t

C
o
e
ffi

ci
e
n
t,
C
n

C` =0.009

C` =-0.002

C` =-0.013

C` =-0.025

C` =-0.036

(c) Pitch/Yaw

Fig. 7.3: Attainable moment sets at flight condition T2. Black lines correspond to the
baseline aircraft and grey lines to the BIRE.

The roll and yaw moment figures become increasingly more symmetrical for the BIRE

aircraft as the altitude and Mach number are increased. Again, this indicates that the BIRE

is not limited in producing coupled roll-yaw moments during flight and could potentially

reduce adverse yaw effects during turning flight. An important note here is that pitching

moments near trim always limit the lateral control that the BIRE can produce, which could

limit the capability of the BIRE when experiencing severe lateral disturbances.

The trend showing reduced yaw control near trim is consistent at all but two flight

conditions. First, in the power-on stall condition shown in Fig. 7.3c, there appears to be no

loss of pitch control near trim. This is also represented in the turbulent penetration flight

condition in Fig. 7.4c. The discrepancy here is a result of resolution, and increasing the

174

−0.4 −0.2 0.0 0.2 0.4
Pitching Moment Coefficient, Cm

−0.04

0.00

0.04
R

o
ll

in
g

M
o
m

e
n
t

C
o
e
ffi

ci
e
n
t,
C
`

Cn =0.048

Cn =0.029

Cn =0.010

Cn =-0.009

Cn =-0.028

(a) Pitch/Roll (Scaled)

−0.05 0.00 0.05
Rolling Moment Coefficient, C`

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

Y
a
w

in
g

M
o
m

e
n
t

C
o
e
ffi

ci
e
n
t,
C
n

Cm =-0.265

Cm =-0.166

Cm =-0.007

Cm =0.152

Cm =0.249

(b) Roll/Yaw

−0.4 −0.2 0.0 0.2 0.4
Pitching Moment Coefficient, Cm

−0.15
−0.10
−0.05

0.00
0.05
0.10
0.15

Y
a
w

in
g

M
o
m

e
n
t

C
o
e
ffi

ci
e
n
t,
C
n

C` =0.009

C` =-0.002

C` =-0.013

C` =-0.025

C` =-0.036

(c) Pitch/Yaw

Fig. 7.4: Attainable moment sets at flight condition C1. Black lines correspond to the
baseline aircraft and grey lines to the BIRE.

number of pitching moment coefficients for which the data is produced reveals that there is

always a decrease in yawing moment coefficient at pitching moments near trim.

The sharp gradient in the yawing moment in these studies is interesting, and indicates

that the BIRE is proficient at providing a substantial amount of yaw control very quickly

with small changes in pitch. Thus, in conditions where lateral control is necessary and pitch

control must be sacrificed, the BIRE may be able to quickly damp out disturbances in yaw

and return to a trim condition. This too requires additional, dynamic studies beyond the

scope of this work. Another driving factor in this trade-off is the amount of yaw authority

required by either aircraft in a given situation. While the baseline aircraft has been sized

according to some maximum-yaw flight condition, it could be that the BIRE requires less

175

−0.4 −0.2 0.0 0.2 0.4
Pitching Moment Coefficient, Cm

−0.04

0.00

0.04
R

o
ll

in
g

M
o
m

e
n
t

C
o
e
ffi

ci
e
n
t,
C
`

Cn =0.047

Cn =0.029

Cn =0.010

Cn =-0.009

Cn =-0.028

(a) Pitch/Roll (Scaled)

−0.05 0.00 0.05
Rolling Moment Coefficient, C`

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

Y
a
w

in
g

M
o
m

e
n
t

C
o
e
ffi

ci
e
n
t,
C
n

Cm =-0.257

Cm =-0.173

Cm =-0.014

Cm =0.145

Cm =0.256

(b) Roll/Yaw

−0.4 −0.2 0.0 0.2 0.4
Pitching Moment Coefficient, Cm

−0.15
−0.10
−0.05

0.00
0.05
0.10
0.15

Y
a
w

in
g

M
o
m

e
n
t

C
o
e
ffi

ci
e
n
t,
C
n

C` =0.009

C` =-0.002

C` =-0.013

C` =-0.025

C` =-0.036

(c) Pitch/Yaw

Fig. 7.5: Attainable moment sets at flight condition C2. Black lines correspond to the
baseline aircraft and grey lines to the BIRE.

yaw authority for that same condition by virtue of its lack of vertical tail. Again, these

questions require additional research to understand completely, but must be understood to

further compare the BIRE with traditional aircraft controls.

As a final note, the maximum available control authority for each aircraft is noted for

all flight conditions of interest in Table 7.1. This gives an idealized look at the total control

authority available to each aircraft without the constraints of trim, where the benefits of

the BIRE are maximized in comparison with the baseline aircraft and the trade-offs with

pitch are not highlighted. Still, the nearly three-fold increase in yaw authority of the BIRE

aircraft over the baseline aircraft is worthy of note. Additionally, the BIRE is able to access

a large portion of that authority quickly, as was noted previously in Figs. 7.2–7.6.

176

−0.4 −0.2 0.0 0.2 0.4
Pitching Moment Coefficient, Cm

−0.04

0.00

0.04
R

o
ll

in
g

M
o
m

e
n
t

C
o
e
ffi

ci
e
n
t,
C
`

Cn =0.047

Cn =0.028

Cn =0.010

Cn =-0.009

Cn =-0.028

(a) Pitch/Roll (Scaled)

−0.05 0.00 0.05
Rolling Moment Coefficient, C`

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

Y
a
w

in
g

M
o
m

e
n
t

C
o
e
ffi

ci
e
n
t,
C
n

Cm =-0.257

Cm =-0.174

Cm =-0.015

Cm =0.144

Cm =0.257

(b) Roll/Yaw

−0.4 −0.2 0.0 0.2 0.4
Pitching Moment Coefficient, Cm

−0.15
−0.10
−0.05

0.00
0.05
0.10
0.15

Y
a
w

in
g

M
o
m

e
n
t

C
o
e
ffi

ci
e
n
t,
C
n

C` =0.009

C` =-0.002

C` =-0.013

C` =-0.025

C` =-0.036

(c) Pitch/Yaw

Fig. 7.6: Attainable moment sets at flight condition C3. Black lines correspond to the
baseline aircraft and grey lines to the BIRE.

7.3 A Comparison Between Yaw Control and Drag

An additional comparison made available through the aerodynamic models developed

in this work involves looking at the drag associated with lateral control. The impetus behind

the development of a rotating tail for control is to reduce drag and weight from a vertical

tail. As mentioned in the introduction to this work, one branch of research that has been

studied extensively involves removing the tail entirely and using the wing for control of all

three degrees of freedom. Of the methods being investigated to do so, control of lateral

moments using wing twist has been shown to be one potential solution [122–124].

177

Table 7.1: Maximum and minimum moments produced by the baseline and BIRE aircraft
at each flight condition in Table 6.1.

Flight Condition Moment
Baseline BIRE

Max Min Max Min

T1
C` 0.041 -0.041 0.045 -0.045
Cm 0.289 -0.224 0.347 -0.449
Cn 0.054 -0.054 0.168 -0.168

T2
C` 0.041 -0.041 0.045 -0.045
Cm 0.25 -0.263 0.375 -0.42
Cn 0.057 -0.057 0.155 -0.155

C1
C` 0.041 -0.041 0.045 -0.045
Cm 0.313 -0.2 0.33 -0.465
Cn 0.052 -0.052 0.181 -0.181

C2
C` 0.041 -0.041 0.045 -0.045
Cm 0.256 -0.257 0.371 -0.424
Cn 0.057 -0.057 0.156 -0.156

C3
C` 0.041 -0.041 0.045 -0.045
Cm 0.256 -0.257 0.371 -0.425
Cn 0.057 -0.057 0.156 -0.156

Montgomery has shown that the theoretical minimum induced drag increment from a

pure yaw maneuver using a point load on the outermost tip of a wing is [125]

∆CDi = 2|Cn| (7.3)

This drag increment can be compared to the drag produced using the rudder of the baseline

aircraft to generate a yawing moment. By sweeping from minimum to maximum rudder

deflection in the baseline aircraft with each of the other aerodynamic parameters in Eq.

(4.65) set to zero, the drag increment of the baseline aircraft for a given yawing moment

can be calculated using Eq. (4.62). Both Eq. (7.3) from Montgomery [125] and the

drag increment induced by the baseline aircraft from Eq. (4.62) exerting the same yawing

moment is shown in Fig. 7.7.

For its contribution to the study, the BIRE was made to produce the same yawing

moment as the baseline aircraft using a combination of BIRE rotation and stabilator deflec-

tion. This process required another optimization, this time varying stabilator deflection and

178

−0.03 −0.02 −0.01 0.00 0.01 0.02 0.03
Yawing Moment Coefficient, Cn

0.00

0.02

0.04

0.06

0.08

0.10

D
ra

g
C

o
e
ffi

ci
e
n
t,
C
D

Baseline

Montgomery et al. [124]

BIRE

Fig. 7.7: Comparison of the drag produced using only the wing, a traditional aircraft control
system, and the BIRE to produce yawing moments.

BIRE rotation to converge the BIRE yawing moment, given by Eq. (4.71), to the yawing

moment produced by the baseline. In this case, the Nelder-Mead method was used [126,127].

Then, with the elevator and BIRE rotation known, Eq. (4.68) was used to calculate the

drag. The resulting yawing moment versus drag curve is also shown in Fig. 7.7.

Figure 7.7 shows an intriguing result; the BIRE produces less drag for a given yawing

moment than the baseline aircraft or the minimum increment predicted by Montgomery

et al. [125]. The exception to that statement is for very small yawing moment coefficients,

where using the wing to produce a pure yawing moment will show slightly less drag than the

BIRE. Nevertheless, in terms of producing substantial yawing moments, the BIRE design

seems to promise improved performance over traditional designs and using a point force at

the wing tip in terms of drag production.

The reduction in drag provided by the BIRE is likely due to being able to leverage a

larger surface area, thus requiring less deflection to produce a given yawing moment. In

addition, the wings rely on drag production and manipulation of the lift distribution to

179

produce yawing moments. Therefore, separation effects would provide a large increase in

drag. The BIRE, however, does not rely on drag to produce yawing moments, and its

parasitic drag contributions are likely lower than that of an aircraft using the wing for yaw

control.

Controlling yaw using the wing alone provides the benefit of completely removing the

weight and drag produced by the empennage of an aircraft. Nevertheless, the result in Fig.

7.7 provides an intriguing reason to continue higher-fidelity research that includes viscous

and other drag effects that the model in Eqs. (4.62) and (4.68) does not include.

CHAPTER 8

A LINEARIZED CONTROL SYSTEM ANALYSIS

Aircraft with “relaxed” static stability are generally made flyable by pilots through the

implementation of a stability augmentation control system. These control systems make

the aircraft feel stable to the pilot using the control inputs available to the aircraft, such as

the traditional elevator, aileron, and rudder control surfaces. In fact, the baseline aircraft

is controlled in the longitudinal plane with a pilot-commanded normal acceleration system

with pitch rate and normal acceleration feedback and a forward-loop integration on the

acceleration response [64] Laterally, the pilot commands the roll rate and rudder with yaw-

rate and lateral acceleration feedback [64]. The baseline aircraft control system is described

in much more detail by Nguyen et al. [64].

By removing the vertical tail, these control systems grow much more complex and non-

linear, since each control input is not linearly associated with only one of the aerodynamic

moments. The BIRE design is no different, and the aim of the study in this chapter is to

provide a linearized system that can be used to identify potential challenges to controlling

the BIRE aircraft.

The equations of motion for an aircraft, given in Eqs. (4.1)–(4.4), are decidedly non-

linear, as are the aerodynamic models used for the aircraft. It is common practice to begin

a control analysis using instead a system linearized about a given point or trajectory, since

this simplifies the analysis and development of a controller [128]. In this chapter, a linearized

system will be developed from the aircraft equations of motion given in Eqs. (4.1)–(4.4)

and using the aerodynamic model of the baseline aircraft in Eqs. (4.60)–(4.65) and the

aerodynamic model of the BIRE given by Eqs. (4.66)–(4.71). This linearized system is

presented in such a way that changes in center of gravity location and the equilibrium

point about which it is generated are easily changed. An analysis of the control properties

of the linearized system will then be presented and a linear feedback controller developed

181

for each aircraft using the linear quadratic regulator (LQR) method. The effectiveness of

the designed control system for each aircraft will then be determined through a twelve

degree-of-freedom simulation.

An immediate concern that arises when considering the BIRE as a control concept is

the lack of yaw stability and damping in the aircraft when the tail is held horizontally.

In addition, the trade-offs between longitudinal and lateral control were discussed in the

previous chapter, and indicate that there may be situations in which the aircraft cannot

produce both sufficient pitch control and yaw control at the same time. These two issues

form the basis for this exploration of the control properties of the BIRE system. This

chapter addresses these issues by looking at typical MIMO system control properties that

govern performance and robustness and then simulating a disturbance in the form of a wind

gust acting on each aircraft and analyzing the response of each aircraft when using a linear

feedback controller [128].

8.1 Linearizing the Equations of Motion

The first step in the process of linearizing the equations of motion is to choose the

states that define the linearized model. In an effort to simplify the problem of generating

a feedback controller, two restrictions will be made. Since a linearized system requires a

point or trajectory about which to be linearized, this work will focus only on equilibrium

conditions in steady level flight. Second, since a primary purpose of this study is to analyze

the disturbance rejection properties of the aircraft, the states chosen will be those that are

perceived to be of primary concern to remaining in this trim condition.

By controlling the body-fixed velocities, rotation rates, and the elevation and bank

angle, the controller will be able to maintain a given steady level flight condition. Thus, for

both aircraft, the state vector is defined as

x =

[
u v w p q r θ φ

]T
(8.1)

182

Likewise, we must define the control inputs for each aircraft. For the case of the baseline

aircraft, these are

ũ =

[
δa δe δr

]T
(8.2)

and for the BIRE variant

ũ =

[
δa δBe δB

]T
(8.3)

Note that the nomenclature of the inputs is adjusted so as to avoid any confusion with the

body-fixed velocity in the x -direction. With the states and control inputs defined, a linear,

state-space description of the aircraft system dynamics of the form

ẋ = Ax+Bũ (8.4)

must be determined, where A is the linearized state matrix and B is the linearized control

input matrix.

Including the effects of wind gusts in Eq. (4.1) and rewriting Eqs. (4.2) and (4.4), the

aircraft state dynamics can be written as

u̇

v̇

ẇ

 =
g

W

Fxb

Fyb

Fzb

+ g

−sθ
sφcθ

cφcθ

+

rv − qw

pw − ru

qu− pv

+

V̇gx

V̇gy

V̇gz

 (8.5)

ṗ

q̇

ṙ

 = I−1

Mxb + (Iyyb − Izzb) qr + Iyzb(q

2 − r2) + Ixzbpq − Ixybpr

Myb + (Izzb − Ixxb) pr + Ixzb
(
r2 − p2

)
+ Ixybqr − Iyzbpq

Mzb + (Ixxb − Iyyb) pq + Ixyb(p
2 − q2) + Iyzbpr − Ixzbqr

 (8.6)

and φ̇θ̇
 =

1 sφsθ/cθ cφsθ/cθ

0 cφ −sφ

p

q

r

 (8.7)

183

With the state defined as the vector x, where

x ≡
[
x1 x2 x3 x4 x5 x6 x7 x8

]T
=

[
u v w p q r φ θ

]T
(8.8)

the dynamics of the system can be written as

ẋ ≡
[
ẋ1 ẋ2 ẋ3 ẋ4 ẋ5 ẋ6 ẋ7 ẋ8

]T
=

[
u̇ v̇ ẇ ṗ q̇ ṙ φ̇ θ̇

]T
(8.9)

according to the form given in Eq. (8.4).

In Eq. (8.6), the inertia tensor is defined as

I =

Ixxb −Ixyb −Ixzb
−Ixyb Iyyb −Iyzb
−Ixzb −Iyzb Izzb

 (8.10)

and its inverse is defined

I−1 =
1

det (I)
adj (I) (8.11)

where adj (I) is the adjoint of the inertia matrix. The determinant of the inertia tensor

required by Eq. (8.11) can be found to be

det I = Ixxb
(
IyybIzzb − I2

yzb

)
− Ixyb (IyzbIxzb + IxybIzzb)− Ixzb (IxybIyzb + IyybIxzb) (8.12)

and the adjoint of the inertia tensor is

adj (I) =

IyybIzzb − I2

yzb
IxybIzzb + IxzbIyzb IxybIyzb + IxzbIyyb

IxybIzzb + IyzbIxzb IxxbIzzb − I2
xzb

IxxbIyzb + IxybIxzb

IxybIyzb + IxzbIyyb IxxbIyzb + IxzbIxyb IxxbIyyb − I2
xyb

 (8.13)

These definitions will prove useful when determining the linearization of the BIRE dynam-

ical system.

184

Consider an equilibrium state which is, x̂ given by a steady level flight trim condition

x̂ =

[
û v̂ ŵ p̂ q̂ r̂ φ̂ θ̂

]T
(8.14)

A change of state can be imposed, given by

z = x− x̂ (8.15)

which goes to zero when x = x̂ or when the state of the aircraft is in its trimmed condition.

The dynamics of the change of state are straight-forward to calculate, being

ż = ẋ− ˙̂x = ẋ (8.16)

since ˙̂x is, by the definition of a trim state, equal to zero. Thus, the dynamics of the shifted

system are identical to the dynamics of the original, un-shifted system.

Now consider a perturbation to the state and control inputs, given by

∆z = z − ẑ (8.17)

and

∆ũ = ũ− ˆ̃u (8.18)

respectively. A first-order Taylor-series expansion of the shifted system dynamics, ż, about

the equilibrium point,
(
ẑ, ˆ̃u
)

yields

ż
(
ẑ + ∆z, ˆ̃u+ ∆ũ

)
≈ ż

(
ẑ, ˆ̃u
)

+
∂ż

∂z

(
ẑ, ˆ̃u
)

∆z +
∂ż

∂u

(
ẑ, ˆ̃u
)

∆ũ (8.19)

185

where ż
(
ẑ, ˆ̃u
)

= 0. The Jacobians given in Eq. (8.19) can be evaluated as

∂żi
∂zj

(
ẑ,ˆ̃u
)

=

∂ż1
∂z1

∂ż1
∂z2

· · · ∂ż1
∂z8

∂ż2
∂z1

∂ż2
∂z2

· · · ∂ż2
∂z8

...
...

. . .
...

∂ż8
∂z1

∂ż8
∂z2

· · · ∂ż8
∂z8

∣∣∣∣∣∣∣∣∣∣∣∣∣
(z=ẑ,ũ=ˆ̃u)

(8.20)

and

∂żi
∂ũj

(
ẑ,ˆ̃u
)

=

∂ż1
∂ũ1

∂ż1
∂ũ2

∂ż1
∂ũ3

∂ż2
∂ũ1

∂ż2
∂ũ2

∂ż2
∂ũ3

...
...

...

∂ż8
∂ũ1

∂ż8
∂ũ2

∂ż8
∂ũ3

∣∣∣∣∣∣∣∣∣∣∣∣∣
(z=ẑ,ũ=ˆ̃u)

(8.21)

The matrices in Eqs. (8.20) and (8.21) are constants, and will be denoted A and B,

respectively. Thus, Eq. (8.19) can be rewritten as

ż
(
ẑ + ∆z, ˆ̃u+ ∆ũ

)
≈ A∆z +B∆ũ (8.22)

where A will be called the linearized state matrix and B will be called the linearized control

matrix. Evaluated at the trim position,
(
ẑ, ˆ̃u
)

, this relationship is exact; however, it can

also be reasonably accurate so long as the perturbations ∆z and ∆ũ are within some “small”

region around the trim condition.

If the system in Eq. (8.22) is uncontrolled (i.e. B = 0) and locally asymptotically

stable, the states will tend towards zero in the absence of perturbations or when the per-

turbations vanish sufficiently fast. The stability of an uncontrolled linear system can be

determined using the eigenvalues of the matrix A. So long as the real portion of the eigen-

values of A are negative, the linearized system is asymptotically stable [129].

For a controlled linear system (A,B), as given in Eq. (8.4), the stability of the system

is dependent on the control matrix as well. If the system given in Eq. (8.22) is not

asymptotically stable, the inputs to the linearized system, ∆ũ, may be used to stabilize the

186

system. To do so, it must be shown that the system is stabilizable to design a controller using

an infinite-horizon LQR method that will produce an asymptotically stable system [130].

A stronger requirement is that the controllability matrix of the system, given by [131]

Γ =

[
B AB A2B · · · AnB

]
(8.23)

has rank equal to the number of states in the system (rank (Γ) = n). If this is the case,

then the system is completely controllable and ∆ũ can be used to stabilize the system.

One method of stabilizing a linear system is to use a state-feedback controller. A

state-feedback controller can be described as [130]

∆ũ = −Kz (8.24)

Note that the control input to the system is defined as a linear combination of the states of

the system. The coefficients in these linear combinations are contained within the matrix

K, which is often referred to as the feedback gain matrix.

To calculate the linearized state and control matrices for the linearized system in Eq.

(8.22), the change of state given in Eq. (8.15) must be applied to the aircraft dynamics in

Eqs. (8.5)–(8.7). Doing so for the dynamics of the aircraft velocity yields

ż1

ż2

ż3

 =
g

W

Fxb

Fyb

Fzb

+ g

−s(z8+x̂8)

s(z7+x̂7)c(z8+x̂8)

c(z7+x̂7)c(z8+x̂8)

+

(z6 + x̂6)(z2 + x̂2)− (z5 + x̂5)(z3 + x̂3)

(z4 + x̂4)(z3 + x̂3)− (z6 + x̂6)(z1 + x̂1)

(z5 + x̂5)(z1 + x̂1)− (z4 + x̂4)(z2 + x̂2)

(8.25)

and likewise, the rotational velocity dynamics can be written as

ż4

ż5

ż6

 = I−1

M1

M2

M3

 (8.26)

187

where

M1 = Mxb + (Iyyb − Izzb) (z5 + x̂5)(z6 + x̂6) + Iyzb
[
(z5 + x̂5)2 − (z6 + x̂6)2

]
+ Ixzb(z4 + x̂4)(z5 + x̂5)

(8.27)

M2 = Myb + (Izzb − Ixxb) (z4 + x̂4)(z6 + x̂6) + Ixzb
[
(z6 + x̂6)2 − (z4 + x̂4)2

]
− Iyzb(z4 + x̂4)(z5 + x̂5)

(8.28)

and

M3 = Mzb + (Ixxb − Iyyb) (z4 + x̂4)(z5 + x̂5) + Iyzb(z4 + x̂4)(z6 + x̂6)

− Ixzb(z5 + x̂5)(z6 + x̂6)

(8.29)

Finally, the orientation dynamics of Eq. (8.7) are rewritten as

ż7

ż8

 =

1 s(z7+x̂7)s(z8+x̂8)/c(z8+x̂8) c(z7+x̂7)s(z8+x̂8)/c(z8+x̂8)

0 c(z7+x̂7) −s(z7+x̂7)

(z4 + x̂4)

(z5 + x̂5)

(z6 + x̂6)

 (8.30)

in the shifted system.

The dynamics of the shifted system in Eqs. (8.25)–(8.30) require a description of the

aerodynamic forces and moments acting on the aircraft. For both the baseline aircraft and

the BIRE, with the thrust aligned with the centerline of the aircraft, these are given as

Fxb =
1

2
ρV 2SwCX + FPx = − (CDcαcβ + CScαsβ − CLsα)

1

2
ρV 2Sw + FPx (8.31)

Fyb =
1

2
ρV 2SwCY = (CScβ − CDsβ)

1

2
ρV 2Sw (8.32)

Fzb =
1

2
ρV 2SwCZ = − (CDsαcβ + CSsαsβ + CLcα)

1

2
ρV 2Sw (8.33)

Mxb =
1

2
ρV 2SwbwC` − Fzb∆yb + Fyb∆zb (8.34)

188

Myb =
1

2
ρV 2SwCmcw − Fxb∆zb + Fzb∆xb (8.35)

Mzb =
1

2
ρV 2SwbwCn − Fyb∆xb + Fxb∆yb (8.36)

with the propulsive force, FPx , given according to the model in Eq. (6.7). Equations (8.31)–

(8.36) provide the final information required to completely define the linearized state matrix

for each aircraft.

8.2 Constructing the Linearized A Matrix

As shown in Eq. (8.20), the linearized state matrix is the Jacobian of the system

dynamics with respect to the states evaluated at a given trim condition. The first three

rows of this matrix, corresponding to the dynamics of the shifted velocity components

evaluated at the trim condition, are given by

ż1

ż2

ż3

= g
W

∂Fxb
∂z

∂Fyb
∂z

∂Fzb
∂z

+

0 x̂6 −x̂5 0 −x̂3 x̂2 0 −gcx̂8
−x̂6 0 x̂4 x̂3 0 −x̂1 gcx̂7cx̂8 −gsx̂7sx̂8
x̂5 −x̂4 0 −x̂2 x̂1 0 −gsx̂7cx̂8 −gcx̂7sx̂8

(8.37)

Next, the dynamics of the body-fixed rotation rates, associated with the next three rows of

A, are given by
ż4

ż5

ż6

 = I−1

∂Mxb
∂z

∂Myb
∂z

∂Mzb
∂z

+

[
W1 W2 W3

] (8.38)

where

W1 = 0[3×3] (8.39)

W2 =

[
W21 W22 W23

]
(8.40)

and

W3 = 0[3×2] (8.41)

189

The sub-matrices of W2 are given by

W21 =

Ixzb x̂5 − Ixyb x̂6

(Izzb − Ixxb)x̂6 − 2Ixzb x̂4 − Iyzb x̂5

(Ixxb − Iyyb)x̂5 + 2Ixyb x̂4 + Iyzb x̂6

 , W22 =

(Iyyb − Izzb)x̂6 − 2Iyzb x̂5 + Ixzb x̂4

Ixyb x̂6 − Iyzb x̂4

(Ixxb − Iyyb)x̂4 − 2Ixyb x̂5 − Ixzb x̂6

W23 =

(Iyyb − Izzb)x̂5 + 2Iyzb x̂6 − Ixyb x̂4

(Izzb − Ixxb)x̂4 + 2Ixzb x̂6 + Ixyb x̂5

Iyzb x̂4 − Ixzb x̂5

(8.42)

Lastly, the dynamics of the orientation states make up the last two rows of the A matrix,

and are specified

ż7

ż8

=

0 0 0 1 sx̂7tx̂8 cx̂7tx̂8 tx̂8 (cx̂7 x̂5 − sx̂7 x̂6) sx̂7/c
2
x̂8
x̂5 + cx̂7/c

2
x̂8
x̂6

0 0 0 0 cx̂7 −sx̂7 −sx̂7 x̂5 − cx̂7 x̂6 0

 (8.43)

Since the aerodynamic forces and moments for the baseline aircraft and the BIRE

are closed-form relationships, the above equations represent a closed-form solution for the

matrix A linearized about the trim condition x̂. Equation (8.30) can be solved by knowing

only the trim solution of the aircraft; however, Eqs. (8.25) and (8.26) require knowledge

of the aerodynamic force and moment derivatives of each aircraft. The aerodynamic forces

and moments for the baseline and BIRE aircraft differ substantially according to the models

presented in Chapter 4. Therefore the derivatives of the forces and moments with respect

to the shifted state z will be derived alongside the derivatives of the aerodynamic forces

and moments from each aircraft.

190

8.2.1 Aerodynamic Force and Moment State Derivatives

The derivative of the aerodynamic forces given in Eqs. (8.31)–(8.33) with respect to

the states z and evaluated at the trim condition are given as

∂Fxb
∂z

=
1

2
ρV 2Sw

∂CX
∂z

+ ρV SwCX
∂V

∂z
+
∂FPx
∂z

(8.44)

∂Fyb
∂z

=
1

2
ρV 2Sw

∂CY
∂z

+ ρV SwCY
∂V

∂z
(8.45)

∂Fzb
∂z

=
1

2
ρV 2Sw

∂CZ
∂z

+ ρV SwCZ
∂V

∂z
(8.46)

Likewise, the aerodynamic moment derivatives evaluated at trim are calculated by

∂Mxb

∂z
=

1

2
ρV 2Swbw

∂C`
∂z

+ ρV SwbwC`
∂V

∂z
− ∂Fzb

∂z
∆y +

∂Fyb
∂z

∆z (8.47)

∂Myb

∂z
=

1

2
ρV 2Swcw

∂Cm
∂z

+ ρV SwcwCm
∂V

∂z
− ∂Fzb

∂z
∆x+

∂Fxb
∂z

∆z (8.48)

∂Mzb

∂z
=

1

2
ρV 2Swbw

∂Cn
∂z

+ ρV SwbwCn
∂V

∂z
− ∂Fyb

∂z
∆x+

∂Fxb
∂z

∆y (8.49)

Each of the equations above requires the derivative of the velocity magnitude with respect

to the states z, also evaluated at the trim condition. This vector is written ass

∂V

∂z
=

[
x̂1
V̂

x̂2
V̂

x̂3
V̂

0 0 0 0 0

]
(8.50)

where

V̂ =
√
x̂2

1 + x̂2
2 + x̂2

3 (8.51)

The relationship between the aerodynamic x -, y-, and z -force coefficients and the lift,

side force, and drag coefficients used in the aerodynamic model derived in Chapter 4 are

given by

CX = − (CDcαcβ + CScαsβ − CLsα) (8.52)

CY = CScβ − CDsβ (8.53)

191

and

CZ = − (CDsαcβ + CSsαsβ + CLcα) (8.54)

where α and β are given in terms of the shifted states z and evaluated at the trim condition

as

α = tan−1

(
z3 + x̂3

z1 + x̂1

)
(8.55)

and

β = sin−1

(
z2 + x̂2

V̂

)
(8.56)

Using this information, the derivatives of the aerodynamic x -, y-, and z -force coefficients

with respect to the states z are given as

∂CX
∂z

=− ∂CD
∂z

cαcβ + CDsαcβ
∂α

∂z
+ CDcαsβ

∂β

∂z

− ∂CS
∂z

cαsβ + CSsαsβ
∂α

∂z
− CScαcβ

∂β

∂z

+
∂CL
∂z

sα + CLcα
∂α

∂z

(8.57)

∂CY
∂z

=
∂CS
∂z

cβ − CSsβ
∂β

∂z
− ∂CD

∂z
sβ − CDcβ

∂β

∂z
(8.58)

and

∂CZ
∂z

=− ∂CD
∂z

sαcβ − CDcαcβ
∂α

∂z
+ CDsαsβ

∂β

∂z

− ∂CS
∂z

sαsβ − CScαsβ
∂α

∂z
− CSsαcβ

∂β

∂z

− ∂CL
∂z

cα + CLsα
∂α

∂z

(8.59)

where

∂α

∂z
=

[
− x̂3
x̂21+x̂23

0 x̂1
x̂21+x̂23

0 0 0 0 0

]
(8.60)

and

∂β

∂z
=

[
− x̂2x̂1
V̂ 2
√
x̂21+x̂23

√
x̂21+x̂23
V̂ 2

− x̂2x̂3
V̂ 2
√
x̂21+x̂23

0 0 0 0 0

]
(8.61)

192

The derivative of the propulsive force with respect to the shifted states z,
∂FPx
∂z in Eq.

(8.44), can be determined by referring to Eqs. (6.5)–(6.7). In these equations, the only

state variables are related to the velocity, V . Thus, the derivative of the propulsive force

with respect to the shifted states evaluated at trim is

∂FPx
∂z

=

∂Tidle
∂z +

(
∂Tmil
∂z −

∂Tidle
∂z

)
P1
50 , P1 < 50

∂Tmil
∂z +

(
∂Tmax
∂z − ∂Tmil

∂z

)
P1−50

50 , P1 ≥ 50
(8.62)

where

∂T

∂z
=

(
ρ

ρ0

)a(
T1
∂V

∂z
+ 2T2V̂

∂V

∂z

)
(8.63)

with the coefficients given as a function of altitude according to Table 6.2.

The only unknowns remaining at this point in the derivation of the linearized state

matrix, A, are the derivatives of the aerodynamic coefficients in the wind system in Eqs.

(8.57)–(8.59). These derivatives, of course, vary between the baseline aircraft and the

BIRE aircraft according to the models presented in Chapter 4. First, these derivatives will

be defined for the baseline aircraft using Eqs. (4.60)–(4.65) and then Eqs. (4.66)–(4.71)

will be used to derive the corresponding derivatives of the BIRE aircraft.

Baseline Aircraft

Since the coefficients in the baseline aircraft aerodynamic model are each constant, the

derivatives of the aerodynamic forces and moments are rather straight-forward to calculate.

The derivative of the lift coefficient given in Eq. (4.60) with respect to the states z and

evaluated at trim is given by

∂CL
∂z

=
∂CL1

∂z
+ CL,q

∂q

∂z
(8.64)

where

∂CL1

∂z
= CL,α

∂α

∂z
(8.65)

∂q

∂z
=
∂q

∂z

cw

2V̂
+
∂V −1

∂z

cwx̂5

2
(8.66)

193

and

∂q

∂z
=

[
0 0 0 0 1 0 0 0

]
(8.67)

with CL1 defined in Eq. (4.50). Each of these, of course, is also evaluated at the trim

condition. The derivative of the reciprocal of the velocity, used in Eq. (8.66), is evaluated

according to

∂V −1

∂z
=

[
− x̂1
V̂ 3

− x̂2
V̂ 3

− x̂3
V̂ 3

0 0 0 0 0

]
(8.68)

This quantity will be used repeatedly when defining the derivatives of the other two nondi-

mensional rotation rates.

Likewise, the derivative of the side force coefficient given in Eq. (4.61) with respect to

the states z is

∂CS
∂z

=
∂CS1

∂z
+ CS,Lp

∂CL1

∂z
p̂+ (CS,LpCL1 + CS,p)

∂p

∂z
+ CS,r

∂r

∂z
(8.69)

where the derivative of CS1 , given in Eq. (4.51), with respect to the states for the baseline

aircraft is

∂CS1

∂z
= CS,β

∂β

∂z
(8.70)

and the nondimensional roll rate evaluated at trim given in terms of the states as

p̂ =
bwx̂4

2V̂
(8.71)

The derivative of the nondimensional roll rate with the shifted states evaluated at trim is

given by

∂p

∂z
=
∂p

∂z

bw

2V̂
+
∂V −1

∂z

bwx̂4

2
(8.72)

where

∂p

∂z
=

[
0 0 0 1 0 0 0 0

]
(8.73)

194

Finally, the derivative of the nondimensional yaw rate with respect to z is evaluated

∂r

∂z
=
∂r

∂z

bw

2V̂
+
∂V −1

∂z

bwx̂6

2
(8.74)

with

∂r

∂z
=

[
0 0 0 0 0 1 0 0

]
(8.75)

The last aerodynamic coefficient derivative for the baseline aircraft is the drag coeffi-

cient, given in Eq. (4.62). Its derivative with respect to the states z is

∂CD
∂z

= CD,L
∂CL1

∂z
+ CD,L2

∂C2
L1

∂z
+ CD,S2

∂C2
S1

∂z
+ CD,Sp

∂CS1

∂z
p̂+ CD,SpCS1

∂p

∂z

+

(
CD,L2q

∂C2
L1

∂z
+ CD,Lq

∂CL1

∂z

)
q̂ +

(
CD,L2qC

2
L1

+ CD,LqCL1 + CD,q
) ∂q
∂z

+ CD,Sr
∂CS1

∂z
r̂ + CD,SrCS1

∂r

∂z
+ CD,Sδa

∂CS1

∂z
ˆ̃u2 + CD,Lδe

∂CL1

∂z
ˆ̃u3 + CD,Sδr

∂CS1

∂z
ˆ̃u4

(8.76)

where
∂C2

L1

∂z
= 2CL1 |(ẑ,ˆ̃u)

∂CL1

∂z
(8.77)

∂C2
S1

∂z
= 2CS1 |(ẑ,ˆ̃u)

∂CS1

∂z
(8.78)

q̂ =
cwx̂5

2V̂
(8.79)

and

r̂ =
bwx̂6

2V̂
(8.80)

Note that, in this case, an unfortunate use of nomenclature requires that the hat notation

not be used with coefficients, such as CL1 and CS1 , so as to not create confusion with the

BIRE coefficients of the same name.

Each of the preceding definitions can be used in succession to build-up the aerodynamic

force derivatives of the baseline aircraft. That is, Eqs. (8.64), (8.69), and (8.76) can be used

in Eqs. (8.57)–(8.59) to evaluated the derivative of the coefficients in the body-fixed frame.

195

Then, the coefficients in the body-fixed frame can be substituted into Eqs. (8.44)–(8.46),

which are then used to evaluate Eq. (8.25). Recall that this constitutes the first three rows

of the linearized state matrix, A.

To find the next three rows of the state matrix, the derivatives of the aerodynamic

moments with respect to the states z are required. They can be composed in a similar

procedure as that given for the aerodynamic force derivatives. Beginning with the rolling

moment coefficient given in Eq. (4.63), its derivative evaluated at the trim condition is

∂C`
∂z

= C`,β
∂β

∂z
+ C`,p

∂p

∂z
+ C`,Lr

∂CL1

∂z
r̂ + (C`,LrCL1 + C`,r)

∂r

∂z
(8.81)

The pitching moment derivative, evaluated at the trim condition, is given by differentiating

Eq. (4.64) to find

∂Cm
∂z

= Cm,α
∂α

∂z
+ Cm,q

∂q

∂z
(8.82)

Lastly, the derivative of the yawing moment given in Eq. (4.65) with respect to the states

z is

∂Cn
∂z

= Cn,β
∂β

∂z
+ Cn,Lp

∂CL1

∂z
p̂+ (Cn,LpCL1 + Cn,p)

∂p

∂z
+ Cn,r

∂r

∂z
+ Cn,Lδa

∂CL1

∂z
ˆ̃u2 (8.83)

Equations (8.81)–(8.83) can be used in Eqs. (8.47)–(8.49) to solve for rows 4 through 6 in

the linearized state matrix, given in Eq. (8.26), for the baseline aircraft.

BIRE Variant

With the BIRE possessing a different aerodynamic model, the derivative of the lift,

drag, side force, and aerodynamic moments with respect to the states z differ from those

presented for the baseline aircraft. Using the lift force coefficient given in Eq. (4.66), its

derivative with respect to the shifted states at trim is

∂CL
∂z

=
∂ĈL1

∂z
+ ĈL,β

∂β

∂z
+ ĈL,p

∂p

∂z
+ ĈL,q

∂q

∂z
+ ĈL,r

∂r

∂z
(8.84)

196

with

∂ĈL1

∂z
= ĈL,α

∂α

∂z
(8.85)

and ĈL1 as shown in Eq. (4.72). Note that each BIRE aerodynamic coefficient in Eqs.

(8.84) and (8.85), as well as subsequent BIRE aerodynamic coefficients, are evaluated at

the trim BIRE rotation angle, δ̂B = ˆ̃u4. The derivatives of the dimensionless body-fixed

rotation rates and aerodynamic angles are equivalent to those defined in Eqs. (8.60), (8.61),

(8.66), (8.72), and (8.74).

The derivative of the side force coefficient in Eq. (4.67) with respect to the states z

and evaluated at trim is given by

∂CS
∂z

= ĈS,α
∂α

∂z
+
∂ĈS1

∂z
+ ĈS,Lp

∂ĈL1

∂z
p̂+

(
ĈS,LpĈL1 + ĈS,p

) ∂p
∂z

+ ĈS,q
∂q

∂z
+ ĈS,r

∂r

∂z
(8.86)

where ĈS1 is defined in Eq. (4.73) and

∂ĈS1

∂z
= ĈS,β

∂β

∂z
(8.87)

Finally, the derivative of the drag coefficient in Eq. (4.68) is given by

∂CD
∂z

= ĈD,L
∂ĈL1

∂z
+ ĈD,L2

∂Ĉ2
L1

∂z
+ ĈD,S

∂ĈS1

∂z
+ ĈD,S2

∂Ĉ2
S1

∂z
+ ĈD,Sp

∂ĈS1

∂z
p̂

+
(
ĈD,SpĈS1 + ĈD,p

) ∂p
∂z

+

(
ĈD,L2q

∂Ĉ2
L1

∂z
+ ĈD,Lq

∂ĈL1

∂z

)
q̂

+
(
ĈD,L2qĈ

2
L1

+ ĈD,LqĈL1 + ĈD,q

) ∂q
∂z

+ ĈD,Sr
∂ĈS1

∂z
r̂

+
(
ĈD,SrĈS1 + ĈD,r

) ∂r
∂z

+ ĈD,Sδa
∂ĈS1

∂z
ˆ̃u2 + ĈD,Lδe

∂ĈL1

∂z
ˆ̃u3

(8.88)

with
∂Ĉ2

L1

∂z
= 2ĈL1 |(ẑ,ˆ̃u)

∂ĈL1

∂z
(8.89)

and
∂Ĉ2

S1

∂z
= 2ĈS1 |(ẑ,ˆ̃u)

∂ĈS1

∂z
(8.90)

197

Again, these equations are made explicit in terms of the evaluation at the trim state to avoid

an abuse of notation and any subsequent confusion. The first three rows of the linearized

state matrix, given in Eq. (8.25), can be produced using Eqs. (8.84)–(8.90).

The derivatives of the aerodynamic moments are similarly derived from Eqs. (4.69)–

(4.71) as

∂C`
∂z

= Ĉ`,α
∂α

∂z
+ Ĉ`,β

∂β

∂z
+ Ĉ`,p

∂p

∂z
+ Ĉ`,q

∂q

∂z
+ Ĉ`,Lr

∂ĈL1

∂z
r̂+

(
Ĉ`,LrĈL1 + Ĉ`,r

) ∂r
∂z

(8.91)

∂Cm
∂z

= Ĉm,α
∂α

∂z
+ Ĉm,β

∂β

∂z
+ Ĉm,p

∂p

∂z
+ Ĉm,q

∂q

∂z
+ Ĉm,r

∂r

∂z
(8.92)

and

∂Cn
∂z

= Ĉn,α
∂α

∂z
+ Ĉn,β

∂β

∂z
+ ĈL,p

∂ĈL1

∂z
p̂+

(
Ĉn,LpĈL1 + Ĉn,p

) ∂p
∂z

+ Ĉn,q
∂q

∂z

+ Ĉn,r
∂r

∂z
+ Ĉn,Lδa

∂ĈL1

∂z
ˆ̃u2

(8.93)

These equations can be used in combination with Eqs. (8.84)–(8.88) to produce rows 4–6

of the linearized state matrix, given by Eq. (8.26).

8.2.2 Example Case

As an example, the baseline aircraft can be trimmed in steady level flight with the

center of gravity in its nominal position at the air combat maneuver condition (C2) given

in Table 6.1. The resulting states of the aircraft when trimmed are given by

x̂ =

[
633.6030 0 32.0539 0 0 0 0 0.0505

]T
(8.94)

and the control inputs required to maintain trim are

ˆ̃u =

[
0 −0.0013 0

]T
(8.95)

198

Based on this trim condition, the baseline aircraft has a linearized state matrix given by

A =

−0.0111 0 0.0515 0 −32.0934 0 0 −32.0868

0 −0.2063 0 32.2543 0 −632.1447 32.0868 0

−0.0605 0 −0.8063 0 629.3122 0 0 −1.6233

0 −0.0337 0 −2.1514 0 0.4615 0 0

−0.0003 0 0.0051 0 −0.7927 0 0 0

0 0.0159 0 −0.0433 0 −0.1743 0 0

0 0 0 1.0000 0 0.0506 0 0

0 0 0 0 1.0000 0 0 0

(8.96)

The stability of the baseline aircraft in this configuration can be determined using the

eigenvalues of the state matrix, which are given as

λi =

[
0.9983 −2.5914 −0.0086± 0.0794j −0.2058± 3.3325j −2.1247 0.0044

]
(8.97)

Since one eigenvalue has positive real part, the linearized model and the nonlinear model

are unstable in this trim condition.

Trimming the BIRE aircraft in the same condition results in the trim state

x̂ =

[
633.5031 0 33.9723 0 0 0 0 0.0536

]T
(8.98)

and control inputs

ˆ̃u =

[
0 −0.0149 0

]T
(8.99)

199

Linearizing the shifted BIRE dynamics about this trim condition yields the linearized state

matrix

A =

−0.0048 0 0.0526 0 −33.9942 0 0 −32.0817

0 −0.0393 0 34.1625 0 −633.5561 32.0817 0

−0.0598 0 −0.8202 0 628.9828 0 0 −1.7204

0 −0.0182 0 −3.1133 0 0.3401 0 0

0.0002 0 −0.0042 0 0.7691 0 0 0

0 −0.0003 0 −0.0295 0 0.0102 0 0

0 0 0 1.0000 0 0.0536 0 0

0 0 0 0 1.0000 0 0 0

(8.100)

Again, the stability of this linearized system can be determined using its eigenvalues, which

are calculated as

λi =

[
−0.7942± 1.6317j −0.0028± 0.0653j −3.0020 −0.0732± 0.3241j 0.0060

]
(8.101)

From the eigenvalues in Eq. (8.101), this system is noted to be unstable.

With an example of the linearized state matrix given for the baseline and BIRE aircraft,

the next step is to construct the linearized control matrix, B. The procedure for doing so is

very similar to that of the linearized state matrix, the only difference being that derivatives

with respect to the control inputs, ũ are required instead of the derivatives with respect to

the shifted states, z. With the linearized control matrix developed, Eq. (8.23) can be used

to determine whether each system is completely controllable.

8.3 Constructing the Linearized Control Matrix

Equation (8.21) shows that the linearized control matrix B is the Jacobian of the

system dynamics with respect to the control inputs evaluated at the given trim condition.

Again, any parameters that are not explicitly shown to be evaluated at the trim point are

considered to be evaluated there for ease of notation.

200

The portion of the linearized control matrix relating to the shifted body-fixed velocities

is considerably easier to define at the system dynamics level, since only the aerodynamic

forces and moments acting on the aircraft are a function of the control inputs. Therefore,

the first three rows of the matrix are given by

∂

∂ũ

ż1

ż2

ż3

 =
g

W

∂Fxb
∂ũ

∂Fyb
∂ũ

∂Fzb
∂ũ

 (8.102)

This is not the case for the following three rows of the linearized control matrix when

analyzing the BIRE aircraft, due to the dependence of the inertia matrix on the BIRE

rotation angle. Thus, the definition of the linearized control matrix differs here between

the two aircraft. In the baseline aircraft, the inverse of the inertia tensor is constant, and

therefore the derivative of these rows with respect to the control inputs are given by

∂

∂ũ

ż4

ż5

ż6

 = I−1

∂Mxb
∂ũ

∂Myb
∂ũ

∂Mzb
∂ũ

 (8.103)

For the BIRE variant, the inertia tensor is a function of the control input δB = ũ3

and therefore the derivative of the inertia tensor must also be calculated. To perform this

differentiation, we note that the derivative of an M × N matrix P (x) with respect to the

components xq of a vector x is given by [132]

∂P

∂xq
=

∂p11
∂xq

· · · ∂p1N
∂xq

...
. . .

...

∂pM1
∂xq

· · · ∂pMN
∂xq

 (8.104)

and, by the product differentiation rule for matrices [132], the derivative of the product of

an M × N matrix P (x) and an N × L matrix R(x), defined as Q = PR with dimension

201

M × L can be written as

∂Q

∂xq
=
∂P

∂xq
R+ P

∂R

∂xq
(8.105)

In the BIRE system, according to the nomenclature in Eqs. (8.104) and (8.105), I−1 = P ∈

3 × 3,

{
M1 M2 M3

}T
= R ∈ 3 × 1, and therefore Q = I−1

{
M1 M2 M3

}T
∈ 3 × 1.

Taking the derivative with respect to ũ of this resulting vector gives

∂

∂ũ

ż4

ż5

ż6

 =
∂

∂ũ

I−1

M1

M2

M3

 =
∂I−1

∂ũ

M1

M2

M3

+ I−1

∂M1
∂ũ

∂M2
∂ũ

∂M3
∂ũ

 (8.106)

with M1, M2, and M3 given in Eqs. (8.27)–(8.29). Referring to Eq. (8.105), note that the

first term on the right-hand side of Eq. (8.106) is equivalent to multiplying the matrices

in the first dimension of the tensor ∂I−1

∂ũ ∈ R3×3×4 into the vector

{
M1 M2 M3

}T
.

This multiplication produces a matrix of the appropriate dimension in R3×4 as required.

Equation (8.106) is evaluated using the definitions of control derivatives given in the section

detailing the BIRE variant.

The derivative of the orientation dynamics of both aircraft with respect to the control

inputs are trivially given as

∂

∂ũ

ż7

ż8

 = 0[2×4] (8.107)

The construction of the linearized control matrix for the baseline aircraft is predominantly

focused on defining the control derivatives of the aerodynamic forces and moments. These

derivatives are relatively straight-forward for the baseline aircraft, since the aerodynamic

model for the baseline aircraft has constant coefficients. The BIRE variant, on the other

hand, varies its coefficients periodically with the BIRE rotation angle, making its derivatives

slightly more cumbersome to evaluate. In addition, the BIRE variant varies its inertial

properties with BIRE rotation angle, as mentioned previously, and therefore derivatives

relating to those parameters must also be considered.

202

8.3.1 Aerodynamic Force and Moment Control Derivatives

The definitions of the aerodynamic forces and moments acting on the aircraft have

been given in Eqs. (8.31)–(8.36). The derivative of these forces and moments with respect

to the control inputs ũ are

∂Fxb
∂ũ

=
1

2
ρV 2Sw

∂CX
∂ũ

+
∂FPx
∂ũ

(8.108)

∂Fyb
∂ũ

=
1

2
ρV 2Sw

∂CY
∂ũ

(8.109)

∂Fzb
∂ũ

=
1

2
ρV 2Sw

∂CZ
∂ũ

(8.110)

∂Mxb

∂ũ
=

1

2
ρV 2Swbw

∂C`
∂ũ
− ∂Fzb

∂ũ
∆y +

∂Fyb
∂ũ

∆z (8.111)

∂Myb

∂ũ
=

1

2
ρV 2Swcw

∂Cm
∂ũ
− ∂Fzb

∂ũ
∆x+

∂Fxb
∂ũ

∆z (8.112)

and

∂Mzb

∂ũ
=

1

2
ρV 2Swbw

∂Cn
∂ũ
− ∂Fyb

∂ũ
∆x+

∂Fxb
∂ũ

∆y (8.113)

Again, the evaluation of these coefficients requires derivatives of aerodynamic force and

moment coefficients in the body-fixed frame. Since the throttle is not included in the

control inputs available to either aircraft, its contribution can be given as

∂FPx
∂ũ

= 0 (8.114)

The derivative of the body-fixed aerodynamic forces with respect to the control inputs

can be evaluated by taking the derivative of Eqs. (8.52)–(8.54), which yields

∂CX
∂ũ

= −
(
∂CD
∂ũ

cαcβ +
∂CS
∂ũ

cαsβ −
∂CL
∂ũ

sα

)
(8.115)

∂CY
∂ũ

=
∂CS
∂ũ

cβ −
∂CD
∂ũ

sβ (8.116)

203

and

∂CZ
∂ũ

= −
(
∂CD
∂ũ

sαcβ +
∂CS
∂ũ

sαsβ +
∂CL
∂ũ

cα

)
(8.117)

Completely defining these derivatives, again, requires finding the derivative of each wind-

coordinate-system force in the baseline and BIRE aerodynamic models. The derivatives of

the wind-system moments with respect to the control inputs are required to evaluate Eqs.

(8.112)–(8.113) as well. Thus, these will be defined for each aircraft using the appropriate

aerodynamic model.

Baseline Aircraft

The model for the lift coefficient of the baseline aircraft is given in Eq. (4.60) and is

a function only of the stabilator deflection, δe. Its derivative with respect to the control

inputs is therefore given by

∂CL
∂ũ

= CL,δe
∂δe
∂ũ

(8.118)

where

∂δe
∂ũ

=

{
0 1 0

}
(8.119)

which is again only used to assign the derivative to its appropriate column in the linearized

control matrix.

The side force of the baseline aircraft is a function of both the aileron deflection and

the rudder deflection, δa and δr, respectively. Referring to Eq. (4.61), the derivative of the

side force with respect to the control inputs is

∂CS
∂ũ

= CS,δa
∂δa
∂ũ

+ CS,δr
∂δr
∂ũ

(8.120)

where

∂δa
∂ũ

=

{
1 0 0

}
(8.121)

and

∂δr
∂ũ

=

{
0 0 1

}
(8.122)

204

Last for the aerodynamic forces is the drag coefficient of the baseline aircraft, given

in Eq. (4.62), which is a function of each of the control inputs with the exception of the

throttle. The derivative of the drag coefficient with respect to the control inputs is

∂CD
∂ũ

= CD,SδaCS1 |(ẑ,ˆ̃u)

∂δa
∂ũ

+
(
CD,LδeCL1 |(ẑ,ˆ̃u) + CD,δe

) ∂δe
∂ũ

+CD,δ2e
∂δ2

e

∂ũ
+CD,SδrCS1 |(ẑ,ˆ̃u)

∂δr
∂ũ

(8.123)

with

∂δ2
e

∂ũ
= 2û2

∂δe
∂ũ

(8.124)

Again, note that avoiding any abuse of notation requires that the hat notation be replaced

with an explicit notation depicting the evaluation of CL1 and CS1 at the trim condition

(ẑ, ˆ̃u). Equations (8.118), (8.120), and (8.123) can be used in Eqs. (8.115)–(8.117) and

finally substituted into the force derivatives in Eqs. (8.108)–(8.110) to compute the first

three rows of the linearized control matrix given in Eq. (8.102).

For the baseline aircraft, the derivatives of the moments M1, M2, and M3 given in Eq.

(8.103) are given by Eqs. (8.112)–(8.113), respectively. These require the derivatives of

the aerodynamic forces with respect to the control inputs, given above, in addition to the

control derivative of each of the aerodynamic moments as given in the baseline aerodynamic

model. The derivative of the rolling moment coefficient given in Eq. (4.63) with respect to

the control inputs is

∂C`
∂ũ

= C`,δa
∂δa
∂ũ

+ C`,δr
∂δr
∂ũ

(8.125)

being a function of both the aileron deflection and rudder deflection.

As a function of only the stabilator deflection, the derivative of the pitching moment

coefficient in Eq. (4.64) is

∂Cm
∂ũ

= Cm,δe
∂δe
∂ũ

(8.126)

The yawing moment coefficient of the baseline aircraft is, like the rolling moment coefficient,

a function of both the aileron and rudder deflections. Thus, its derivative can be calculated

205

from Eq. (4.65) to be

∂Cn
∂ũ

= (Cn,LδaCL1 + Cn,δa)
∂δa
∂ũ

+ Cn,δr
∂δr
∂ũ

(8.127)

Using these equations along with the force derivatives in Eqs. (8.112)–(8.113) allows rows

4–6 in the linearized control matrix to be evaluated for the baseline aircraft.

BIRE Variant

For the BIRE variant, the control derivatives in Eqs. (8.108)–(8.113) are more compli-

cated than for the baseline aircraft. Rather than having constant coefficients, each coeffi-

cient in the aerodynamic model is a function of the final control input, δB. Fortunately, by

maintaining a general form for each coefficient, given in Eq. (5.9), a general form for the

derivative of these coefficients can be used. This general form is given according to the

∂Ĉi
∂ũ

= [Aiωi cos (ωiδB + ϕi)]
∂δB
∂ũ

(8.128)

with

∂δB
∂ũ

=

{
0 0 1

}
(8.129)

The form of the derivative given in Eq. (8.128) can be applied to each of the coefficients in

the BIRE aerodynamic model.

The derivative of each force coefficient in the BIRE aerodynamic model can be com-

puted as follows. Beginning with the lift coefficient model given in Eq. (4.66), its derivative

with respect to the control inputs is defined as

∂CL
∂ũ

=
∂ĈL1

∂ũ
+
∂ĈL,β
∂ũ

β̂ +
∂ĈL,p
∂ũ

p̂+
∂ĈL,q
∂ũ

q̂ +
∂ĈL,r
∂ũ

r̂

+
∂ĈL,δa
∂ũ

ˆ̃u1 + ĈL,δa
∂δa
∂ũ

+
∂ĈL,δe
∂ũ

ˆ̃u2 + ĈL,δe
∂δe
∂ũ

(8.130)

206

where the derivative of the pseudo-lift force with respect to the control inputs is

∂ĈL1

∂ũ
=
∂ĈL0

∂ũ
+
∂ĈL,α
∂ũ

α̂ (8.131)

and the angle of attack and sideslip angle at trim are given by

α̂ = tan−1

(
x̂3

x̂1

)
(8.132)

and

β̂ = sin−1

(
x̂2

V̂

)
(8.133)

The side force coefficient for the BIRE variant given in Eq. (4.67) has its derivative with

respect to control inputs given by

∂CS
∂ũ

=
∂ĈS1

∂ũ
+
∂ĈS,α
∂ũ

α̂+

(
∂ĈS,Lp
∂ũ

ĈL1 + ĈS,Lp
∂ĈL1

∂u
+
∂ĈS,p
∂ũ

)
p̂

+
∂ĈS,q
∂ũ

q̂ +
∂ĈS,r
∂ũ

r̂ +
∂ĈS,δa
∂ũ

ˆ̃u1 + ĈS,δa
∂δa
∂ũ

+
∂ĈS,δe
∂ũ

ˆ̃u2 + ĈS,δe
∂δe
∂ũ

(8.134)

where

∂ĈS1

∂ũ
=
∂ĈS0

∂ũ
+
∂ĈS,β
∂ũ

β̂ (8.135)

207

Finally, the derivative of the drag force coefficient as given in Eq. (4.68) with respect to

the control inputs is

∂CD
∂ũ

=
∂ĈD0

∂ũ
+
∂ĈD,L
∂ũ

ĈL1 + ĈD,L
∂ĈL1

∂ũ
+
∂ĈD,L2

∂ũ
Ĉ2
L1

+ ĈD,L2

∂Ĉ2
L1

∂ũ

+
∂ĈD,S
∂ũ

ĈS1 + ĈD,S
∂ĈS1

∂ũ
+
∂ĈD,S2

∂ũ
Ĉ2
S1

+ ĈD,S2

∂Ĉ2
S1

∂ũ

+

(
∂ĈD,Sp
∂ũ

ĈS1 + ĈD,Sp
∂ĈS1

∂ũ
+
∂ĈD,p
∂ũ

)
p̂

+

(
∂ĈD,L2q

∂ũ
Ĉ2
L1

+ ĈD,L2q

∂Ĉ2
L1

∂ũ
+
∂ĈD,Lq
∂ũ

ĈL1 + ĈD,Lq
∂ĈL1

∂ũ
+
∂ĈD,q
∂ũ

)
q̂

+

(
∂ĈD,Sr
∂ũ

ĈS1 + ĈD,Sr
∂ĈS1

∂ũ
+
∂ĈD,r
∂ũ

)
r̂

+

(
∂ĈD,Sδa
∂ũ

ĈS1 + ĈD,Sδa
∂ĈS1

∂ũ
+
∂ĈD,δa
∂ũ

)
û1 +

(
ĈD,SδaĈS1 + ĈD,δa

) ∂δa
∂ũ

+

(
∂ĈD,Lδe
∂ũ

ĈL1 + ĈD,Lδe
∂ĈL1

∂ũ
+
∂ĈD,δe
∂ũ

)
û2 +

(
ĈD,LδeĈL1 + ĈD,δe

) ∂δe
∂ũ

+
∂ĈD,δ2e
∂ũ

û2
2 + ĈD,δ2e

∂δ2
e

∂ũ

(8.136)

where
∂Ĉ2

L1

∂ũ
= 2ĈL1 |(ẑ,ˆ̃u)

∂ĈL1

∂ũ
(8.137)

and
∂Ĉ2

S1

∂ũ
= 2ĈS1 |(ẑ,ˆ̃u)

∂ĈS1

∂ũ
(8.138)

The derivatives of the aerodynamic moments for the BIRE aircraft, given by Eqs.

(4.69)–(4.71), are

∂C`
∂ũ

=
∂Ĉ`0
∂ũ

+
∂Ĉ`,α
∂ũ

α̂+
∂Ĉ`,β
∂ũ

β̂ +
∂Ĉ`,p
∂ũ

p̂+
∂Ĉ`,q
∂ũ

q̂

+

(
∂Ĉ`,Lr
∂ũ

ĈL1 + Ĉ`,Lr
∂ĈL1

∂ũ
+
∂Ĉ`,r
∂ũ

)
r̂

+
∂Ĉ`,δa
∂ũ

û1 + Ĉ`,δa
∂δa
∂ũ

+ +
∂Ĉ`,δe
∂ũ

û2 + Ĉ`,δe
∂δe
∂ũ

(8.139)

208

∂Cm
∂ũ

=
∂Ĉm0

∂ũ
+
∂Ĉm,α
∂ũ

α̂+
∂Ĉm,β
∂ũ

β̂ +
∂Ĉm,p
∂ũ

p̂+
∂Ĉm,q
∂ũ

q̂ +
∂Ĉm,r
∂ũ

r̂

+
∂Ĉm,δa
∂ũ

û1 + Ĉm,δa
∂δa
∂ũ

+
∂Ĉm,δe
∂ũ

û2 + Ĉm,δe
∂δe
∂ũ

(8.140)

and

∂Cn
∂ũ

=
∂Ĉn0

∂ũ
+
∂Ĉn,α
∂ũ

α̂+
∂Ĉn,β
∂ũ

β̂ +

(
∂Ĉn,Lp
∂ũ

ĈL1 + Ĉn,Lp
∂ĈL1

∂ũ
+
∂Ĉn,p
∂ũ

)
p̂

+
∂Ĉn,q
∂ũ

q̂ +
∂Ĉn,r
∂ũ

r̂ +

(
∂Ĉn,Lδa
∂ũ

ĈL1 + Ĉn,Lδa
∂ĈL1

∂ũ
+
∂Ĉn,δa
∂ũ

)
û1

+
(
Ĉn,LδaĈL1 + Ĉn,δa

) ∂δa
∂ũ

+
∂Ĉn,δe
∂ũ

û2 + Ĉn,δe
∂δe
∂ũ

(8.141)

To solve for rows 4, 5, and 6 of the linearized control matrix, which are given in Eq. (8.106),

the aerodynamic coefficients must not only be determined, but also the derivatives of the

inertia tensor.

Since both Ixxb and Ixzb are independent of BIRE rotation angle, their individual

contributions to the control derivatives are zero; that is,

∂Ixxb
∂ũ

=
∂Ixzb
∂ũ

= 0 (8.142)

Differentiating the determinant of the inertia tensor, given in Eq. (8.12), with respect to

the control inputs yields

∂ det I
∂ũ

= Ixxb

[
∂Iyyb
∂ũ

(Izzb − Iyyb)− 2Iyzb
∂Iyzb
∂ũ

]
− I2

xzb

∂Iyyb
∂ũ

(8.143)

The derivative of each inertia component in Eq. (8.143) with respect to control inputs can

be found by consulting Table 3.8 to find

∂Iyyb
∂ũ

= 322 sin (2δB)
∂δB
∂ũ

(8.144)

∂Izzb
∂ũ

= −322 sin (2δB)
∂δB
∂ũ

= −∂Iyyb
∂ũ

(8.145)

209

and

∂Iyzb
∂ũ

= −322
sin (2δB) cos (2δB)

|sin (2δB)|
∂δB
∂ũ

(8.146)

Note that this last derivative is undefined at δB = 0◦ and δB = ±180◦ and will be set to

zero at any of these rotation angles.

With the determinant of the inertia tensor and its derivative defined, what remains to

calculate the derivative of the inertia tensor is to find the derivative of its adjoint and apply

the quotient rule of differentiation. The derivative of the adjoint of the inertia tensor, given

in Eq. (8.13), with respect to the control inputs is a 3× 3× 4 matrix. These matrices are

all 3× 3 zero matrices, with the exception of the final matrix, which is

∂adj (I)

∂ũ3
=

∂Iyyb
∂δB

(Izzb − Iyyb)− 2Iyzb
∂Iyzb
∂δB

Ixzb
∂Iyzb
∂δB

Ixzb
∂Iyyb
∂δB

Ixzb
∂Iyzb
∂δB

Ixxb
∂Izzb
∂δB

∂Iyzb
∂δB

(Ixxb − Ixzb)
∂Iyyb
∂δB

Ixzb Ixxb
∂Iyzb
∂δB

Ixxb
∂Iyyb
∂δB

 (8.147)

since the inertia is only a function of the BIRE rotation angle. By applying the quotient

rule of differentiation, a form that can be applied element-wise to the inverse of the inertia

matrix to find its derivative. This form is

∂I−1

∂ũ
=

det I ∂adj(I)
∂ũ − adj (I) ∂ det I

∂ũ

(det I)2 (8.148)

Since the derivative of the adjoint matrix is zero everywhere but along the final control

input, and the derivative of the determinant is a 3 × 3 matrix with only the final column

non-zero, Eq. (8.148) will result in a 3 × 3 matrix, as required by Eq. (8.106). Another

example will be given here for the same case given when examining the linearized state

matrix.

8.3.2 Example Case

In steady level flight at flight condition C2 and with its center of gravity in the nominal

position, the baseline aircraft can be trimmed using the algorithm in Chapter 6 to find the

210

states and control inputs given in Eqs. (8.94) and (8.95). Based on this trim condition, the

baseline aircraft has a linearized control matrix given by

B =

0 −1.0832 0

9.2863 0 24.0369

0 −80.1667 0

−21.2943 0 6.9457

0 −10.7738 0

−1.4418 0 −3.7526

0 0 0

0 0 0

(8.149)

Given the same state and control input for the BIRE trimmed at flight condition C2, given

in Eqs. (8.98) and (8.99), its linearized control matrix is

B =

−0.0050 1.5344 0

−0.8673 0 −1.7741

0.0934 −108.3112 0

−40.2017 0 −0.0583

−0.0115 −16.0336 0

0.0295 0 0.2043

0 0 0

0 0 0

(8.150)

While the examples examined to this point have been concerned with the linearized

model of each aircraft with the center of gravity in its nominal position, the process described

in this chapter is valid for any center of gravity position, as demonstrated in Eqs. (8.47)–

(8.49) and (8.112)–(8.113). A code that is capable of generating the linearized state and

control matrices of the baseline aircraft at any flight condition and with any center of

gravity location is included in Section C.6 of Appendix C. Slight modifications, detailed in

the paragraphs above, are necessary to generate a linear model for the BIRE aircraft. Here

too, a code capable of generating this model for a variety of conditions is given in Section

C.6 of Appendix C.

211

8.4 Analyzing Controllability of the BIRE System

With a linearized model available for each aircraft, several studies can be conducted

to better understand any control limitations that the BIRE may face in comparison to the

baseline aircraft. The first of these studies that will be given in this work is an analysis of the

controllability of the BIRE aircraft as a function of the BIRE rotation angle. Afterwards, a

study detailing the creation of a feedback controller using an LQR design for each aircraft

will be presented with a performance analysis of each and the results of a simulation in the

presence of wind gust disturbances.

Recall that the controllability matrix, Γ, given in Eq. (8.23), must be of a rank equiva-

lent to the linearized state matrix if the linear system is controllable. Of particular concern

with the BIRE is when the aircraft is linearized about a condition where the tail is com-

pletely horizontal or completely vertical (δB = 0◦ or δB = ±90◦, respectively). In this

condition, the aircraft is devoid of either yaw or pitch control, and therefore may not be

completely controllable. Steady level flight is one such condition, since the horizontal tail

need not be rotated in this trim condition due to the lack of lateral forces on the aircraft.

After placing the aircraft in the steady level flight condition, the tail was rotated from

δB = −90◦ to δB = 90◦ and a linearized state and control matrix was determined at each

point. Then, the rank of the controllability matrix was calculated at each BIRE rotation

angle. The results of this study are shown in Fig. 8.1. This analysis shows that the rank

of the controllability matrix, Γ, as calculated by Eq. (8.23) indicates that the linearized

BIRE system is completely controllable at this trim condition, regardless of the rotation

of the horizontal tail. However, simply because the linearized BIRE system is completely

controllable does not mean that the nonlinear BIRE system is completely controllable. The

present controllability study must therefore be extended to determine controllability of a

nonlinear system.

While Fig. 8.1 seems to indicate that the BIRE should be completely controllable

regardless of the BIRE rotation angle, numerical error my also cause the rank of a matrix

to appear to be full. Thus, the condition number of the controllability matrix must also

212

−90 −75 −60 −45 −30 −15 0 15 30 45 60 75 90
BIRE Rotation Angle, δB [deg]

0

1

2

3

4

5

6

7

8

9

C
o
n
tr

o
ll
a
b

il
it

y
M

a
tr

ix
R

a
n

k
,

ra
n

k
(Γ

)

Completely Controllable

Fig. 8.1: Controllability analysis of the BIRE aircraft as a function of BIRE rotation angle.

be analyzed to determine if the results in Fig. 8.1 are accurate. Doing so reveals that the

condition number of the controllability matrix at each BIRE rotation angle is indeed very

large (≈ 1× 106). Therefore, the results shown in Fig. 8.1 are by no means conclusive, and

further studies must be made to determine whether the BIRE can effectively stabilize itself

using the given inputs at all BIRE rotation angles. Code for this controllability study is

included in Section C.6 of Appendix C.

8.5 Disturbance Rejection Analysis

Another chief concern is the ability of the BIRE aircraft to navigate back to a trim

condition when a disturbance is introduced into the system. To determine whether the

linearized system of the baseline aircraft or BIRE are able to reject disturbances when

equipped with a linear controller, that controller must first be developed. In this work,

the gain matrix K will be produced for the baseline and BIRE aircraft using the linear

quadratic regulator (LQR) method [133].

213

The LQR problem involves taking the linearized system in Eq. (8.4) and finding the

input signal u(t) that will take the system from a non-zero state x(0) to the zero state in

an optimal manner. This is done by minimizing the cost function

J =

∫ ∞
0

(
x(t)TQx(t) + ũ(t)TRũ(t)

)
dt (8.151)

The optimal solution to is of the form of Eq. (8.24), where

K = R−1BTP (8.152)

and P is a unique, positive semi-definite solution to the algebraic Riccati equation

ATP + PA− PBR−1BTP +Q = 0 (8.153)

The constant matrices Q and R are design parameters that can be chosen by the

design engineer to produce a controller that satisfies the appropriate performance metrics

for the problem. They must be positive semi-definite, i.e. Q = QT ≥ 0, and positive

definite, R = RT > 0, respectively. By virtue of their designation as design parameters,

the development of any linear feedback controller is an iterative process. Thus, each of the

weighting matrices included in this design have been adjusted multiple times until a solution

with acceptable control inputs is able to damp out the system and return the aircraft to

equilibrium.

Note that this analysis acts as a preliminary study into how the linearized systems in

Sections 8.2 and 8.3 may be used to generate a feedback controller that is able to dampen

out disturbances to the aircraft. Thus, the controllers here have not been entirely optimized

for good performance according to traditional metrics for MIMO systems [69,134]. Rather,

a single instance has been shown wherein the linear feedback controller designed using

LQR provides acceptable results in disturbance rejection. Further work will be required

to improve the controllers demonstrated in this section, but this initial procedure will be

helpful in giving a benchmark for future studies.

214

8.5.1 Gust Model

The disturbances to which each aircraft will be subjected are wind gusts in the form

of damped sine waves. That is, they take the form

Vg = Awe
−ξwt sin (ωwt) (8.154)

These gusts can be applied to each body-fixed direction by specifying an amplitude, Aw, a

damping rate, ξw, and a gust frequency ω.

Note that, in Eq. (8.5), the time rate of change in the gust velocities are required to

properly simulate their effect on the aircraft dynamics. Since the form given in Eq. (8.154)

is analytic, its derivative with respect to time can easily be calculated to be

V̇g = Awe
−ξwt [ωw cos(ωwt)− ξw sin(ωwt)] (8.155)

Therefore, by prescribing a gust amplitude (in ft/s), a gust damping rate (in Hz), and a

gust frequency (in rad/s), the effect of a gust on the aircraft dynamics can be modeled.

8.5.2 Baseline LQR Design

For the baseline aircraft, it was determined that the Q and R matrices would be

selected according to physical intuition about the sensitivities of the aircraft. In particular,

simulation showed that convergence of the system in the presence of a disturbance was very

sensitive to the body-fixed rates and the elevation angle. Therefore, a weighting matrix Q

215

was chosen to be

Q =

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 10 0 0 0 0

0 0 0 0 10 0 0 0

0 0 0 0 0 10 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 20

(8.156)

Manipulation of the Q weighting matrix found that the LQR procedure was very sensitive

to the gains on the velocity states, which has implications on the resultant feedback gain

matrix. In terms of the controls, the weighting matrix R was chosen to be

R =

2 0 0

0 1 0

0 0 2

 (8.157)

to allow the elevator more authority to damp out the elevation angle and pitching rate.

Using the weighting matrices in Eqs. (8.156) and (8.157), the feedback gain matrix K

was determined using Eqs. (8.151)–(8.153) in the Python controls library1 to be

K =

0 0.0010 0 −2.0342 0 −0.7019 −0.0827 0

0 0 −0.0005 0 −3.2265 0 0 −4.4720

0 −0.0004 0 0.6768 0 −2.0441 0.1205 0

 (8.158)

Note that the gains in the first row of Eq. (8.158) are not exactly zero, but are below the

tolerance shown in the rest of the matrix. In fact, each of the velocity states have very

small gains compared to the rest of the gains in the matrix. Thus, the velocity states may

be ignored in further refinements of the linear controller.

1https://python-control.readthedocs.io/en/0.9.2/

216

8.5.3 BIRE LQR Design

For the BIRE aircraft, several changes were made from the matrices Q and R developed

for the baseline aircraft. First, it was noted that the bank angle converged very slowly in

the BIRE in most of the simulations conducted. Compensating for this required a higher

weighting on the roll rate and bank angle. In general, the BIRE rotation angle was also

shown across various gusts to produce very small angles (δB < 10◦), and was instrumental

in providing control to the aircraft. Thus, the penalty in the LQR optimization was relaxed

when compared to the ailerons. The elevator control was also assigned a smaller penalty to

allow for its use to correct the instabilities about the pitch axis.

With these considerations in mind, the BIRE aircraft was given a weighting matrix Q

equal to

Q =

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 20 0 0 0 0

0 0 0 0 10 0 0 0

0 0 0 0 0 10 0 0

0 0 0 0 0 0 10 0

0 0 0 0 0 0 0 10

(8.159)

and the matrix R was chosen as

R =

2 0 0

0 0.1000 0

0 0 0.1000

 (8.160)

Thus, the feedback gain matrix K was found to be

K =

0 0.0004 0 −3.1031 −0.0002 −0.0330 −2.2337 −0.0002

0 0 0.0003 0.0012 −10.0133 0 0.0009 −10

0 −0.0034 0 −0.0781 0 11.0685 0.5070 0

 (8.161)

217

Again, it can be noted that the translational velocities play a much smaller role in the

control of the BIRE than any of the other states.

8.5.4 Simulation

Simulation of both the baseline and BIRE aircraft was performed using the full rigid-

body equations of motion in Eqs. (4.1)–(4.4). Often, the Euler angle formulation in Eq.

(4.4) is replaced with a quaternion formulation to avoid the effects of gimbal lock [135].

Since the simulated wind gusts were not expected to create changes in the elevation angle

θ to the degree that this would be an issue, the slightly simpler and more intuitive Euler

angles were used. If more extreme maneuvers are simulated in future work, a quaternion

formulation should be implemented.

Each simulation started with the aircraft in its trim condition in steady, level flight in

flight condition C2 (the flight maneuver condition). This condition was chosen since it was

assumed that the need to saturate any of the control surfaces in this configuration would

weigh heavily on the ability of the aircraft to perform its mission. Future work can easily

change the flight condition to any of the conditions in Table 6.1 and further test the control

response of each aircraft.

From the trim condition, the equations of motion were integrated forward in time

using an explicit fourth-order Runge-Kutta method with stepsize control [136]. At each

step, the changes in the controlled states were calculated and the linear feedback matrix in

Eqs. (8.158) or (8.161) was used in Eq. (8.24) to determine the required control inputs to

stabilize each aircraft. Evaluating these control inputs over time also allows for the rate of

the control inputs to be calculated, which will be helpful in understanding the feasibility of

using practical actuation devices to control the BIRE.

Wind gusts were defined in all three body-fixed directions with the gust in the body-

fixed z -direction having half the amplitude of the others. The amplitude was defined as

Aw = 80 ft/s, the damping rate as ξ = 1 Hz, and the gust frequency was given as ωw = 5

rad/s. The wind gust is shown in Fig. 8.2 and was simulated starting at t = 1 second.

Figures 8.3 and 8.4 show the states of the aircraft as given in Eqs. (8.5)–(8.7) when simulated

218

over 20 seconds with a time increment of ∆t = 0.1 second. Note that the aircraft in both a

controlled and uncontrolled state are plotted.

0 2 4 6 8 10 12 14 16 18 20
Time, t [s]

−60

−40

−20

0

20

40

60
G

u
st

V
e
lo

ci
ty

C
o
m

p
o
n

e
n
ts

,
V
g

[f
t/

s]
Vgx
Vgy

Vgz

Fig. 8.2: Simulated wind gust.

It has been previously established that the uncontrolled linearized systems of both

of the aircraft are unstable. However, note that there are two unstable eigenvalues for

the baseline aircraft and only one for the BIRE. While any broad assumptions about the

stability of either aircraft cannot be made, the amplitudes of oscillation shown in Fig. 8.4

certainly indicate a marginal improvement in stability of the uncontrolled aircraft.

The results in Figs. 8.3 and 8.4 shown that the control law given by Eq. (8.24)

along with the gain matrices in Eqs. (8.158) and (8.161) have produced systems that are

asymptotically stable. These details can be seen better by considering the shifted states,

z. Figures 8.5 and 8.6 show the shifted states across the simulation window. These are the

states upon which the feedback control system is operating; therefore, any states in Fig.

8.3 and 8.4 that are not included in these plots should not be expected to converge.

219

550

600

650

700

u

0 2 4 6 8 10 12 14 16 18 20
Time, t [s]

−100

−50

0

50

100

v
w

Controlled

UncontrolledV
e
lo

ci
ty

C
o
m

p
o
n

e
n
ts

[f
t/

s]

−20
−10

0
10
20

p
Controlled

Uncontrolled

−20
−10

0
10
20

q

0 2 4 6 8 10 12 14 16 18 20
Time, t [s]

−20
−10

0
10
20

r

R
o
ta

ti
o
n

a
l

V
e
lo

ci
ty

C
o
m

p
o
n

e
n
ts

[d
e
g
/
s]

−5000
0

5000
10000
15000

x Controlled

Uncontrolled

−100

0

100

y

0 2 4 6 8 10 12 14 16 18 20
Time, t [s]

−15100

−15000

−14900

z

A
ir

cr
a
ft

P
o
si

ti
o
n

[f
t]

−10
−5

0
5

10

φ
Controlled

Uncontrolled

−10
−5

0
5

10
θ

0 2 4 6 8 10 12 14 16 18 20
Time, t [s]

−10
−5

0
5

10

ψ

A
ir

cr
a
ft

O
ri

e
n
ta

ti
o
n

[d
e
g
]

Fig. 8.3: Simulated states of the baseline aircraft in the presence of a wind gust.

Beyond only analyzing the states of each aircraft, a great deal of information can be

gathered by examining the magnitude and rates of the control deflections required to reject

the gust disturbance. A time history of these control inputs are shown in Fig. 8.7. These

plots show that the overall magnitude of the control inputs are well below the saturation

deflection of each control surface shown in Tables 3.3 and 3.6. Additionally, while the

magnitude of the control inputs for the baseline could be considered “small”, the BIRE

deflection angle reaches a magnitude of δB ≈ 15◦. The fact that both aircraft are able to

stabilize in this condition indicates that the linearization shown here is adequate for control.

However, larger deflections may operate outside of the linear region where the aerodynamics

and linearized system are applicable.

Figure 8.8 shows the control rates of each aircraft throughout the simulation. Required

deflection rates above the actuation limits shown in Tables 3.3 and 3.6 would require more

220

570

600

630

660

690

u

0 2 4 6 8 10 12 14 16 18 20

Time, t [s]

−60

−30

0

30

60

v

w

Controlled

UncontrolledV
e
lo

ci
ty

C
o
m

p
o
n

e
n
ts

[f
t/

s]

−20

−10

0

10

20

p
Controlled

Uncontrolled

−4

−2

0

2

4

q

0 2 4 6 8 10 12 14 16 18 20

Time, t [s]

−4

−2

0

2

4

r

R
o
ta

ti
o
n

a
l

V
e
lo

ci
ty

C
o
m

p
o
n

e
n
ts

[d
e
g
/
s]

−5000

0

5000

10000

15000

x
Controlled

Uncontrolled

−100

0

100

y

0 2 4 6 8 10 12 14 16 18 20

Time, t [s]

−15100

−15000

−14900

z

A
ir

cr
a
ft

P
o
si

ti
o
n

[f
t]

−12

−6

0

6

12

φ
Controlled

Uncontrolled

−2

0

2

4

6
θ

0 2 4 6 8 10 12 14 16 18 20

Time, t [s]

−6

−4

−2

0

2 ψ

A
ir

cr
a
ft

O
ri

e
n
ta

ti
o
n

[d
e
g
]

Fig. 8.4: Simulated states of the BIRE aircraft in the presence of a wind gust.

powerful actuation systems and would not be ideal. As it stands, further research into the

mechanism design of the BIRE actuation system itself will further refine the actuation rates

that are reasonable to suppose in the design. Nonetheless, the actuation rates predicted

here for this example simulation are within reasonable limits and do not nearly reach the

actuation limits of the baseline aircraft as reported by Stevens and Lewis [69].

These results have demonstrated that a linearized model of the BIRE aircraft can be

useful in designing a state feedback controller. In fact, in the presence of this particular

gust disturbance, the BIRE aircraft is stabilizable with the linear control design. However,

multiple-input, multiple-output (MIMO) systems like the BIRE can also be sensitive to

the direction of the disturbance [128]. Thus, to test the robustness of the controller in the

presence of multiple gust directions, a sweep of gusts can be generated to test whether the

BIRE can be stabilized.

221

−50

0

50
∆u

Controlled

Uncontrolled

−50

0

50
∆v

0 2 4 6 8 10 12 14 16 18 20
Time, t [s]

−20

0

20
∆w

V
e
lo

ci
ty

D
e
v
ia

ti
o
n

[f
t] −30

−15
0

15
30

∆p
Controlled

Uncontrolled

−30
−15

0
15
30

∆q

0 2 4 6 8 10 12 14 16 18 20
Time, t [s]

−30
−15

0
15
30

∆r

R
o
ta

ti
o
n

a
l

V
e
lo

ci
ty

D
e
v
ia

ti
o
n

[d
e
g
/
s]

−10

−5

0

5

10

∆φ

Controlled

Uncontrolled

0 2 4 6 8 10 12 14 16 18 20

−10

−5

0

5

10

∆θ

A
ir

cr
a
ft

O
ri

e
n
ta

ti
o
n

D
e
v
ia

ti
o
n

[d
e
g
]

Fig. 8.5: Shifted states of the baseline aircraft in the presence of a wind gust.

Gust Directionality Test

The direction of the gust disturbance can be adjusted by rewriting the gust velocity in

Eq. (8.154) as

Vg = sgAwe
−ξwt sin(ωwt) (8.162)

where

sg =

sx

sy

sz

 (8.163)

with |sx| ≤ 1, |sy| ≤ 1, and |sz| ≤ 1. Thus, the vector sg simply orients the amplitude of

the gust velocity in the body-fixed coordinate system. By simulating the BIRE aircraft in

the presence of a range of gust directions, an approximation of the robustness of the aircraft

can be made.

222

−60

−30

0

30

60

∆u
Controlled

Uncontrolled

−60

−30

0

30

60

∆v

0 2 4 6 8 10 12 14 16 18 20

Time, t [s]

−60

−30

0

30

60

∆w

V
e
lo

ci
ty

D
e
v
ia

ti
o
n

[f
t] −20

−10

0

10

20

∆p
Controlled

Uncontrolled

−4

−2

0

2

4

∆q

0 2 4 6 8 10 12 14 16 18 20

Time, t [s]

−4

−2

0

2

4

∆r

R
o
ta

ti
o
n

a
l

V
e
lo

ci
ty

D
e
v
ia

ti
o
n

[d
e
g
/
s]

−15

−10

−5

0

5

10

15

∆φ

Controlled

Uncontrolled

0 2 4 6 8 10 12 14 16 18 20

−3

−2

−1

0

1

2

3

∆θ

A
ir

cr
a
ft

O
ri

e
n
ta

ti
o
n

D
e
v
ia

ti
o
n

[d
e
g
]

Fig. 8.6: Shifted states of the BIRE aircraft in the presence of a wind gust.

−4
−2

0
2
4

δa Controlled

Uncontrolled

Time, t [s]
−2
−1

0
1
2

δe

0 5 10 15 20
Time, t [s]

−10
−5

0
5

10
δrC

o
n
tr

o
l

S
e
tt

in
g
s

[d
e
g
]

(a) Baseline Control

−4

−2

0

2

4

δa
Controlled

Uncontrolled

−2

−1

0

1

2

δe

0 5 10 15 20

Time, t [s]

−20

−10

0

10

20

δB

C
o
n
tr

o
l

D
e
fl

e
ct

io
n

s
[d

e
g
]

(b) BIRE Control

Fig. 8.7: Control inputs for each aircraft to reject a gust disturbance.

With the results of all of these simulations, a satisfactory method for determining

whether the aircraft was returning to its trim condition needed to be made. It was de-

termined that if the mean of the shifted states corresponding to the last five seconds of

223

−2
−1

0
1
2

δ̇a
Controlled

Uncontrolled

−2
−1

0
1
2

δ̇e

0 5 10 15 20
Time, t [s]

−6
−3

0
3
6

δ̇rC
o
n
tr

o
l

R
a
te

s
[d

e
g
]

(a) Baseline Rates

−2

−1

0

1

2

δ̇a
Controlled

Uncontrolled

−4

−2

0

2

4

δ̇e

0 5 10 15 20

Time, t [s]

−4

−2

0

2

4

δ̇B

C
o
n
tr

o
l

R
a
te

s
[d

e
g
/
s]

(b) BIRE Rates

Fig. 8.8: Control input rates for each aircraft to reject a gust disturbance.

simulation was less than 5% of the maximum value attained by that shifted state across

the entire study, then the case could reasonably be assumed to be converging. This allowed

the studies in which the gust was not applied in a given direction to avoid being flagged as

a divergent case. In total, the directionality study was conducted with 11 points in each

direction for a total of approximately 1300 cases.

By this metric, every case within the directionality study was found to be returning

to its trim condition in the presence of the gust. Several of these cases were spot-checked

through simulation and the method was found to be consistent. Thus, this initial study

shows that the linearized state feedback controller appears to be an effective method with

which to control the BIRE aircraft. Additional studies must be performed to confirm this is

the case in a wider range of trim conditions and across a larger envelope of flight conditions.

This study also does not consider the rate at which the aircraft is returning to its trim con-

dition as a restriction, which certainly is important when designing a controller. However,

the preliminary nature of this control study has shown that this control methodology is

worth pursuing further when designing a BIRE-type aircraft.

224

CHAPTER 9

SUMMARY AND CONCLUSIONS

This dissertation has explored the aerodynamic implications of a novel control system

called the bio-inspired rotating empennage or BIRE. As a control system, the BIRE is

inspired by the maneuverability and control presented by birds during flight. Aerodynamic

results and studies for a baseline aircraft and its BIRE variant were presented to provide an

indication of its viability as a control system and also to better understand the aerodynamic

trade-offs that it provides. While this control concept has seen little analysis in the past,

this work has shown that it is worthy of further investigation and that its predicted benefits

may allow future aircraft designs to leverage a portion of the weight and drag benefits of

a tailless aircraft while maintaining a fairly simple control system. The analyses in this

dissertation indicate the potential benefits of the BIRE control system and motivate future

research into its viability as a control system.

Chapter 2 provides an aerodynamically-supported analysis of literature examining the

use of the tail in bird flight. Observational, analytical, and experimental work was refer-

enced in combination with traditional flight mechanics relationships to provide additional

insight into the mechanics of the tail during a bird’s flight. These relationships were meant

to provide intuition into the effects of a rotating tail and to also provide context for the re-

lationships that would be explored further into the dissertation. In Chapter 2, the available

literature covering aircraft with rotating tail designs was also explored. These studies were

scarce, but provided details about potential concerns and benefits that could be expected

through implementing a rotating tail as a control system in an aircraft.

To develop an aerodynamic model, the geometry of a baseline aircraft and its BIRE

variant were required to be characterized. In this dissertation, the baseline aircraft was

modeled after a fighter aircraft with relaxed static stability. This aircraft was chosen because

of the publicly-available data that could be used to characterize its geometry as well as to

225

provide insight into potential maneuverability benefits provided by the BIRE concept. In

Chapter 3, the baseline geometry was outlined using the open sources available and modified

its geometric properties to develop the planform of a BIRE variant. Certain properties of the

aircraft needed to be scaled off of drawings provided from the literature, which introduced

a level of uncertainty into the design that needed to be addressed in the aerodynamic data

produced later in the work.

With the geometry defined for each aircraft, a linear aerodynamic model was developed

for each aircraft in Chapter 4. These models were created by linearizing the aerodynamics

of each aircraft about a condition in which the aerodynamic angles, body-fixed rotation

rates, and control surface deflections were all zero. While the linear models were simple and

allowed for a basic understanding of the aerodynamics of each aircraft, it was determined

that certain non-linear effects needed to be included to bring more fidelity to the model. This

was especially important given the non-linear aerodynamic effects that the baseline aircraft

would regularly encounter in its flight envelope due to its nature as a fighter aircraft. The

higher-fidelity, nonlinear models were constructed using relationships gleaned from lifting-

line theory as well as familiarity with a wind-tunnel data set published for the baseline

aircraft. Finally, the non-linear aerodynamic model for the BIRE was characterized by

assuming that the coefficients in its model varied with the rotation of the tail. This variation

was generalized to be a shifted sine wave with an offset.

The evaluation of the coefficients in the previously-defined aerodynamic models was

given in Chapter 5. Numerical lifting-line theory was used to generate aerodynamic data

for the baseline aircraft and the BIRE using airfoil data estimated using thin airfoil theory

and wind tunnel data. The aerodynamic coefficients of each model were then determined

using finite difference methods and least-squares polynomial fits. Furthermore, a sensitivity

analysis was performed to determine whether the inclusion of higher-order effects from wind

tunnel data provided a significant change to the static trim analysis that would follow. From

this sensitivity study, changes in the aerodynamic coefficients were modeled using deltas

informed from the wind tunnel data of the baseline aircraft as necessary to include higher-

226

order effects such as leading-edge vortices and viscous or spanwise flow effects. With the

aerodynamic model determined for the baseline and BIRE aircraft, the implications of the

trends were discussed in detail for the BIRE as a function of tail rotation angle. It was

shown that consistent, physically-intuitive patterns could be seen across the aerodynamic

coefficients in the non-linear model. In addition, several higher-order trends were noted for

inspection with a higher-fidelity aerodynamic tool.

Chapters 6–8 demonstrated several studies that could be performed with the aerody-

namic model for the baseline aircraft and BIRE variant. The first of these studies focused

on the trim envelope available to the baseline aircraft compared to that attainable by the

BIRE. To determine this, a trim algorithm was developed using two numerical methods:

the fixed-point iteration and a Newton-Raphson method. A static trim analysis was then

performed using a steady, coordinated turn as the trim condition across several flight condi-

tions identified from other tailless aircraft studies. This analysis showed that the BIRE has

similar trim capabilities in a steady, coordinated turn to the baseline aircraft. However, it

was noted that certain discontinuities existed when the direction of the force acting on the

tail had to switch rapidly, due to the relaxed static stability of the baseline aircraft. Thus,

a center of gravity study was performed that showed improved convergence and smoothness

of the trim data when the center of gravity was moved forward on the BIRE.

The second trim condition studied was the steady-heading sideslip condition, which is

often used when landing. This analysis showed similar discontinuities in the trim conditions

of the BIRE until the center of gravity was moved forward. In this case, the BIRE was

shown to have a substantially larger trim envelope than the baseline aircraft. The steady-

heading sideslip trim condition also provided an opportunity to test whether the BIRE was

more susceptible to a tail strike than the baseline aircraft. An analysis showed that the

risk of tail strike for the BIRE aircraft was less when in steady level flight at the landing

conditions considered. However, in certain scenarios, the BIRE presented a higher risk of

tail strike than the baseline aircraft when assuming a bank angle. Since fighter aircraft

often land in a crosswind by crabbing into the wind, this condition must be checked using

227

simulation of the aircraft beyond that described in this work to determine if a greater risk

is presented for tail strike.

Chapter 7 contains an analysis of the attainable moments of each aircraft in which

some of the trade-offs between longitudinal and lateral control in the BIRE were identified.

By using the aerodynamic model to determine the maximum lateral moments that could be

generated while maintaining a given pitching moment, an attainable moment set envelope

was generated that could then identify regions where the BIRE lacked control authority.

The BIRE lost a substantial amount of yaw control authority when the pitching moment

requirements of trim needed to be maintained. However, the yaw authority available to

the BIRE very quickly increased when even small reductions in required pitch control were

allowed. An additional study in Chapter 7 included an analysis of the drag increment

sustained by the baseline and BIRE aircraft when generating a given yawing moment.

These results were compared to a theoretical minimum drag increment sustained by using

wing twist to generate a yawing moment. Substantial benefit was noted by the BIRE, which

required less drag than both the baseline aircraft and an aircraft using wing twist.

Finally, Chapter 8 focused on deriving a linearized system for the baseline and BIRE

aircraft that could be used to develop a linear state-feedback control system. These lin-

earized systems were developed using the aircraft equations of motion and the aerodynamic

models developed in previous chapters. It was shown that the BIRE was completely con-

trollable at all flight conditions examined in this work, regardless of the tail rotation angle

it assumed. However, this controllability analysis was shown to be subject to numerical

error, and other efforts of defining controllability must be made.

A state feedback gain matrix was then developed using a linear quadratic regulator

approach and the baseline and BIRE aircraft were both shown to be able to reject a gust

disturbance using this controller. In addition, the robustness of the controller was examined

by subjecting the BIRE aircraft to a range of gust directions. This analysis showed that

the BIRE was able to return to its trim condition using the linearized controller in all of

the cases studied here.

228

Much of the future work available to the BIRE will likely be related to this work in

controls, and the analysis presented in this dissertation gives both the linearized system

as well as preliminary results with which to move forward in the analysis. Future work

specifically related to what was presented in this dissertation could be looking into further

analysis into nonlinear controllability implications of the BIRE as well as an analysis relating

to the region of attraction of the linearized system. The latter is especially interesting, as

the BIRE system is not currently restricted and could vary substantially during flight.

Therefore, a linear system may be insufficient in certain flight scenarios and may need to

be supplemented with certain nonlinear techniques.

The intent of this dissertation was to provide an aerodynamic analysis of a bio-inspired

rotating empennage design. This has been accomplished by laying forth a methodology

for modeling that can be easily replicated using higher-fidelity tools. As a benchmark, the

analysis in this dissertation will provide valuable data for future researchers that continue

to develop this control system and analyze its benefits.

229

REFERENCES

[1] Bowlus, J., Multhopp, D., and Banda, S., “Challenges and opportunities in tailless
aircraft stability and control,” Guidance, Navigation, and Control Conference, Amer-
ican Institute of Aeronautics and Astronautics, Aug. 1997, pp. 1713–1718.

[2] “Department of Defense Research & Engineering Enterprise : Research & Technol-
ogy,” https://rt.cto.mil, Accessed: 2020-12-22.

[3] Harvey, C., Gamble, L. L., Bolander, C. R., Hunsaker, D. F., Joo, J. J., and Inman,
D. J., “A review of avian-inspired morphing for UAV flight control,” Progress in
Aerospace Sciences, 2022, In Review.

[4] McVeigh, K., “Industrial fishing ushers the albatross closer to extinction
say researchers,” https://www.theguardian.com/environment/2019/jan/31/

industrial-hing-ushers-albatross-closer-to-extinction-say-researchers,
Accessed: 2020-12-22.

[5] McCann, M., “How the Swallow-tailed Kite Soars With Such Grace,” https://

www.audubon.org/news/how-swallow-tailed-kite-soars-such-grace, Accessed:
2020-12-22.

[6] Roetman, E. L., Northcraft, S. A., and Dawdy, J. R., “Innovative Control Effectors
(ICE),” Tech. Rep. 96-3074, Boeing Defense and Space Group, Seattle, WA, March
1996.

[7] Dorsett, K. M. and Mehl, D. R., “Innovative Control Effectors (ICE),” Tech. Rep.
96-3043, Lockheed Martin Tactical Aircraft Systems, Fort Worth, TX, Jan. 1996.

[8] Phillips, W. F., Mechanics of Flight, John Wiley & Sons, Inc., 2nd ed., 2010.

[9] Phillips, W. F., “Simplified Pitch Stability Analysis for a Wing-Tail Combination,”
Mechanics of Flight, chap. 4, John Wiley & Sons, Inc., 2nd ed., 2010, pp. 384–400.

[10] Phillips, W. F., “Stick-Fixed Neutral Point and Static Margin,” Mechanics of Flight,
chap. 4, John Wiley & Sons, Inc., 2nd ed., 2010, pp. 400–411.

[11] Phillips, W. F., “Longitudinal Motion: The Linearized Coupled Equations,”
Mechanics of Flight, chap. 8, John Wiley & Sons, Inc., 2nd ed., 2010, pp. 836–846.

[12] Phillips, W. F., “Short-Period Approximation,” Mechanics of Flight, chap. 8, John
Wiley & Sons, Inc., 2nd ed., 2010, pp. 847–854.

[13] Phillips, W. F., “Long-Period Approximation,” Mechanics of Flight, chap. 8, John
Wiley & Sons, Inc., 2nd ed., 2010, pp. 854–871.

[14] Phillips, W. F., “Longitudinal Control and Maneuverability,” Mechanics of Flight,
chap. 6, John Wiley & Sons, Inc., 2nd ed., 2010, pp. 605–623.

https://rt.cto.mil
https://www.theguardian.com/environment/2019/jan/31/industrial- hing-ushers-albatross-closer-to-extinction-say-researchers
https://www.theguardian.com/environment/2019/jan/31/industrial- hing-ushers-albatross-closer-to-extinction-say-researchers
https://www.audubon.org/news/how-swallow-tailed-kite-soars-such-grace
https://www.audubon.org/news/how-swallow-tailed-kite-soars-such-grace

230

[15] Phillips, W. F., “Trailing-Edge Flaps and Section Flap Effectiveness,” Mechanics of
Flight, chap. 1, John Wiley & Sons, Inc., 2nd ed., 2010, pp. 39–46.

[16] Anderson Jr, J. D., Introduction to Flight, McGraw-Hill Higher Education, 1989.

[17] Phillips, W. F., “Roll Stability and Dihedral Effect,” Mechanics of Flight, chap. 5,
John Wiley & Sons, Inc., 2nd ed., 2010, pp. 548–566.

[18] Phillips, W. F., “Lateral Motion: The Linearized Coupled Equations,” Mechanics of
Flight, chap. 9, John Wiley & Sons, Inc., 2nd ed., 2010, pp. 885–895.

[19] Phillips, W. F., “Roll Approximation,” Mechanics of Flight, chap. 9, John Wiley &
Sons, Inc., 2nd ed., 2010, pp. 896–897.

[20] Phillips, W. F., “Force and Moment Derivatives,” Mechanics of Flight, chap. 7, John
Wiley & Sons, Inc., 2nd ed., 2010, pp. 768–788.

[21] Phillips, W. F., “Yaw Stability and Trim,” Mechanics of Flight, chap. 5, John Wiley
& Sons, Inc., 2nd ed., 2010, pp. 500–517.

[22] Phillips, W. F., “Spiral Approximation,” Mechanics of Flight, chap. 9, John Wiley &
Sons, Inc., 2nd ed., 2010, pp. 897–905.

[23] Phillips, W. F., “Dutch Roll Approximation,” Mechanics of Flight, chap. 9, John
Wiley & Sons, Inc., 2nd ed., 2010, pp. 906–919.

[24] Phillips, W. F., “Incompressible Flow over Finite Wings,” Mechanics of Flight,
chap. 1, John Wiley & Sons, Inc., 2nd ed., 2010, pp. 46–94.

[25] Gillies, J. A., Thomas, A. L. R., and Taylor, G. K., “Soaring and manoeuvring flight
of a steppe eagle Aquila nipalensis,” Journal of Avian Biology, Vol. 42, No. 5, Sept.
2011, pp. 377–386.

[26] Thomas, A. L. R., “On the aerodynamics of birds’ tails,” Philosophical Transactions
of the Royal Society B, Vol. 340, jul 1993, pp. 361–380.

[27] Storer, J. H., The flight of birds analyzed through slow-motion photography, No. 28,
Cranbrook Institute of Science, 1948.

[28] Tucker, V. A., “Pitching Equilibrium, Wing Span and Tail Span in a Gliding Harris’
Hawk, Parabuteo Unicinctus,” Journal of Experimental Biology, Vol. 165, No. 1, April
1992, pp. 21–41.

[29] Carruthers, A. C., Thomas, A. L. R., and Taylor, G. K., “Automatic aeroelastic
devices in the wings of a steppe eagle Aquila nipalensis,” Journal of Experimental
Biology, Vol. 210, No. 23, Dec. 2007, pp. 4136–4149.

[30] Carruthers, A. C., Thomas, A. L., Walker, S. M., and Taylor, G. K., “Mechanics
and aerodynamics of perching manoeuvres in a large bird of prey,” The Aeronautical
Journal, Vol. 114, No. 1161, 2010, pp. 673–680.

[31] Brown, R., “The flight of birds,” Biological Reviews, Vol. 38, No. 4, 1963, pp. 460–489.

231

[32] Oehme, H., “Die Flugsteuerung des Vogels. I. ’́Uber flugmechanische Grundlagen,”
Beitr Vogelkd, Leipzig, Vol. 22, 1976, pp. 58–66.

[33] Oehme, H., “Die Flugsteuerung des Vogels. III. Flugmań’over der Kornweihe (Circus
cyaneous),” Beitr Vogelkd, Leipzig, Vol. 22, 1976, pp. 73–82.

[34] Hankin, E. H., Animal flight: a record of observation, Iliffe & Sons Limited, 1913.

[35] Thomas, A. L. and Taylor, G. K., “Animal Flight Dynamics I. Stability in Gliding
Flight,” Journal of Theoretical Biology, Vol. 212, No. 3, Oct. 2001, pp. 399–424.

[36] Dunne, P., Sibley, D., and Sutton, C., Hawks in flight: the flight identification of
North American migrant raptors, Houghton Mifflin Harcourt (HMH), 1988.

[37] Pennycuick, C. J., “A wind-tunnel study of gliding flight in the pigeon Columba livia,”
Journal of Experimental Biology, Vol. 49, No. 3, 1968, pp. 509–526.

[38] Song, J., Cheney, J., Usherwood, J., and Bomphrey, R., “Virtual manipulation of
bird tail postures demonstrates drag minimisation when gliding,” BioRxiv, 2020.

[39] Maybury, W. J., Rayner, J. M., and Couldrick, L. B., “Lift generation by the avian
tail.” Proceedings of the Royal Society of London. Series B: Biological Sciences,
Vol. 268, No. 1475, July 2001, pp. 1443–1448.

[40] Gatesy, S. M. and Dial, K. P., “Tail muscle activity patterns in walking and flying
pigeons (Columba livia),” Journal of Experimental Biology, Vol. 176, No. 1, 1993,
pp. 56–76.

[41] Rosén, M. and Hedenström, A., “Gliding flight in a jackdaw: a wind tunnel study,”
Journal of Experimental Biology, Vol. 204, 2001, pp. 1153–1166.

[42] Henningsson, P. and Hedenström, A., “Aerodynamics of gliding flight in common
swifts,” Journal of Experimental Biology, Vol. 214, No. 3, Feb. 2011, pp. 382–393.

[43] Thomas, A. L., “On the tails of birds,” Bioscience, 1997, pp. 215–225.

[44] Cheney, J. A., Stevenson, J. P. J., Durston, N. E., Maeda, M., Song, J., Megson-
Smith, D. A., Windsor, S. P., Usherwood, J. R., and Bomphrey, R. J., “Raptor wing
morphing with flight speed,” Journal of The Royal Society Interface, Vol. 18, No. 180,
2021, pp. 1–14.

[45] Evans, M. R., Rosén, M., Park, K. J., and Hedenström, A., “How do birds’ tails
work? Delta–wing theory fails to predict tail shape during flight,” Proceedings of
the Royal Society of London. Series B: Biological Sciences, Vol. 269, No. 1495, 2002,
pp. 1053–1057.

[46] Pennycuick, C. and Webbe, D., “Observations on the fulmar in Spitsbergen,” British
Birds, Vol. 52, 1959, pp. 321–332.

[47] Raspet, A., “Biophysics of Bird Flight,” Science, Vol. 132, No. 3421, July 1960,
pp. 191–200.

232

[48] Pennycuick, C., “Chapter 1 - MECHANICS OF FLIGHT,” Avian Biology, edited by
D. S. Farner and J. R. King, Academic Press, Amsterdam, 1975, pp. 1–75.

[49] Mouillard, L.-P., L’empire de l’air: essai d’ornithologie appliquée à l’aviation, G.
Masson, 1881.

[50] Usherwood, J. R., Cheney, J. A., Song, J., Windsor, S. P., Stevenson, J. P. J., Dierk-
sheide, U., Nila, A., and Bomphrey, R. J., “High aerodynamic lift from the tail reduces
drag in gliding raptors,” The Journal of Experimental Biology, Vol. 223, No. 3, Feb.
2020, pp. jeb214809.

[51] Hoey, R. G., “Exploring bird aerodynamics using radio-controlled models,”
Bioinspiration & Biomimetics, Vol. 5, No. 4, Dec. 2010, pp. 045008.

[52] Sachs, G., “Aerodynamic yawing moment characteristics of bird wings,” Journal of
Theoretical Biology, Vol. 234, No. 4, June 2005.

[53] Sachs, G., “Yaw stability in gliding birds,” Journal of Ornithology, Vol. 146, No. 3,
July 2005.

[54] Sachs, G., “Tail effects on yaw stability in birds,” Journal of Theoretical Biology,
Vol. 249, No. 3, Dec. 2007, pp. 464–472.

[55] Oehme, H., “Der Flug des Fahnendrongos(Dicrurus macrocercus),” Journal für
Ornithologie, Vol. 106, No. 2, April 1965, pp. 190–203.

[56] Warrick, D. R., Dial, K. P., and Biewener, A. A., “Asymmetrical Force Production in
the Maneuvering Flight of Pigeons,” The Auk, Vol. 115, No. 4, Oct. 1998, pp. 916–928.

[57] Hummel, D., “Aerodynamic investigations on tail effects in birds,” Zeitschrift für
Flugwissenschaften und Weltraumforschung, Vol. 16, No. 3, 1992.

[58] Ajanic, E., Feroskhan, M., Mintchev, S., Noca, F., and Floreano, D., “Bioinspired
wing and tail morphing extends drone flight capabilities,” Sci. Robot., Vol. 5, 2020,
pp. eabc2897.

[59] Zheng, L., Zhou, Z., Sun, P., Zhang, Z., and Wang, R., “A novel control mode
of bionic morphing tail based on deep reinforcement learning,” arXiv preprint
arXiv:2010.03814, 2020.

[60] Bras, M., Vale, J., Lau, F., and Suleman, A., “Flight Dynamics and Control of a
Vertical Tailless Aircraft,” Journal of Aeronautics & Aerospace Engineering, Vol. 2,
No. 4, 2013, pp. 1–10.

[61] Parga, J. R., Reeder, M. F., Leveron, T., and Blackburn, K., “Experimental study
of a micro air vehicle with a rotatable tail,” Journal of aircraft, Vol. 44, No. 6, 2007,
pp. 1761–1768.

[62] Fox, M. C. and Forrest, D. K., “Supersonic Aerodynamic Characteristics of an Ad-
vanced F-16 Derivative Aircraft Configuration,” NASA TP-3355, 1993.

233

[63] Butcher, D., “Non-honeycomb F-16 horizontal stabilizer, structural design,” ICAS
Proc. 1982, AIAA Aircraft Syst. And Technol. Conf. Seattle, Vol. 2, 1982, pp. 586–
592.

[64] Nguyen, L., Ogburn, M., Gilbert, W., Kibler, K., Brown, P., and Deal, P., “Simu-
lator Study of Stall/Post-Stall Characteristics of a Fighter Airplane With Relaxed
Longitudinal Static Stability,” NASA TR-1538, 1979.

[65] Abbott, I. H. and Von Doenhoff, A. E., Theory of wing sections: including a summary
of airfoil data, Courier Corporation, 2012.

[66] Anderson, J. D., Aircraft performance and design, McGraw-Hill, 1st ed., 1999.

[67] Phillips, W. F., “Effects of the Fuselage, Nacelles, and External Stores,” Mechanics
of Flight, chap. 4, John Wiley & Sons, Inc., 2nd ed., 2010, pp. 472–476.

[68] Axelson, J. A., “Longitudinal Stability and Control of High-speed Airplanes with Par-
ticular Reference to Dive Recovery,” Research Memorandum A7C24, NACA, Moffett
Field, Calif., Sep 1947.

[69] Stevens, B. L. and Lewis, F. L., “Aircraft Control and Simulation,” Aircraft
Engineering and Aerospace Technology, 2004.

[70] Hibbeler, R. C., “Mass Moment of Inertia,” Engineering Mechanics: Dynamics,
chap. 17, Pearson Prentice Hall, 14th ed., 2016, pp. 409–417.

[71] Hibbeler, R. C., “Moments and Products of Inertia,” Engineering Mechanics:
Dynamics, chap. 21, Pearson Prentice Hall, 14th ed., 2016, pp. 591–595.

[72] Phillips, W. F., “Effects of Tail Dihedral on Yaw Stability,” Mechanics of Flight,
chap. 5, John Wiley & Sons, Inc., 2nd ed., 2010, pp. 529–547.

[73] Bolander, C. R., Hunsaker, D. F., Myszka, D., and Joo, J. J., “Attainable Moment
Set and Actuation Time of a Bio-Inspired Rotating Empennage,” AIAA SCITECH
2022 Forum, 2022, p. 1670.

[74] Ives, C., Myszka, D. H., Joo, J., Bolander, C. R., and Hunsaker, D. F., “Using a
Topology Optimization Results Interpreter on the Frame of an Aircraft with a Bio-
Inspired Rotating Empennage,” AIAA AVIATION 2022 Forum, 2022, p. 3373.

[75] Bolander, C. R., Kohler, A., Hunsaker, D. F., Myszka, D., and Joo, J. J., “Static Trim
of a Bio-Inspired Rotating Empennage for a Fighter Aircraft,” 2023 AIAA SciTech
Forum, American Institute of Aeronautics and Astronautics, Jan 2023.

[76] Phillips, W. F., “Rigid-Body 6-DOF Equations of Motion,” Mechanics of Flight,
chap. 7, John Wiley & Sons, Inc., 2nd ed., 2010, p. 753.

[77] Phillips, W. F., “Newton’s Second Law for Rigid-Body Dynamics,” Mechanics of
Flight, chap. 7, John Wiley & Sons, Inc., 2nd ed., 2010, pp. 725–735.

[78] Phillips, W. F., “Position and Orientation: The Euler Angle Formulation,” Mechanics
of Flight, chap. 7, John Wiley & Sons, Inc., 2nd ed., 2010, pp. 735–752.

234

[79] Anderson, J. D., “Aerodynamic Forces and Moments,” Fundamentals of
Aerodynamics, chap. 1, McGraw-Hill Education, 6th ed., 2017, pp. 19–32.

[80] Phillips, W. F., “Introduction and Notation,” Mechanics of Flight, chap. 1, John
Wiley & Sons, Inc., 2nd ed., 2010, pp. 1–9.

[81] Stokes, G. G., “On the Effect of the Internal Friction of Fluids on the Motion of
Pendulums,” Transactions of the Cambridge Philosophical Society, Vol. 9, Jan. 1851,
pp. 8.

[82] Anderson, J. D., “Viscous Flow: Airfoil Drag,” Fundamentals of Aerodynamics,
chap. 4, McGraw-Hill Education, 6th ed., 2017, pp. 379–395.

[83] Anderson, J. D., “Definition of Compressible Flow,” Modern Compressible Flow,
chap. 1, McGraw-Hill, 3rd ed., 2003, pp. 12–14.

[84] Glauert, H., “The effect of compressibility on the lift of an aerofoil,” Proceedings of
the Royal Society of London. Series A, Containing Papers of a Mathematical and
Physical Character, Vol. 118, No. 779, 1928, pp. 113–119.

[85] Phillips, W. F., “Wing Aerodynamic Center and Pitching Moment,” Mechanics of
Flight, chap. 1, John Wiley & Sons, Inc., 2nd ed., 2010, pp. 120–131.

[86] Anderson, J. D., “Lift and Drag Buildup,” Aircraft performance and design, chap. 2,
McGraw-Hill, 1st ed., 1999, pp. 78–126.

[87] Cooper, M. and Korycinski, P. F., “The Effects of Compressibility on the Lift, Pres-
sure, and Load Characteristics of a Tapered Wing of NACA 66-Series Airfoil Sections,”
Technical Note 1697, National Advisory Committee for Aeronautics, Langley Field,
Va., Oct 1948.

[88] Gothert, B., “Plane and Three-Dimensional Flow at High Subsonic Speeds,” Tech-
nical Memorandum 1105, National Advisory Committee for Aeronautics, Lilienthal
Gesellschaft 127, Oct 1946.

[89] Phillips, W. F. and Snyder, D. O., “Modern Adaptation of Prandtl’s Classic Lifting-
Line Theory,” Journal of Aircraft, Vol. 37, No. 4, Jul 2000, pp. 662–670.

[90] Goates, C. D. and Hunsaker, D. F., “Practical Implementation of a General Numerical
Lifting-Line Method,” AIAA Scitech 2021 Forum, American Institute of Aeronautics
and Astronautics, Jan 2021.

[91] Phillips, W. F., “Linearized Equations of Motion,” Mechanics of Flight, chap. 7, John
Wiley & Sons, Inc., 2nd ed., 2010, pp. 754–788.

[92] Anderson, J. D., “Applied Aerodynamics: Airplane Lift and Drag,” Fundamentals of
Aerodynamics, chap. 6, McGraw-Hill Education, 6th ed., 2017, pp. 512–523.

[93] Phillips, W. F., A. N. R. G. W. D., “Lifting-Line Analysis of Roll Control and Variable
Twist,” Journal of Aircraft, Vol. 41, No. 5, Sep 2004, pp. 1169–1176.

235

[94] Phillips, W. F., “Effects of Drag and Vertical Offset,” Mechanics of Flight, chap. 4,
John Wiley & Sons, Inc., 2nd ed., 2010, pp. 436–458.

[95] Hoerner, S. F., “Induced Drag and Aspect Ratio,” Fluid-Dynamic Drag, chap. 7,
Sighard F. Hoerner, 2nd ed., 1965, pp. 7–2.

[96] Raymer, D. P., “Drag Due to Lift (Induced Drag),” Aircraft Design: A Conceptual
Approach, chap. 12, American Institute of Aeronautics and Astronautics, Inc., 2nd
ed., 1992, pp. 297–305.

[97] Phillips, W. F., “Incompressible Flow over Airfoils,” Mechanics of Flight, chap. 1,
John Wiley & Sons, Inc., 2nd ed., 2010, pp. 26–39.

[98] Loftin Jr., L. K., “Theoretical and Experimental Data for a Number of NACA 6A-
Series Airfoil Sections,” Research Memorandum L6J01, National Advisory Committee
for Aeronautics, Langley Field, Va., Dec 1946.

[99] Abbott, Ira H., v. D. A. E. and Stivers Jr., L. S., “Summary of Airfoil Data,” Technical
Report 824, National Advisory Committee for Aeronautics, Langley Field, Va., 1945.

[100] Chapra, S. C. and Canale, R. P., Numerical Methods for Engineers, McGraw-Hill
Education, 7th ed., 2015.

[101] Raymer, D. P., “Tail Geometry and Arrangement,” Aircraft Design: A Conceptual
Approach, chap. 4, AIAA Education Series, 1st ed., 1992, pp. 67–76.

[102] Anderson, J. D., “The Lifting-Surface Theory and the Vortex Lattice Numerical
Method,” Fundamentals of Aerodynamics, chap. 5, McGraw-Hill Education, 6th ed.,
2017, pp. 469–475.

[103] Service, F. S., Pilot’s Handbook of Aeronautical Knowledge, United States Depart-
ment of Transportation, Federal Aviation Administration, Airman Testing Standards
Branch, 25th ed., 2016.

[104] Phillips, W. F., “Flow over Multiple Lifting Surfaces,” Mechanics of Flight, chap. 1,
John Wiley & Sons, Inc., 2nd ed., 2010, pp. 94–107.

[105] Phillips, W. F., “Lateral Control and Maneuverability,” Mechanics of Flight, chap. 6,
John Wiley & Sons, Inc., 2nd ed., 2010, pp. 666–679.

[106] Phillips, W. F., “Steady-Heading Sideslip,” Mechanics of Flight, chap. 5, John Wiley
& Sons, Inc., 2nd ed., 2010, pp. 577–582.

[107] Simon, J., Blake, W., and Multhopp, D., “Control Concepts for a Vertical Tailless
Fighter,” Aircraft Design, Systems, and Operations Meeting, Aug 1993, p. 4000.

[108] Phillips, W. F., “Engine Failure and Minimum-Control Airspeed,” Mechanics of
Flight, chap. 5, John Wiley & Sons, Inc., 2nd ed., 2010, pp. 582–596.

[109] Conners, T. and Sims, R., “Full flight envelope direct thrust measurement on a su-
personic aircraft,” 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and
Exhibit, American Institute of Aeronautics and Astronautics, Jul 1998.

236

[110] “Design airspeeds,” Standard, Federal Aviation Administration, Washington, DC,
Dec. 1964.

[111] Phillips, W. F., “Takeoff and Landing Performance,” Mechanics of Flight, chap. 3,
John Wiley & Sons, Inc., 2nd ed., 2010, pp. 337–353.

[112] Phillips, W. F., “The Steady Coordinated Turn,” Mechanics of Flight, chap. 3, John
Wiley & Sons, Inc., 2nd ed., 2010, pp. 319–337.

[113] Raymer, D. P., “Thrust-To-Weight Ratio,” Aircraft Design: A Conceptual Approach,
chap. 5, AIAA Education Series, 1st ed., 1992, pp. 78–84.

[114] Clayton, J. D., Haller, R. L., and Hassler Jr., J. M., “Design and Fabrication of the
NASA Decoupler Pylon for the F-16 Aircraft,” Tech. Rep. NASA-CR-172354, Jan.
1985.

[115] Hagen, T., Wahlen, F. T., and Corti, W. R., Nepal: the kingdom in the Himalayas,
Kümmerly & Frey; distributed in USA by Rand McNally, Chicago, 1961.

[116] Durham, W. C., “Attainable Moments for the Constrained Control Allocation Prob-
lem,” Journal of Guidance, Control, and Dynamics, Vol. 17, No. 6, 1994, pp. 1371–
1373.

[117] Durham, W. C., “Constrained Control Allocation:Three-Moment Problem,” Journal
of Guidance, Control, and Dynamics, Vol. 17, No. 2, 1994, pp. 330–336.

[118] Bolender, M. A. and Doman, D. B., “Method for Determination of Nonlinear Attain-
able Moment Sets,” Journal of guidance, control, and dynamics, Vol. 27, No. 5, 2004,
pp. 907–914.

[119] Nocedal, J. and Wright, S. J., Numerical optimization, Springer, 1999.

[120] Rockafellar, R. T., Convex analysis, Vol. 36, Princeton university press, 1970.

[121] Akkiraju, N., Edelsbrunner, H., Facello, M., Fu, P., Mucke, E., and Varela, C., “Alpha
shapes: definition and software,” Proceedings of the 1st International Computational
Geometry Software Workshop, Vol. 63, 1995, p. 66.

[122] Barbarino, S., Bilgen, O., Ajaj, R. M., Friswell, M. I., and Inman, D. J., “A Review of
Morphing Aircraft,” Journal of Intelligent Material Systems and Structures, Vol. 22,
No. 9, June 2011, pp. 823–877.

[123] Hunsaker, Douglas F., M. Z. S. J. J. J., “Lifting-Line Analysis of Wing Twist to
Minimize Induced Drag During Pure Rolling Motion,” AIAA Scitech 2019 Forum,
American Institute of Aeronautics and Astronautics, Jan 2019.

[124] Hunsaker, D. F., Montgomery, Z. S., and Joo, J. J., “Adverse-Yaw Control During
Roll for a Class of Optimal Lift Distributions,” AIAA Journal, Vol. 58, No. 7, 2020,
pp. 2909–2920.

[125] Montgomery, Z. S., “Control Mapping Methodology for Tailless Morphing-Wing Air-
craft,” 2022.

237

[126] Nelder, J. A. and Mead, R., “A simplex method for function minimization,” The
computer journal, Vol. 7, No. 4, 1965, pp. 308–313.

[127] Spendley, W., Hext, G. R., and Himsworth, F. R., “Sequential application of simplex
designs in optimisation and evolutionary operation,” Technometrics, Vol. 4, No. 4,
1962, pp. 441–461.

[128] Skogestad, S. and Postlethwaite, I., Multivariable Feedback Control: Analysis and
Design, John Wiley & Sons, 2nd ed., 2005.

[129] Skogestad, S. and Postlethwaite, I., “Poles,” Multivariable Feedback Control:
Analysis and Design, chap. 4, John Wiley & Sons, 2nd ed., 2005, pp. 135–138.

[130] Khalil, H. K., “Control Problems,” Nonlinear Systems, chap. 12, Pearson Education
Inc., 3rd ed., 2014, pp. 469–475.

[131] Skogestad, S. and Postlethwaite, I., “State controllability and state observability,”
Multivariable Feedback Control: Analysis and Design, chap. 4, John Wiley & Sons,
2nd ed., 2005, pp. 127–134.

[132] Moon, T. K. and Stirling, W. C., Mathematical Methods and Algorithms for Signal
Processing, Prentice-Hall, Inc., 1st ed., 2000.

[133] Skogestad, S. and Postlethwaite, I., “LQG control,” Multivariable Feedback Control:
Analysis and Design, chap. 9, John Wiley & Sons, 2nd ed., 2005, pp. 344–352.

[134] Skogestad, S. and Postlethwaite, I., “Trade-offs in MIMO feedback design,”
Multivariable Feedback Control: Analysis and Design, chap. 9, John Wiley & Sons,
2nd ed., 2005, pp. 342–344.

[135] Phillips, W. F., “Summary of Flat-Earth Quaternion Formulation,” Mechanics of
Flight, chap. 11, John Wiley & Sons, Inc., 1st ed., 2004, pp. 915–922.

[136] Hairer, E., Nørsett, S. P., and Wanner, G., Solving Ordinary Differential Equations.
1, Nonstiff problems, Springer-Verlag, 1993.

[137] Hoak, D. and Finck, R., “USAF stability and control DAT-COM,” Tech. rep., AFWAL
TR-83-3048, October 1960, Revised, 1978.

[138] Phillips, W. F., “Estimating the Downwash Angle on an Aft Tail,” Mechanics of
Flight, chap. 4, John Wiley & Sons, Inc., 2nd ed., 2010, pp. 411–421.

[139] Phillips, W., Hunsaker, D. F., and Niewoehner, R., “Estimating the Subsonic Aero-
dynamic Center and Moment Components for Swept Wings,” Journal of Aircraft,
Vol. 45, No. 3, 2008, pp. 1033–1043.

[140] Feagin, R. C. and Morrison, W. D., “Delta method, an empirical drag buildup tech-
nique,” Tech. Rep. NASA-CR-151971, Dec. 1978.

[141] Nicolosi, F., Della Vecchia, P., Ciliberti, D., and Cusati, V., “Fuselage aerodynamic
prediction methods,” Aerospace Science and Technology, Vol. 55, 2016, pp. 332–343.

238

APPENDICES

239

APPENDIX A

LINEAR AERODYNAMIC MODEL BUILDUP

The process for developing a linear aerodynamic model using the approach given by

Phillips [8] is detailed here. The longitudinal force and moment coefficients for the baseline

and BIRE aircraft are discussed in detail, while the procedure for doing the same with the

lateral coefficients is left to be completed. Future analysis can be performed by taking the

procedure outlined here, calculating the coefficients required for Eqs. (4.27)–(4.31), and

comparing the results obtained to those given in Chapter 5 for the nonlinear model.

A.1 Longitudinal Force and Moment Coefficients

The longitudinal coefficients will be examined first by referring to Fig. A.1. Assuming

the horizontal is mounted with the root chord aligned with the fuselage reference axis, the

lift coefficient on the main wing, horizontal tail, and fuselage can be approximated as

CLw ≡
Lw

1
2ρV

2Sw
= CLw,α

(
α+ α0w − αL0w

+ 2q
lw
c̄w

)
(A.1)

CLh ≡
Lh

1
2ρV

2Sh
= CLh,α

(
α+ α0h − αL0h

− εd + 2q
lh
c̄w

+ δe

)
(A.2)

CLf ≡
Lf

1
2ρV

2Sf
= CLf ,α

(
α+ 2q̄

lf
c̄w

)
(A.3)

In Eqs. (A.1)–(A.3), several new terms are introduced. The lift slopes of the main

wing, horizontal tail, and fuselage are given by CLw,α, CLh,α, and CLf ,α, respectively. As

defined in Chapter 4, α represents the angle of attack, while α0 represents the mounting

angle of the wing, and αL0 is the zero-lift angle of attack of each lifting surface. The term εd

is the downwash angle induced on the horizontal tail by the main wing and the terms q and

δe have been defined previously as the nondimensional pitch rate and elevator deflection

angle. Three longitudinal reference lengths, shown in Fig. A.2, are defined as the distances

240

between the center of gravity and the aerodynamic center of the main wing, lw, horizontal

tail, lh, and center of pressure of the fuselage, lh. Finally, the reference area of the fuselage

is denoted Sf .

𝛼

𝛾
𝑉

𝑊

𝐿𝑓

𝐷𝑓

𝐿𝑤

𝐷𝑤
𝐿ℎ

𝑚𝑤

𝑚ℎ
𝐷ℎ

Fig. A.1: A free-body diagram of the longitudinal forces and moments acting on the baseline
aircraft.

Fig. A.2: Longitudinal reference lengths for the baseline aircraft.

By defining the total lift coefficient as the sum of the components in Eqs. (A.1)–(A.3)

CL =
L

1
2ρV

2Sw
≡ CLw +

Sh
Sw

CLh +
Sf
Sw

CLf (A.4)

and scaling the lift produced by the horizontal tail and fuselage by the appropriate ratios

for a consistent nondimensionalization, the total lift coefficient on the baseline aircraft can

241

be written in the form given in Eq. (4.35). The individual coefficients are then given as

CL0 = CLw,α
(
α0w − αL0w

)
+
Sh
Sw

CLh,α

(
α0h − αL0h

− εd0
)

(A.5)

CL,α = CLw,α +
Sh
Sw

CLh,α (1− εd,α) +
Sf
Sw

CLf ,α (A.6)

CL,q =
2lw
c̄w

CLw,α +
2Shlh
Sw c̄w

CLh,α +
2Sf lf
Sw c̄w

CLf ,α (A.7)

CL,δe =
Sh
Sw

CLh,α (A.8)

where the downwash angle, εd has been defined as a linear function in angle of attack

εd = εd0 + εd,αα (A.9)

At incompressible, subsonic speeds, the lift slope of a lifting surface can be estimated

based upon the lift slope of the airfoil section as suggested by Phillips [85]

CL,α =
C̃L,ακLα

[1 + C̃L,α/(πRA)](1 + κL)
(A.10)

where κLα and κL are empirical factors relating to the three-dimensional effects of sweep

and lift slope respectively. These coefficients are functions of taper ratio and aspect ratio;

therefore, referring to Table 3.2, κL and κLα can be estimated to be the values in Table

A.1 [24,85].

Parameter Main Wing Horizontal Tail Fuselage

Lift Factor, κL 0.011 0.01 –
Sweep Factor, κLα 1.06 1.08 –

Surface Lift Slope, CL,α [1/rad] 3.953 3.454 1.806

Table A.1: Lift slope parameters for incompressible flow.

The theoretical lift slope for a thin airfoil is quite accurate for speeds below Mach 0.3;

however, since most fighter aircraft spend a significant amount of time at velocities above

Mach 0.3, some level of compressibility should be accounted for when analyzing this aircraft.

242

Thus, the compressibility correction given in Eq. (4.26) can be used to adjust the lift slopes

for compressibility effects.

The lift slope of the fuselage can be estimated using a rough empirical approximation

suggested by Hoak and Finck [67,137]

CLf ,α ≈ 2

[
1− 1.76

(
df
cf

)3/2
]

(A.11)

This empirical estimate is a function of the maximum cross-sectional area of the fuselage

Sf , the length of the fuselage, cf , and the diameter of a circle defined as

df ≡ 2
√
Sf/π (A.12)

Returning to Fig. 3.2a, the maximum cross-sectional area is approximately at the fuselage

station where the engine inlet begins. The front-view in Fig. 3.2a shows that this area

is approximately elliptical in nature, with the semi-major axis equal to the distance from

the centerline of the aircraft to the initial spanwise location of the rudder. The semi-minor

axis equal to the distance from the centerline to the root of the stabilator. Thus, the

approximate maximum cross-sectional area of the fuselage is Sf = 39.995 ft2, the length of

the fuselage is cf = 49.34 ft, and the diameter of the circle given by df = 7.136 ft. This

gives an estimate for the lift slope of the fuselage as given in Table A.1. To account for the

effects of compressibility at subsonic speeds, the simple Prandtl-Glauert correction, given

in Eq. (4.25), will be used.

In Chapter 3, it was assumed that the main wing and horizontal tail had no mount-

ing angle and negligible twist. Under this assumption, the terms α0w and α0h disappear

from Eq. (A.6) and the terms αL0w
and αL0h

are equivalent to the section values of the

corresponding airfoils as given in Table 5.5.

The downwash angle εd acting on the horizontal tail can be approximated as suggested

by Phillips [138]

εd ≈
κvκpκs
κb

CLw
RAw

= εd0 + εd,αα (A.13)

243

where

εd0 =
κvκpκs
κb

CLw |α=0

RA
=
κvκpκs
κb

CLw,α (α0w − αL0w)

RA
(A.14)

and

εd,α =
κvκpκs
κb

CLw,α
RA

(A.15)

The factor κv is a correction factor for the vortex strength of the main wing that adjusts

its value compared to the strength of the vortices on an elliptic wing with the same lift

coefficient and aspect ratio. To correct for the spanwise location of the wingtip vortices, κb

is used. Finally, the term κp adjusts the downwash experienced by the tail by taking into

account its position relative to the wing and κs adjusts the downwash by factoring in the

sweep of the main wing.

The various factors listed above for calculating the downwash are given by Phillips and

included in Table A.2 [138]. Also included are the resulting incompressible downwash angle,

εd0 , and the incompressible downwash slope, εd,α calculated from Eqs. (A.14) and (A.15),

respectively. Since both of the downwash coefficients is a function of the lift slope of the

main wing, they can be corrected for compressibility effects using Eq. (4.26).

Parameter Value

Wingtip Vortex Strength Factor, κv 1.05
Wingtip Vortex Span Factor, κb 0.74

Nondimensional Downstream Distance, x 1.199
Nondimensional Vertical Distance, y 0

Tail Position Factor, κp 0.441
Wing Sweep Factor, κs 1.037

Incompressible Downwash Angle, εd0 [rad] 0.019
Incompressible Downwash Slope, εd,α [1/rad] 0.855

Table A.2: Factors used for calculating the downwash induced by the main wing.

The final parameters that must be defined to solve for Eqs. (A.5)–(A.8) are the geo-

metric reference lengths In Table 3.2, the x -coordinate of the quarter-chord of each lifting

surface is noted. For each lifting surface, the location of the aerodynamic center will be

shifted due to sweep. This axial shift in the location of the aerodynamic center relative to

244

the aerodynamic center at the root of an unswept wing can be estimated using a relation

suggested by Phillips [85]

xac − xacroot

cg
≈ κacRA

(z̄ac

b

)
Λ=0

tan Λc/4 (A.16)

where κac is an empirical sweep correction factor. The term (z̄ac/b)Λ=0 represents the

semispan location of the aerodynamic center of a wing with zero sweep and linear taper

of the same planform as the swept wing being analyzed. Note that this shift is made in

reference to the mean geometric chord of each surface, cg, and that a positive value for

xac−xacroot
cg

represents a backward shift (in the negative body-fixed x -direction).

Estimates for the parameters required in Eq. (A.16) can be obtained from plots showing

each parameter as a function of taper ratio and aspect ratio [24, 85, 139]. Results of these

estimates are shown in Table A.3 for each lifting surface. From this information, the moment

arm lengths in Eqs. (A.5)–(A.8) for the main wing and horizontal tail can be calculated as

lw = xcgw −
(

(xac − xacroot)

cg

)
w

cgw (A.17)

and

lh = |xcgh |+
(

(xac − xacroot)

cg

)
h

cgh (A.18)

Similarly, the moment arm for the vertical tail will be used in later calculations and is given

as

lv = |xcgv |+
(

(xac − xacroot)

cg

)
v

cgv (A.19)

In Fig. A.2, lf represents the distance from the center of gravity of the aircraft to the

center of pressure of the fuselage. The location of the center of pressure of the fuselage

can be roughly estimated as half the distance between the nose of the fuselage and the

location of maximum cross section of the fuselage as suggested by Hoak and Finck [67,137].

Assuming that the leading-edge of the main wing root is located at approximately the same

245

Parameter Main Wing Horizontal Tail Vertical Tail

Unswept Span Fraction,
(
z̄ac
b

)
Λc/4=0

0.207 .212 0.213

Wing Sweep Factor, κac 1.12 1.10 0.93

AC Shift Fraction,
(xac−xacroot)

cg
0.435 0.308 0.266

Table A.3: Parameters for estimating axial shift in location of the aerodynamic center for
each lifting surface.

fuselage station as the location of maximum cross sectional area, the distance to the center

of pressure can be calculated as

lf ≈
1

2
(cf − xLE−LEh − crh) (A.20)

Table A.4 shows the values for the moments arms contained in Eqs. (A.5)–(A.8) as calcu-

lated using Eqs. (A.17)–(A.20).

Moment Arm Value

Main Wing Moment Arm, lw [ft] 0.514
Horizontal Tail Moment Arm, lh [ft] 11.419

Vertical Tail Moment Arm, lv [ft] 7.273
Fuselage Center of Pressure Moment Arm, lf [ft] 10.628

Table A.4: Estimated moment arm values from Fig. A.2.

From the information gathered to this point, values for CL0 , CL,α, CL,q, and CL,δe can

be calculated assuming incompressible flow. When compressibility corrections are required,

the total lift coefficients, given in Eq. (4.35), can be modified using Eq. (4.26). The

incompressible lift coefficient components using the analytical solutions presented thus far

are given in Table A.5.

The drag coefficient can be built in a similar manner by considering the induced drag

acting on each of the lifting surfaces. These are written as

CDw =
Dw

1
2ρV

2Sw
=

C2
Lw

πRAwesw
(A.21)

246

Linear Coefficients
Component Contributions

Main Wing Horizontal Tail Fuselage Total

CL0 0.088 -0.014 0 0.074
CL,α 3.953 0.106 0.241 4.300
CL,q 0.359 1.479 0.452 2.290
CL,δe 0 0.733 0 0.733

Table A.5: Component lift coefficients used in the linear aerodynamic model for the baseline
aircraft.

and

CDh =
Dh

1
2ρV

2Sh
=

C2
Lh

πRAhesh
(A.22)

The drag contribution from the fuselage lift will be very small when compared to that

produced by the main wing and horizontal tail. Additionally, fuselage lift drag is generally

not considered as a prominent part of many drag build-up analyses and is less important

in this analysis than the drag produced by the wing and tail [140, 141]. Therefore, its

contribution will be ignored here. Summing Eqs. (A.21) and (A.22) gives the total drag

CD = CDw +
Sh
Sw

CDh (A.23)

Keeping only the linear terms from evaluating the components of Eq. (A.23) and

writing it in the form given by Eq. (4.42) gives

CD0 =
1

πRAwesw
C2
Lw,α

(
α0w − αL0w

)2
+

Sh
SwπRAhesh

C2
Lh,α

(
α0h − αL0h

− εd0
)2

(A.24)

CD,α = 2
1

πRAwesw
C2
Lw,α

(
α0w − αL0w

)
+ 2

Sh
SwπRAhesh

C2
Lh,α

(1− εd,α)
(
α0h − αL0h

− εd0
)

(A.25)

CD,q = 4
lw

c̄wπRAwesw
C2
Lw,α

(
α0w − αL0w

)
+ 4

Shlh
Sw c̄wπRAhesh

C2
Lh,α

(
α0h − αL0h

− εd0
)

(A.26)

CD,δe = 2
Sh

SwπRAhesh
C2
Lh,α

(
α0h − αL0h

− εd0
)

(A.27)

Each of these variables has been previously defined and given a value, except for the drag

247

efficiency factor, defined in Eq. (4.41) using the induced drag factor κD. Both of these are

included in Table A.6, though it can be easily noted that these approximations will have

very little effect on the resulting drag coefficients. The incompressible drag components

are included in Table A.7 and listed according to the contributions of the main wing and

horizontal tail.

Parameter Main Wing Horizontal Tail Vertical Tail

Induced Drag Factor, κD 0.005 0.002 0.001
Drag Efficiency Factor, es 0.995 0.998 0.999

Table A.6: Induced drag parameters for incompressible flow.

Linear Coefficients
Component Contributions

Main Wing Horizontal Tail Total

CD0 0.0008 0.0001 0.001
CD,α 0.0740 -0.0021 0.0719
CD,q 0.0067 -0.0292 -0.0225
CD,δe 0 -0.0145 0.0145

Table A.7: Component drag coefficients used in the linear aerodynamic model for the
baseline aircraft.

Returning again to Fig. A.1, the sum of the pitching moments about the center of

gravity, considered positive when causing the nose to pitch up, are given as

Cm ≡
m

1
2ρV

2Sw c̄w
= Cmw +

lw
c̄w
CLw +

Sf lf
Sw c̄w

CLf +
Shch
Sw c̄w

Cmh −
Shlh
Sw c̄w

CLh (A.28)

The natural pitching moment about the horizontal tail is augmented by the pitching moment

created through stabilator deflection and, therefore,

Cmh = Cmh0 + Cmh,δeδe (A.29)

248

Substitution of this relationship and those in Eqs. (A.1) and (A.2) yields the relationship

in Eq. (4.38) with

Cm0 = Cmw0 +
lw
c̄w
CLw,α

(
α0w − αL0w

)
+
Shch
Sw c̄w

Cmh0 −
Shlh
Sw c̄w

CLh,α

(
α0h − αL0h

− εd0
)

(A.30)

Cm,α =
lw
c̄w
CLw,α +

Sf lf
Sw c̄w

CLf ,α −
Shlh
Sw c̄w

CLh,α (1− εd,α) (A.31)

Cm,q = 2
l2w
c̄2
w

CLw,α + 2
Sf l

2
f

Sw c̄2
w

CLf ,α − 2
Shl

2
h

Sw c̄2
w

CLh,α (A.32)

Cm,δe =
Shch
Sw c̄w

Cmh,δe −
Shlh
Sw c̄w

CLh,α (A.33)

Neglecting twist in the main wing and horizontal tail yields a pitching moment about

the aerodynamic center of the wing equivalent to the pitching moment of the airfoil section

about the section aerodynamic center [85]. This means that the section quarter-chord

pitching moment of the NACA 64A204 airfoil, equivalent to the zero-lift pitching moment

in Table 5.5, can be used to represent Cmw0 and that Cmh0 = 0. All that remains is

to estimate the change in pitching moment with stabilator deflection of the horizontal

tail, Cmh,δe . From thin airfoil theory, the section moment slope with respect to stabilator

deflection is calculated as [15]

C̃m,δ = −1

2

π∫
θ=θf

[cos (2θ)− cos θ] dθ =
sin (2θf)− 2 sin θf

4
(A.34)

where θf is the location of the flap in the change of variable given in Eq. (5.3). For an

all-moving tail, θf = π and therefore the resulting pitching moment slope with respect to

deflection on the horizontal tail is Cmh,δe = 0.

Again, values for Cm0 , Cm,α, Cm,q, and Cm,δe can be calculated assuming incompressible

flow, with compressibility corrections given via Eq. (4.26). These coefficient components

are calculated and presented in Table A.8. With this, the longitudinal aerodynamic force

and moment coefficients have been analyzed for the baseline aircraft. Next, the lateral

aerodynamic force and moment coefficients will be analyzed in much the same way.

249

Linear Coefficients
Component Contributions

Main Wing Horizontal Tail Fuselage Total

Cm0 -0.031 0.014 0 -0.017
Cm,α 0.179 -0.107 0.226 0.298
Cm,q 0.016 -1.492 0.425 -1.051
Cm,δe 0 -0.740 0 -0.740

Table A.8: Component pitching moment coefficients used in the linear aerodynamic model
for the baseline aircraft.

A.2 Lateral Force and Moment Coefficients

The lateral force and moment coefficients could be generated in the same way as the

longitudinal forces and moments were previously. These effects are generally coupled with

the longitudinal coefficients, however, so their build-up is slightly more complex. Phillips

uses a method of “deltas” to approximate these coefficients, which can give appropriate

preliminary results. The remaining coefficients in Eqs. (4.36), (4.37), and (4.39) could be

approximated using either method, and then physical intuition would be used to identify

how each coefficient varies with the BIRE rotation angle. This can be the focus of future

work, and a comparison between the work in this dissertation and the results of the linear

aerodynamic model could indicate the effect of non-linearities in the trim solution and other

analyses.

250

APPENDIX B

MACHUPX FILES

B.1 Baseline Aircraft Input File

1 {

2 "tag" : "Baseline Input File",

3 "run" : {

4 "display_wireframe" : {

5 "show_legend" : true,

6 "filename" : "./baseline_wireframe.png"

7 },

8 "forces" : {

9 "non_dimensional" : true

10 },

11 "pitch_trim" : {

12 "set_state_to_trim" : true

13 },

14 "aero_derivatives" : {},

15 "distributions" : {

16 "filename" : "baseline_distributions",

17 "make_plots" : ["section_CL"]

18 },

19 "aero_center" : {},

20 "stl" : {}

21 },

22 "solver" : {

23 "type" : "linear",

24 "convergence" : 1e-8,

25 "relaxation" : 0.9,

26 "max_iterations" : 1000

27 },

28 "units" : "English",

29 "scene" : {

30 "atmosphere" : {

31 "rho": "standard"

32 },

33 "aircraft" : {

34 "F16" : {

35 "file" : "baseline_airplane.json",

36 "state" : {

37 "velocity" : 222.5211,

38 "alpha" : 0.0,

39 "beta" : 0.0

40 },

41 "control_state" : {

42 "elevator" : 0.0,

43 "rudder" : 0.0,

251

44 "aileron" : 0.0

45 }

46 }

47 }

48 }

49 }

252

B.2 Baseline Aircraft Airplane File

1 {

2 "CG": [0.0, 0.0, 0.0],

3 "weight": 20500.0,

4 "reference": {

5 "area": 300,

6 "longitudinal_length": 11.32,

7 "lateral_length": 30.0

8 },

9 "controls": {

10 "aileron": {

11 "is_symmetric": false

12 },

13 "elevator": {

14 "is_symmetric": true

15 },

16 "rudder": {

17 "is_symmetric": false

18 }

19 },

20 "airfoils": {

21 "NACA_64A204": {

22 "type": "linear",

23 "aL0": -0.02223,

24 "CLa": 6.28319,

25 "CmL0": -0.03476,

26 "Cma": 0.0,

27 "CD0": 0.00368,

28 "CD1": -0.00132,

29 "CD2": 0.00624,

30 "geometry": {

31 "outline_points": "64A204.txt"

32 }

33 },

34 "NACA_0005": {

35 "type": "linear",

36 "aL0": 0.0,

37 "CLa": 6.28319,

38 "CmL0": 0.0,

39 "Cma": 0.0,

40 "CD0": 0.00452,

41 "CD1": -0.00239,

42 "CD2": 0.00762,

43 "geometry": {

44 "NACA": "0005"

45 }

46 },

47 "NACA_0004": {

48 "type": "linear",

49 "aL0": 0.0,

50 "CLa": 6.28319,

51 "CmL0": 0.0,

52 "Cma": 0.0,

53 "CD0": 0.00452,

54 "CD1": -0.00275,

253

55 "CD2": 0.00821,

56 "geometry": {

57 "NACA": "0004"

58 }

59 }

60 },

61 "wings": {

62 "main_wing": {

63 "ID": 1,

64 "side": "both",

65 "is_main": true,

66 "connect_to": {

67 "ID": 0,

68 "dx": 4.8618

69 },

70 "semispan": 15.0,

71 "sweep": 32.0,

72 "chord": [[0.0, 16.2933], [1.0, 3.7067]],

73 "twist": 0.0,

74 "dihedral": 0.0,

75 "airfoil": "NACA_64A204",

76 "control_surface": {

77 "root_span": 0.23,

78 "tip_span": 0.76,

79 "chord_fraction": [[0.23, 0.22], [0.76, 0.22]],

80 "control_mixing": {

81 "aileron": 1.0

82 }

83 },

84 "grid": {

85 "N": 80,

86 "reid_corrections": true

87 }

88 },

89 "h_stab": {

90 "ID": 2,

91 "side": "both",

92 "is_main": false,

93 "connect_to": {

94 "ID": 0,

95 "dx": -13.1

96 },

97 "semispan": 9.2,

98 "sweep": [[0.0, 0.0],[0.37, 0.0],

99 [0.37, 32.0],[1.0, 32.0]],

100 "chord": [[0.0,7.9833], [0.37, 7.9833],

101 [0.37, 7.9833], [1.0, 3.1167]],

102 "dihedral": [[0.0, 0.0], [0.37, 0.0],

103 [0.37, -10], [1.0, -10]],

104 "airfoil": "NACA_0005",

105 "control_surface": {

106 "root_span": 0.37,

107 "tip_span": 1.0,

108 "chord_fraction": 1.0,

109 "saturation_angle": 25.0,

110 "control_mixing": {

254

111 "elevator": 1.0,

112 "aileron": 0.25

113 }

114 },

115 "grid": {

116 "N": 80,

117 "reid_corrections": true

118 }

119 },

120 "v_stab": {

121 "ID": 3,

122 "side": "left",

123 "is_main": false,

124 "connect_to": {

125 "ID": 0,

126 "dx": -8.8

127 },

128 "semispan": 10.5,

129 "sweep": [[0.0, 0.0], [0.2, 0.0],

130 [0.2, 38.0], [1.0, 38.0]],

131 "chord": [[0.0, 9.06], [0.2,9.06],

132 [0.2, 9.06], [1.0, 3.939]],

133 "dihedral": 90.0,

134 "airfoil": "NACA_0004",

135 "control_surface": {

136 "root_span": 0.36,

137 "tip_span": 0.95,

138 "chord_fraction": [[0.36, 0.32], [0.95, 0.32]],

139 "saturation_angle": 30,

140 "control_mixing": {

141 "rudder": -1.0

142 }

143 },

144 "grid": {

145 "N": 80,

146 "reid_corrections": true

147 }

148 }

149 }

150 }

255

B.3 BIRE Aircraft Input File

1 {

2 "tag" : "BIRE Input File",

3 "run" : {

4 "display_wireframe" : {

5 "show_legend" : true,

6 "filename" : "./BIRE_wireframe.png"

7 },

8 "forces" : {

9 "non_dimensional" : true

10 },

11 "pitch_trim" : {

12 "set_state_to_trim" : true

13 },

14 "aero_derivatives" : {},

15 "distributions" : {

16 "filename" : "BIRE",

17 "make_plots" : ["section_CL"]

18 },

19 "aero_center" : {},

20 "stl" : {}

21 },

22 "solver" : {

23 "type" : "linear",

24 "convergence" : 1e-10,

25 "relaxation" : 0.9,

26 "max_iterations" : 1000

27 },

28 "units" : "English",

29 "scene" : {

30 "atmosphere" : {

31 "rho": "standard"

32 },

33 "aircraft" : {

34 "BIRE" : {

35 "file" : "BIRE_airplane.json",

36 "state" : {

37 "velocity" : 222.5211,

38 "alpha" : 0.0,

39 "beta" : 0.0

40 },

41 "control_state" : {

42 "elevator" : 0.0,

43 "aileron" : 0.0

44 }

45 }

46 }

47 }

48 }

256

B.4 BIRE Aircraft Airplane File

1 {

2 "CG": [0.0, 0.0, 0.0],

3 "weight": 20500.0,

4 "reference": {

5 "area": 300.0,

6 "longitudinal_length": 11.32,

7 "lateral_length": 30.0

8 },

9 "controls": {

10 "aileron": {

11 "is_symmetric": false

12 },

13 "elevator": {

14 "is_symmetric": true

15 },

16 "rudder": {

17 "is_symmetric": false

18 }

19 },

20 "airfoils": {

21 "NACA_64A204": {

22 "type": "linear",

23 "aL0": -0.02223,

24 "CLa": 6.28319,

25 "CmL0": -0.03476,

26 "Cma": 0.0,

27 "CD0": 0.00368,

28 "CD1": -0.00132,

29 "CD2": 0.00624,

30 "geometry": {

31 "outline_points": "64A204.txt"

32 }

33 },

34 "NACA_0005": {

35 "type": "linear",

36 "aL0": 0.0,

37 "CLa": 6.28319,

38 "CmL0": 0.0,

39 "Cma": 0.0,

40 "CD0": 0.00452,

41 "CD1": -0.00239,

42 "CD2": 0.00762,

43 "geometry": {

44 "NACA": "0005"

45 }

46 },

47 "NACA_0004": {

48 "type": "linear",

49 "aL0": 0.0,

50 "CLa": 6.28319,

51 "CmL0": 0.0,

52 "Cma": 0.0,

53 "CD0": 0.00452,

54 "CD1": -0.00275,

257

55 "CD2": 0.00821,

56 "geometry": {

57 "NACA": "0004"

58 }

59 }

60 },

61 "wings": {

62 "main_wing": {

63 "ID": 1,

64 "side": "both",

65 "is_main": true,

66 "connect_to": {

67 "ID": 0,

68 "dx": 4.8618

69 },

70 "semispan": 15.0,

71 "sweep": 32.0,

72 "chord": [[0.0, 16.2933], [1.0, 3.7067]],

73 "twist": 0.0,

74 "dihedral": 0.0,

75 "airfoil": "NACA_64A204",

76 "control_surface": {

77 "root_span": 0.23,

78 "tip_span": 0.76,

79 "chord_fraction": [[0.23, 0.22], [0.76, 0.22]],

80 "control_mixing": {

81 "aileron": 1.0

82 }

83 },

84 "grid": {

85 "N": 80,

86 "reid_corrections": true

87 }

88 },

89 "BIRE_left": {

90 "ID": 2,

91 "side": "left",

92 "is_main": false,

93 "connect_to": {

94 "ID": 0,

95 "dx": -13.1

96 },

97 "semispan": 9.2,

98 "sweep": [[0.0, 0.0], [0.37, 0.0],

99 [0.37, 32.0], [1.0, 32.0]],

100 "chord": [[0.0, 7.9833], [0.37, 7.9833],

101 [0.37, 7.9833], [1.0, 3.1167]],

102 "dihedral": 0.0,

103 "airfoil": "NACA_0005",

104 "control_surface": {

105 "root_span": 0.37,

106 "tip_span": 1.0,

107 "chord_fraction": 1.0,

108 "saturation_angle": 25.0,

109 "control_mixing": {

110 "elevator": 1.0,

258

111 "aileron": 0.25

112 }

113 },

114 "grid": {

115 "N": 80,

116 "reid_corrections": true,

117 "wing_ID": 1

118 }

119 },

120 "BIRE_right": {

121 "ID": 3,

122 "side": "right",

123 "is_main": false,

124 "connect_to": {

125 "ID": 0,

126 "dx": -13.1

127 },

128 "semispan": 9.2,

129 "sweep": [[0.0, 0.0], [0.37, 0.0],

130 [0.37, 32.0], [1.0, 32.0]],

131 "chord": [[0.0, 7.9833], [0.37, 7.9833],

132 [0.37, 7.9833], [1.0, 3.1167]],

133 "dihedral": 0.0,

134 "airfoil": "NACA_0005",

135 "control_surface": {

136 "root_span": 0.37,

137 "tip_span": 1.0,

138 "chord_fraction": 1.0,

139 "saturation_angle": 25.0,

140 "control_mixing": {

141 "elevator": 1.0,

142 "aileron": 0.25

143 }

144 },

145 "grid": {

146 "N": 80,

147 "reid_corrections": true,

148 "wing_ID": 1

149 }

150 }

151 }

152 }

259

B.5 Example BIRE Rotated Tail Airplane File (δB = 10◦)

1 {

2 "CG": [0.0, 0.0, 0.0],

3 "weight": 20500.0,

4 "reference": {

5 "area": 300.0,

6 "longitudinal_length": 11.32,

7 "lateral_length": 30.0

8 },

9 "controls": {

10 "aileron": {

11 "is_symmetric": false

12 },

13 "elevator": {

14 "is_symmetric": true

15 },

16 "rudder": {

17 "is_symmetric": false

18 }

19 },

20 "airfoils": {

21 "NACA_64A204": {

22 "type": "linear",

23 "aL0": -0.02223,

24 "CLa": 6.28319,

25 "CmL0": -0.03476,

26 "Cma": 0.0,

27 "CD0": 0.00368,

28 "CD1": -0.00132,

29 "CD2": 0.00624,

30 "geometry": {

31 "outline_points": "64A204.txt"

32 }

33 },

34 "NACA_0005": {

35 "type": "linear",

36 "aL0": 0.0,

37 "CLa": 6.28319,

38 "CmL0": 0.0,

39 "Cma": 0.0,

40 "CD0": 0.00452,

41 "CD1": -0.00239,

42 "CD2": 0.00762,

43 "geometry": {

44 "NACA": "0005"

45 }

46 },

47 "NACA_0004": {

48 "type": "linear",

49 "aL0": 0.0,

50 "CLa": 6.28319,

51 "CmL0": 0.0,

52 "Cma": 0.0,

53 "CD0": 0.00452,

54 "CD1": -0.00275,

260

55 "CD2": 0.00821,

56 "geometry": {

57 "NACA": "0004"

58 }

59 }

60 },

61 "wings": {

62 "main_wing": {

63 "ID": 1,

64 "side": "both",

65 "is_main": true,

66 "connect_to": {

67 "ID": 0,

68 "dx": 4.8618

69 },

70 "semispan": 15.0,

71 "sweep": 32.0,

72 "chord": [[0.0, 16.2933], [1.0, 3.7067]],

73 "twist": 0.0,

74 "dihedral": 0.0,

75 "airfoil": "NACA_64A204",

76 "control_surface": {

77 "root_span": 0.23,

78 "tip_span": 0.76,

79 "chord_fraction": [[0.23, 0.22], [0.76, 0.22]],

80 "control_mixing": {

81 "aileron": 1.0

82 }

83 },

84 "grid": {

85 "N": 80,

86 "reid_corrections": true

87 }

88 },

89 "BIRE_left": {

90 "ID": 2,

91 "side": "left",

92 "is_main": false,

93 "connect_to": {

94 "ID": 0,

95 "dx": -13.1

96 },

97 "semispan": 9.2,

98 "sweep": [[0.0, 0.0], [0.37, 0.0],

99 [0.37, 32.0], [1.0, 32.0]],

100 "chord": [[0.0, 7.9833], [0.37, 7.9833],

101 [0.37, 7.9833], [1.0, 3.1167]],

102 "dihedral": -10.0,

103 "airfoil": "NACA_0005",

104 "control_surface": {

105 "root_span": 0.37,

106 "tip_span": 1.0,

107 "chord_fraction": 1.0,

108 "saturation_angle": 25.0,

109 "control_mixing": {

110 "elevator": 1.0,

261

111 "aileron": 0.25

112 }

113 },

114 "grid": {

115 "N": 80,

116 "reid_corrections": true,

117 "wing_ID": 1

118 }

119 },

120 "BIRE_right": {

121 "ID": 3,

122 "side": "right",

123 "is_main": false,

124 "connect_to": {

125 "ID": 0,

126 "dx": -13.1

127 },

128 "semispan": 9.2,

129 "sweep": [[0.0, 0.0], [0.37, 0.0],

130 [0.37, 32.0], [1.0, 32.0]],

131 "chord": [[0.0, 7.9833], [0.37, 7.9833],

132 [0.37, 7.9833], [1.0, 3.1167]],

133 "dihedral": 10.0,

134 "airfoil": "NACA_0005",

135 "control_surface": {

136 "root_span": 0.37,

137 "tip_span": 1.0,

138 "chord_fraction": 1.0,

139 "saturation_angle": 25.0,

140 "control_mixing": {

141 "elevator": 1.0,

142 "aileron": 0.25

143 }

144 },

145 "grid": {

146 "N": 80,

147 "reid_corrections": true,

148 "wing_ID": 1

149 }

150 }

151 }

152 }

262

B.6 Other JSON Files

BIRE Inertia Input File

1 {

2 "Ixx": {

3 "A": 0.0,

4 "w": 0.0,

5 "phi": 0.0,

6 "z": 9280.0

7 },

8 "Iyy": {

9 "A": -160.80701824266598,

10 "w": 2.0,

11 "phi": 1.5707963267948966,

12 "z": 58287.86099859672

13 },

14 "Izz": {

15 "A": 160.83498082043252,

16 "w": 2.0,

17 "phi": 1.5707963267948966,

18 "z": 65605.60269083234

19 },

20 "Ixy": {

21 "A": 0.0,

22 "w": 0.0,

23 "phi": 0.0,

24 "z": 0.0

25 },

26 "Ixz": {

27 "A": 0.0,

28 "w": 0.0,

29 "phi": 0.0,

30 "z": -5.0

31 },

32 "Iyz": {

33 "A": -160.5850207505512,

34 "w": 2.0,

35 "phi": 0.0,

36 "z": 160.5850207505512

37 }

38 }

263

Baseline Aerodynamic Model

1 {

2 "CL": {

3 "CL_0": 0.0456,

4 "CL_alpha": 3.5791,

5 "CL_qbar": 3.3916,

6 "CL_de": 0.5652

7 },

8 "CS": {

9 "CS_beta": -0.9009,

10 "CS_pbar": -0.0153,

11 "CS_Lpbar": 0.3318,

12 "CS_rbar": 0.4357,

13 "CS_da": 0.0656,

14 "CS_dr": 0.1698

15 },

16 "CD": {

17 "CD_0": 0.0218,

18 "CD_L": -0.034,

19 "CD_L2": 0.1834,

20 "CD_S2": 0.6081,

21 "CD_Spbar": 0.0768,

22 "CD_qbar": 0.0368,

23 "CD_Lqbar": 0.775,

24 "CD_L2qbar": -0.1844,

25 "CD_Srbar": -0.7239,

26 "CD_de": -0.0032,

27 "CD_Lde": 0.1775,

28 "CD_de2": 0.2854,

29 "CD_Sda": 0.1118,

30 "CD_Sdr": 0.1604

31 },

32 "Cell": {

33 "Cl_beta": -0.0786,

34 "Cl_pbar": -0.3182,

35 "Cl_rbar": 0.0469,

36 "Cl_Lrbar": 0.1067,

37 "Cl_da": -0.0741,

38 "Cl_dr": 0.0257

39 },

40 "Cm": {

41 "Cm_0": -0.0097,

42 "Cm_alpha": 0.1766,

43 "Cm_qbar": -4.8503,

44 "Cm_de": -0.5881

45 },

46 "Cn": {

47 "Cn_beta": 0.2426,

48 "Cn_pbar": 0.0131,

49 "Cn_Lpbar": -0.1005,

50 "Cn_rbar": -0.1787,

51 "Cn_da": -0.0276,

52 "Cn_Lda": 0.0077,

53 "Cn_dr": -0.0899

264

54 }

55 }

265

BIRE Aerodynamic Model

1 {

2 "CL": {

3 "CL_0": {

4 "A": -0.014442279065396085,

5 "w": 2.0,

6 "phi": 1.5707963267948966,

7 "z": 0.062077939554914544,

8 "multiplier": 1.0,

9 "delta": 0.0

10 },

11 "CL_alpha": {

12 "A": 0.10910386001589227,

13 "w": 2.0,

14 "phi": 1.5707963267948966,

15 "z": 3.54694564679198,

16 "multiplier": 1.0,

17 "delta": 0.0

18 },

19 "CL_beta": {

20 "A": -0.7215865846558561,

21 "w": 2.0,

22 "phi": 0.0,

23 "z": 0.0,

24 "multiplier": 1.0,

25 "delta": 0.0

26 },

27 "CL_pbar": {

28 "A": 0.0,

29 "w": 0.0,

30 "phi": 0.0,

31 "z": 0.0,

32 "multiplier": 1.0,

33 "delta": 0.0

34 },

35 "CL_qbar": {

36 "A": 2.0261831569744433,

37 "w": 2.0,

38 "phi": 1.5707963267948966,

39 "z": 1.546911315205368,

40 "multiplier": 1.0,

41 "delta": 0.0

42 },

43 "CL_rbar": {

44 "A": 0.6797873262695825,

45 "w": 2.0,

46 "phi": 0.0,

47 "z": 0.0,

48 "multiplier": 1.0,

49 "delta": 0.0

50 },

51 "CL_da": {

52 "A": 0.0,

53 "w": 0.0,

54 "phi": 0.0,

266

55 "z": -0.0006604559803619685,

56 "multiplier": 1.0,

57 "delta": 0.0

58 },

59 "CL_de": {

60 "A": 0.7646092720773868,

61 "w": 1.0,

62 "phi": 1.5707963267948966,

63 "z": 0.0,

64 "multiplier": 1.0,

65 "delta": -0.1822

66 }

67 },

68 "CS": {

69 "CS_0": {

70 "A": -0.010598861662413759,

71 "w": 2.0,

72 "phi": 0.0,

73 "z": 0.0,

74 "multiplier": 1.0,

75 "delta": 0.0

76 },

77 "CS_alpha": {

78 "A": 0.18338959119803913,

79 "w": 2.0,

80 "phi": 0.0,

81 "z": 0.0,

82 "multiplier": 1.0,

83 "delta": 0.0

84 },

85 "CS_beta": {

86 "A": 0.6805478426692505,

87 "w": 2.0,

88 "phi": 1.5707963267948966,

89 "z": -0.6707797852000175,

90 "multiplier": 1.0,

91 "delta": -0.1785

92 },

93 "CS_pbar": {

94 "A": 0.0,

95 "w": 0.0,

96 "phi": 0.0,

97 "z": -0.002241226063773226,

98 "multiplier": 1.0,

99 "delta": 0.0

100 },

101 "CS_Lpbar": {

102 "A": 0.019221962808743775,

103 "w": 2.0,

104 "phi": 1.5707963267948966,

105 "z": 0.22327561055279319,

106 "multiplier": 1.0,

107 "delta": 0.0

108 },

109 "CS_qbar": {

110 "A": 1.9915667103205594,

267

111 "w": 2.0,

112 "phi": 0.0,

113 "z": 0.0,

114 "multiplier": 1.0,

115 "delta": 0.0

116 },

117 "CS_rbar": {

118 "A": -0.6134464898985744,

119 "w": 2.0,

120 "phi": 1.5707963267948966,

121 "z": 0.5975930548706397,

122 "multiplier": 1.0,

123 "delta": 0.0

124 },

125 "CS_da": {

126 "A": 0.001455253803870835,

127 "w": 2.0,

128 "phi": 1.5707963267948966,

129 "z": -0.007582238803361364,

130 "multiplier": 1.0,

131 "delta": -0.0448

132 },

133 "CS_de": {

134 "A": 0.7351623591166163,

135 "w": 1.0,

136 "phi": 0.0,

137 "z": 0.0,

138 "multiplier": 1.0,

139 "delta": 0.0

140 }

141 },

142 "CD": {

143 "CD_0": {

144 "A": 0.0,

145 "w": 0.0,

146 "phi": 0.0,

147 "z": 0.005462920924405871,

148 "multiplier": 1.0,

149 "delta": 0.0154

150 },

151 "CD_L": {

152 "A": 0.0,

153 "w": 0.0,

154 "phi": 0.0,

155 "z": -0.002817424078462198,

156 "multiplier": 1.0,

157 "delta": -0.0304

158 },

159 "CD_L2": {

160 "A": 0.004728784703746916,

161 "w": 4.0,

162 "phi": 1.5707963267948966,

163 "z": 0.10525681876055337,

164 "multiplier": 1.0,

165 "delta": 0.0714

166 },

268

167 "CD_S": {

168 "A": 0.025489272604736844,

169 "w": 2.0,

170 "phi": 0.0,

171 "z": -2.097578362584658e-10,

172 "multiplier": 1.0,

173 "delta": 0.0

174 },

175 "CD_S2": {

176 "A": 0.30818430801791286,

177 "w": 2.0,

178 "phi": 1.5707963267948966,

179 "z": 0.5245693583006585,

180 "multiplier": 1.0,

181 "delta": 0.1118

182 },

183 "CD_pbar": {

184 "A": 0.0,

185 "w": 0.0,

186 "phi": 0.0,

187 "z": 0.0,

188 "multiplier": 1.0,

189 "delta": 0.0

190 },

191 "CD_Spbar": {

192 "A": 0.0,

193 "w": 0.0,

194 "phi": 0.0,

195 "z": 0.001284799139552095,

196 "multiplier": 1.0,

197 "delta": 0.0

198 },

199 "CD_qbar": {

200 "A": 0.0,

201 "w": 0.0,

202 "phi": 0.0,

203 "z": 0.02609587493113088,

204 "multiplier": 1.0,

205 "delta": 0.0

206 },

207 "CD_Lqbar": {

208 "A": 0.38827798378374784,

209 "w": 2.0,

210 "phi": 1.5707963267948966,

211 "z": 0.37002419248695667,

212 "multiplier": 1.0,

213 "delta": 0.0

214 },

215 "CD_L2qbar": {

216 "A": 0.0,

217 "w": 0.0,

218 "phi": 0.0,

219 "z": -0.030344552007313678,

220 "multiplier": 1.0,

221 "delta": 0.0

222 },

269

223 "CD_rbar": {

224 "A": 0.0,

225 "w": 0.0,

226 "phi": 0.0,

227 "z": 0.0,

228 "multiplier": 1.0,

229 "delta": 0.0

230 },

231 "CD_Srbar": {

232 "A": 0.0,

233 "w": 0.0,

234 "phi": 0.0,

235 "z": -0.11463743945164329,

236 "multiplier": 1.0,

237 "delta": 0.0

238 },

239 "CD_da": {

240 "A": -0.007871406214650756,

241 "w": 2.0,

242 "phi": 0.0,

243 "z": 2.129030892933502e-07,

244 "multiplier": 1.0,

245 "delta": 0.0

246 },

247 "CD_Sda": {

248 "A": 0.04923166897259938,

249 "w": 2.0,

250 "phi": 1.5707963267948966,

251 "z": -0.03808239733391901,

252 "multiplier": 1.0,

253 "delta": 0.0

254 },

255 "CD_de": {

256 "A": -0.006108165984475004,

257 "w": 1.0,

258 "phi": 1.5707963267948966,

259 "z": 0.0015277801829500838,

260 "multiplier": 1.0,

261 "delta": 0.0

262 },

263 "CD_Lde": {

264 "A": 0.18303905710766216,

265 "w": 1.0,

266 "phi": 1.5707963267948966,

267 "z": 0.0,

268 "multiplier": 1.0,

269 "delta": 0.0

270 },

271 "CD_de2": {

272 "A": -0.09503141993378963,

273 "w": 1.0,

274 "phi": 1.5707963267948966,

275 "z": 0.4243978489371473,

276 "multiplier": 1.0,

277 "delta": 0.0

278 }

270

279 },

280 "Cell": {

281 "Cl_0": {

282 "A": 0.00018771878360712227,

283 "w": 2.0,

284 "phi": 0.0,

285 "z": 0.0,

286 "multiplier": 1.0,

287 "delta": 0.0

288 },

289 "Cl_alpha": {

290 "A": -0.002255316074959663,

291 "w": 4.0,

292 "phi": 0.0,

293 "z": 0.0,

294 "multiplier": 1.0,

295 "delta": 0.0

296 },

297 "Cl_beta": {

298 "A": 0.001735871361135101,

299 "w": 2.0,

300 "phi": 1.5707963267948966,

301 "z": -0.018155114331983246,

302 "multiplier": 1.0,

303 "delta": -0.0101

304 },

305 "Cl_pbar": {

306 "A": 0.003956243663223544,

307 "w": 2.0,

308 "phi": 1.5707963267948966,

309 "z": -0.3069308764732161,

310 "multiplier": 1.0,

311 "delta": 0.0

312 },

313 "Cl_qbar": {

314 "A": 0.0,

315 "w": 0.0,

316 "phi": 0.0,

317 "z": 0.0,

318 "multiplier": 1.0,

319 "delta": 0.0

320 },

321 "Cl_rbar": {

322 "A": 0.0,

323 "w": 0.0,

324 "phi": 0.0,

325 "z": 0.006214770285768683,

326 "multiplier": 1.0,

327 "delta": 0.0

328 },

329 "Cl_Lrbar": {

330 "A": 0.0,

331 "w": 0.0,

332 "phi": 0.0,

333 "z": 0.11039503382763775,

334 "multiplier": 1.0,

271

335 "delta": 0.0

336 },

337 "Cl_da": {

338 "A": 0.014044002584287035,

339 "w": 2.0,

340 "phi": 1.5707963267948966,

341 "z": -0.10654507947006382,

342 "multiplier": 1.0,

343 "delta": 0.0

344 },

345 "Cl_de": {

346 "A": 0.0017347280117371252,

347 "w": 1.0,

348 "phi": 0.0,

349 "z": 0.0,

350 "multiplier": 1.0,

351 "delta": 0.0

352 }

353 },

354 "Cm": {

355 "Cm_0": {

356 "A": 0.016397915202207042,

357 "w": 2.0,

358 "phi": 1.5707963267948966,

359 "z": -0.002242911635817831,

360 "multiplier": 1.0,

361 "delta": -0.0196

362 },

363 "Cm_alpha": {

364 "A": -0.1381125910227799,

365 "w": 2.0,

366 "phi": 1.5707963267948966,

367 "z": -0.014466146874435483,

368 "multiplier": 1.0,

369 "delta": 0.2865

370 },

371 "Cm_beta": {

372 "A": 0.8299432389346949,

373 "w": 2.0,

374 "phi": 0.0,

375 "z": 0.0,

376 "multiplier": 1.0,

377 "delta": 0.0

378 },

379 "Cm_pbar": {

380 "A": -0.01018303333732129,

381 "w": 2.0,

382 "phi": 0.0,

383 "z": 0.0,

384 "multiplier": 1.0,

385 "delta": 0.0

386 },

387 "Cm_qbar": {

388 "A": -2.355109402945565,

389 "w": 2.0,

390 "phi": 1.5707963267948966,

272

391 "z": -2.545733692648518,

392 "multiplier": 1.0,

393 "delta": 0.0

394 },

395 "Cm_rbar": {

396 "A": -0.7666562835289177,

397 "w": 2.0,

398 "phi": 0.0,

399 "z": 0.0,

400 "multiplier": 1.0,

401 "delta": 0.0

402 },

403 "Cm_da": {

404 "A": 0.0007562544986244625,

405 "w": 2.0,

406 "phi": 0.0,

407 "z": -0.0006558804458306277,

408 "multiplier": 1.0,

409 "delta": 0.0

410 },

411 "Cm_de": {

412 "A": -0.9114870320894053,

413 "w": 1.0,

414 "phi": 1.5707963267948966,

415 "z": 0.0,

416 "multiplier": 1.0,

417 "delta": 0.2914

418 }

419 },

420 "Cn": {

421 "Cn_0": {

422 "A": 0.004822421894065489,

423 "w": 2.0,

424 "phi": 0.0,

425 "z": 0.0,

426 "multiplier": 1.0,

427 "delta": 0.0

428 },

429 "Cn_alpha": {

430 "A": -0.09293197242941285,

431 "w": 2.0,

432 "phi": 0.0,

433 "z": 0.0,

434 "multiplier": 1.0,

435 "delta": 0.0

436 },

437 "Cn_beta": {

438 "A": -0.31764903243224546,

439 "w": 2.0,

440 "phi": 1.5707963267948966,

441 "z": 0.31301066324220633,

442 "multiplier": 1.0,

443 "delta": -0.0326

444 },

445 "Cn_pbar": {

446 "A": 0.0,

273

447 "w": 0.0,

448 "phi": 0.0,

449 "z": 0.001035994551322718,

450 "multiplier": 1.0,

451 "delta": 0.0

452 },

453 "Cn_Lpbar": {

454 "A": -0.00744283382448568,

455 "w": 2.0,

456 "phi": 1.5707963267948966,

457 "z": -0.1223332777061868,

458 "multiplier": 1.0,

459 "delta": 0.0602

460 },

461 "Cn_qbar": {

462 "A": -0.9204685260025309,

463 "w": 2.0,

464 "phi": 0.0,

465 "z": 0.0,

466 "multiplier": 1.0,

467 "delta": 0.0

468 },

469 "Cn_rbar": {

470 "A": 0.2893776169921245,

471 "w": 2.0,

472 "phi": 1.5707963267948966,

473 "z": -0.2788932189123403,

474 "multiplier": 1.0,

475 "delta": 0.0

476 },

477 "Cn_da": {

478 "A": 0.0,

479 "w": 0.0,

480 "phi": 0.0,

481 "z": 0.000931771956432961,

482 "multiplier": 1.0,

483 "delta": 0.0122

484 },

485 "Cn_Lda": {

486 "A": -0.016880141841181275,

487 "w": 2.0,

488 "phi": 1.5707963267948966,

489 "z": 0.015692621163331585,

490 "multiplier": 1.0,

491 "delta": 0.0254

492 },

493 "Cn_de": {

494 "A": -0.35271359252319573,

495 "w": 1.0,

496 "phi": 0.0,

497 "z": 0.0,

498 "multiplier": 1.0,

499 "delta": 0.0

500 }

501 }

274

502 }

275

Baseline Aircraft Properties

1 {

2 "geometry" : {

3 "S_w" : 300.0,

4 "b_w" : 30.0,

5 "c_w" : 11.32,

6 "l_h" : 13.13,

7 "Lam_w" : 0.4014,

8 "RA_w" : 3.0,

9 "Lam_v" : 0.6632,

10 "RA_v" : 1.29,

11 "Lam_h" : 0.3840,

12 "RA_h" : 2.116

13 },

14 "inertia" : {

15 "W" : 21000.0,

16 "h_z" : 0.0,

17 "h_y" : 0.0,

18 "h_x" : 160.0,

19 "I_xx" : 9496.0,

20 "I_xy" : 0.0,

21 "I_xz" : 982.0,

22 "I_yy" : 55814.0,

23 "I_yz" : 0.0,

24 "I_zz" : 63100.0

25 }

26 }

276

BIRE Aircraft Properties

1 {

2 "geometry" : {

3 "S_w" : 300.0,

4 "b_w" : 30.0,

5 "c_w" : 11.32,

6 "l_h" : 13.13,

7 "Lam_w" : 0.4014,

8 "RA_w" : 3.0,

9 "Lam_v" : 0.6632,

10 "RA_v" : 1.29,

11 "Lam_h" : 0.3840,

12 "RA_h" : 2.116

13 },

14 "inertia" : {

15 "W" : 20500.0,

16 "h_z" : 0.0,

17 "h_y" : 0.0,

18 "h_x" : 160.0,

19 "I_xx" : 9496.0,

20 "I_xy" : 0.0,

21 "I_xz" : 982.0,

22 "I_yy" : 55814.0,

23 "I_yz" : 0.0,

24 "I_zz" : 63100.0

25 }

26 }

277

APPENDIX C

SOURCE CODE

C.1 Analysis of the Aircraft Geometry

Sweep Angle Conversion Routine

1 import numpy as np

2

3 def sweep_converter(L_m, m, n, AR, TR):

4 t_m = np.tan(L_m)

5 C1 = 4./AR

6 C2 = (n - m)*(1. - TR)/(1. + TR)

7 return np.arctan(t_m - C1*C2)

8

9 if __name__ == "__main__":

10 L_m = 40.*np.pi/180. # LE Sweep

11 m = 0.

12 n = 0.25

13 AR = 3.2

14 TR = 0.2

15

16 L_n = sweep_converter(L_m, m, n, AR, TR)

278

BIRE Inertial Fits Routine

1 import numpy as np

2 import scipy.optimize as optimize

3 import json

4

5 def model(coeff, dB, sin=True, freq=2., square=False):

6 if sin:

7 phi = 0.

8 else:

9 phi = np.pi/2.

10 if not square:

11 m = lambda x : x[0]*np.sin(freq*dB + phi) + x[1]

12 e = lambda x : m(x) - coeff

13 res = optimize.leastsq(e, [300, np.average(coeff)])

14 A = res[0][0]

15 z = res[0][1]

16 return A, freq, phi, z

17 else:

18 m = lambda x : x[0]*np.abs(np.sin(freq*dB))

19 e = lambda x : m(x) - coeff

20 A = optimize.leastsq(e, [0])[0][0]

21 return A, freq, phi, -A

22

23 Ixx = np.array([9280.]*13)

24 Iyy = np.array([58449., 58427., 58368., 58288.,

25 58207., 58149., 58127., 58149.,

26 58207., 58288., 58368., 58427., 58449.])

27 Izz = np.array([65445., 65466., 65525., 65606.,

28 65686., 65745., 65766., 65745.,

29 65686., 65606., 65525., 65466., 65445.])

30 Ixy = np.zeros(13)

31 Ixz = np.array([-5.]*13)

32 Iyz = np.array([0., -80., -139., -161.,

33 -139., -80., 0., -80.,

34 -139., -161., -139., -80., 0.])

35

36 model_coeff_keys = ["A", "w", "phi", "z"]

37 model_coeff_dict = {key: 0. for key in model_coeff_keys}

38

39 models_dict = {"Ixx": model_coeff_dict,

40 "Iyy": model_coeff_dict,

41 "Izz": model_coeff_dict,

42 "Ixy": model_coeff_dict,

43 "Ixz": model_coeff_dict,

44 "Iyz": model_coeff_dict}

45

46 models_dict["Ixx"] = {key: x for key, x in zip(model_coeff_keys,

47 [0., 0., 0., Ixx[0]])}

48 A, freq, phi, z = model(Iyy, dB_rad, sin=False, freq=2.)

49 models_dict["Iyy"] = {key: x for key, x in zip(model_coeff_keys,

50 [A, freq, phi, z])}

51 A, freq, phi, z = model(Izz, dB_rad, sin=False, freq=2.)

52 models_dict["Izz"] = {key: x for key, x in zip(model_coeff_keys,

53 [A, freq, phi, z])}

54 A, freq, phi, z = model(Iyz, dB_rad, freq=2.,square=True)

279

55 models_dict["Iyz"] = {key: x for key, x in zip(model_coeff_keys,

56 [A, freq, phi, z])}

57 models_dict["Ixz"] = {key: x for key, x in zip(model_coeff_keys,

58 [0., 0., 0., Ixz[0]])}

59

60 with open("bire_inertia_model.json", "w") as outfile:

61 json.dump(models_dict, outfile, indent=4)

280

C.2 Aerodynamic Model Definition

Baseline Aerodynamic Model

1 import numpy as np

2 import json

3

4 class F16Aero:

5 def __init__(self, inp_dir='./', **kwargs):

6 fn = kwargs.get('fn', 'mux_model_adj.json')

7 self.model_coeffs_dict = json.load(open(inp_dir + fn))

8 self.CL_coeffs = self.model_coeffs_dict["CL"]

9 self.CS_coeffs = self.model_coeffs_dict["CS"]

10 self.CD_coeffs = self.model_coeffs_dict["CD"]

11 self.Cl_coeffs = self.model_coeffs_dict["Cell"]

12 self.Cm_coeffs = self.model_coeffs_dict["Cm"]

13 self.Cn_coeffs = self.model_coeffs_dict["Cn"]

14 self.CL0 = self.CL_coeffs["CL_0"]

15 self.CLa = self.CL_coeffs["CL_alpha"]

16 self.CLq = self.CL_coeffs["CL_qbar"]

17 self.CLde = self.CL_coeffs["CL_de"]

18 self.CSb = self.CS_coeffs["CS_beta"]

19 self.CSp = self.CS_coeffs["CS_pbar"]

20 self.CSLp = self.CS_coeffs["CS_Lpbar"]

21 self.CSr = self.CS_coeffs["CS_rbar"]

22 self.CSda = self.CS_coeffs["CS_da"]

23 self.CSdr = self.CS_coeffs["CS_dr"]

24 self.CD0 = self.CD_coeffs["CD_0"]

25 self.CDL = self.CD_coeffs["CD_L"]

26 self.CDL2 = self.CD_coeffs["CD_L2"]

27 self.CDS2 = self.CD_coeffs["CD_S2"]

28 self.CDSp = self.CD_coeffs["CD_Spbar"]

29 self.CDq = self.CD_coeffs["CD_qbar"]

30 self.CDLq = self.CD_coeffs["CD_Lqbar"]

31 self.CDL2q = self.CD_coeffs["CD_L2qbar"]

32 self.CDSr = self.CD_coeffs["CD_Srbar"]

33 self.CDde = self.CD_coeffs["CD_de"]

34 self.CDLde = self.CD_coeffs["CD_Lde"]

35 self.CDde2 = self.CD_coeffs["CD_de2"]

36 self.CDSda = self.CD_coeffs["CD_Sda"]

37 self.CDSdr = self.CD_coeffs["CD_Sdr"]

38 self.Clb = self.Cl_coeffs["Cl_beta"]

39 self.Clp = self.Cl_coeffs["Cl_pbar"]

40 self.Clr = self.Cl_coeffs["Cl_rbar"]

41 self.ClLr = self.Cl_coeffs["Cl_Lrbar"]

42 self.Clda = self.Cl_coeffs["Cl_da"]

43 self.Cldr = self.Cl_coeffs["Cl_dr"]

44 self.Cm0 = self.Cm_coeffs["Cm_0"]

45 self.Cma = self.Cm_coeffs["Cm_alpha"]

46 self.Cmq = self.Cm_coeffs["Cm_qbar"]

47 self.Cmde = self.Cm_coeffs["Cm_de"]

48 self.Cnb = self.Cn_coeffs["Cn_beta"]

49 self.Cnp = self.Cn_coeffs["Cn_pbar"]

50 self.CnLp = self.Cn_coeffs["Cn_Lpbar"]

281

51 self.Cnr = self.Cn_coeffs["Cn_rbar"]

52 self.Cnda = self.Cn_coeffs["Cn_da"]

53 self.CnLda = self.Cn_coeffs["Cn_Lda"]

54 self.Cndr = self.Cn_coeffs["Cn_dr"]

55

56 def _reevaluate_coeffs(self):

57 self.CL0 = self.CL_coeffs["CL_0"]

58 self.CLa = self.CL_coeffs["CL_alpha"]

59 self.CLq = self.CL_coeffs["CL_qbar"]

60 self.CLde = self.CL_coeffs["CL_de"]

61 self.CSb = self.CS_coeffs["CS_beta"]

62 self.CSp = self.CS_coeffs["CS_pbar"]

63 self.CSLp = self.CS_coeffs["CS_Lpbar"]

64 self.CSr = self.CS_coeffs["CS_rbar"]

65 self.CSda = self.CS_coeffs["CS_da"]

66 self.CSdr = self.CS_coeffs["CS_dr"]

67 self.CD0 = self.CD_coeffs["CD_0"]

68 self.CDL = self.CD_coeffs["CD_L"]

69 self.CDL2 = self.CD_coeffs["CD_L2"]

70 self.CDS2 = self.CD_coeffs["CD_S2"]

71 self.CDSp = self.CD_coeffs["CD_Spbar"]

72 self.CDq = self.CD_coeffs["CD_qbar"]

73 self.CDLq = self.CD_coeffs["CD_Lqbar"]

74 self.CDL2q = self.CD_coeffs["CD_L2qbar"]

75 self.CDSr = self.CD_coeffs["CD_Srbar"]

76 self.CDde = self.CD_coeffs["CD_de"]

77 self.CDLde = self.CD_coeffs["CD_Lde"]

78 self.CDde2 = self.CD_coeffs["CD_de2"]

79 self.CDSda = self.CD_coeffs["CD_Sda"]

80 self.CDSdr = self.CD_coeffs["CD_Sdr"]

81 self.Clb = self.Cl_coeffs["Cl_beta"]

82 self.Clp = self.Cl_coeffs["Cl_pbar"]

83 self.Clr = self.Cl_coeffs["Cl_rbar"]

84 self.ClLr = self.Cl_coeffs["Cl_Lrbar"]

85 self.Clda = self.Cl_coeffs["Cl_da"]

86 self.Cldr = self.Cl_coeffs["Cl_dr"]

87 self.Cm0 = self.Cm_coeffs["Cm_0"]

88 self.Cma = self.Cm_coeffs["Cm_alpha"]

89 self.Cmq = self.Cm_coeffs["Cm_qbar"]

90 self.Cmde = self.Cm_coeffs["Cm_de"]

91 self.Cnb = self.Cn_coeffs["Cn_beta"]

92 self.Cnp = self.Cn_coeffs["Cn_pbar"]

93 self.CnLp = self.Cn_coeffs["Cn_Lpbar"]

94 self.Cnr = self.Cn_coeffs["Cn_rbar"]

95 self.Cnda = self.Cn_coeffs["Cn_da"]

96 self.CnLda = self.Cn_coeffs["Cn_Lda"]

97 self.Cndr = self.Cn_coeffs["Cn_dr"]

98

99 def _CL(self, alpha, beta, pbar, qbar, rbar, da, de, dr):

100 CL = (self.CL0 + self.CLa*alpha + self.CLq*qbar + self.CLde*de)

101 return CL

102

103 def _CS(self, alpha, beta, pbar, qbar, rbar, da, de, dr):

104 CL1 = self._CL(alpha, 0., 0., 0., 0., 0., 0., 0.)

105 CS = (self.CSb*beta + (self.CSp + self.CSLp*CL1)*pbar +

106 self.CSr*rbar + self.CSda*da + self.CSdr*dr)

282

107 return CS

108

109 def _CD(self, alpha, beta, pbar, qbar, rbar, da, de, dr):

110 CL1 = self._CL(alpha, 0., 0., 0., 0., 0., 0., 0.)

111 CS1 = self._CS(0., beta, 0., 0., 0., 0., 0., 0.)

112 CD = (self.CD0 + self.CDL*CL1 + self.CDL2*CL1**2 + self.CDS2*CS1**2 +

113 (self.CDSp*CS1)*pbar +

114 (self.CDq + self.CDLq*CL1 + self.CDL2q*CL1**2)*qbar +

115 (self.CDSr*CS1)*rbar +

116 (self.CDde + self.CDLde*CL1)*de + self.CDde2*de**2 +

117 (self.CDSda*CS1)*da +

118 (self.CDSdr*CS1)*dr)

119 return CD

120

121 def _Cl(self, alpha, beta, pbar, qbar, rbar, da, de, dr):

122 CL1 = self._CL(alpha, 0., 0., 0., 0., 0., 0., 0.)

123 Cl = (self.Clb*beta + self.Clp*pbar + (self.Clr + self.ClLr*CL1)*rbar +

124 self.Clda*da + self.Cldr*dr)

125 return Cl

126

127 def _Cm(self, alpha, beta, pbar, qbar, rbar, da, de, dr):

128 Cm = (self.Cm0 + self.Cma*alpha + self.Cmq*qbar + self.Cmde*de)

129 return Cm

130

131 def _Cn(self, alpha, beta, pbar, qbar, rbar, da, de, dr):

132 CL1 = self._CL(alpha, 0., 0., 0., 0., 0., 0., 0.)

133 Cn = (self.Cnb*beta + (self.Cnp + self.CnLp*CL1)*pbar + self.Cnr*rbar +

134 (self.Cnda + self.CnLda*CL1)*da + self.Cndr*dr)

135 return Cn

136

137 def aero_results(self, alpha, beta, pbar, qbar, rbar, da, de, dr):

138 params = alpha, beta, pbar, qbar, rbar, da, de, dr

139 return [self._CL(*params), self._CS(*params), self._CD(*params),

140 self._Cl(*params), self._Cm(*params), self._Cn(*params)]

141

142 if __name__ == "__main__":

143 case = F16Aero()

144 params = np.deg2rad([10., 10., 10., 10., 10., 10., 10., 10.])

145 [CL, CS, CD, Cl, Cm, Cn] = case.aero_results(*params)

283

BIRE Aerodynamic Model

1 import numpy as np

2 import json

3 import scipy.optimize as optimize

4

5 class BIREAero:

6 def __init__(self, inp_dir='./'):

7 self.model_coeffs_dict = json.load(open(inp_dir + 'bire_model_adj.json'))

8 self.CL_coeffs = self.model_coeffs_dict["CL"]

9 self.CS_coeffs = self.model_coeffs_dict["CS"]

10 self.CD_coeffs = self.model_coeffs_dict["CD"]

11 self.Cl_coeffs = self.model_coeffs_dict["Cell"]

12 self.Cm_coeffs = self.model_coeffs_dict["Cm"]

13 self.Cn_coeffs = self.model_coeffs_dict["Cn"]

14 self.deriv=False

15

16 def evaluate_coeffs(self, d_B):

17 self.CL0 = self._CL0(d_B)

18 self.CLa = self._CL_alpha(d_B)

19 self.CLb = self._CL_beta(d_B)

20 self.CLp = self._CL_pbar(d_B)

21 self.CLq = self._CL_qbar(d_B)

22 self.CLr = self._CL_rbar(d_B)

23 self.CLda = self._CL_da(d_B)

24 self.CLde = self._CL_de(d_B)

25

26 self.CS0 = self._CS0(d_B)

27 self.CSa = self._CS_alpha(d_B)

28 self.CSb = self._CS_beta(d_B)

29 self.CSp = self._CS_pbar(d_B)

30 self.CSLp = self._CS_Lpbar(d_B)

31 self.CSq = self._CS_qbar(d_B)

32 self.CSr = self._CS_rbar(d_B)

33 self.CSda = self._CS_da(d_B)

34 self.CSde = self._CS_de(d_B)

35

36 self.CD0 = self._CD0(d_B)

37 self.CDL = self._CD_L(d_B)

38 self.CDL2 = self._CD_L2(d_B)

39 self.CDS = self._CD_S(d_B)

40 self.CDS2 = self._CD_S2(d_B)

41 self.CDp = self._CD_pbar(d_B)

42 self.CDSp = self._CD_Spbar(d_B)

43 self.CDq = self._CD_qbar(d_B)

44 self.CDLq = self._CD_Lqbar(d_B)

45 self.CDL2q = self._CD_L2qbar(d_B)

46 self.CDr = self._CD_rbar(d_B)

47 self.CDSr = self._CD_Srbar(d_B)

48 self.CDda = self._CD_da(d_B)

49 self.CDSda = self._CD_Sda(d_B)

50 self.CDde = self._CD_de(d_B)

51 self.CDLde = self._CD_Lde(d_B)

52 self.CDde2 = self._CD_de2(d_B)

53

54 self.Cl0 = self._Cl0(d_B)

284

55 self.Cla = self._Cl_alpha(d_B)

56 self.Clb = self._Cl_beta(d_B)

57 self.Clp = self._Cl_pbar(d_B)

58 self.Clq = self._Cl_qbar(d_B)

59 self.Clr = self._Cl_rbar(d_B)

60 self.ClLr = self._Cl_Lrbar(d_B)

61 self.Clda = self._Cl_da(d_B)

62 self.Clde = self._Cl_de(d_B)

63

64 self.Cm0 = self._Cm0(d_B)

65 self.Cma = self._Cm_alpha(d_B)

66 self.Cmb = self._Cm_beta(d_B)

67 self.Cmp = self._Cm_pbar(d_B)

68 self.Cmq = self._Cm_qbar(d_B)

69 self.Cmr = self._Cm_rbar(d_B)

70 self.Cmda = self._Cm_da(d_B)

71 self.Cmde = self._Cm_de(d_B)

72

73 self.Cn0 = self._Cn0(d_B)

74 self.Cna = self._Cn_alpha(d_B)

75 self.Cnb = self._Cn_beta(d_B)

76 self.Cnp = self._Cn_pbar(d_B)

77 self.CnLp = self._Cn_Lpbar(d_B)

78 self.Cnq = self._Cn_qbar(d_B)

79 self.Cnr = self._Cn_rbar(d_B)

80 self.Cnda = self._Cn_da(d_B)

81 self.CnLda = self._Cn_Lda(d_B)

82 self.Cnde = self._Cn_de(d_B)

83

84 def evaluate_derivatives(self, d_B):

85 self.deriv = True

86 self.dCL0 = self._CL0(d_B)

87 self.dCLa = self._CL_alpha(d_B)

88 self.dCLb = self._CL_beta(d_B)

89 self.dCLp = self._CL_pbar(d_B)

90 self.dCLq = self._CL_qbar(d_B)

91 self.dCLr = self._CL_rbar(d_B)

92 self.dCLda = self._CL_da(d_B)

93 self.dCLde = self._CL_de(d_B)

94

95 self.dCS0 = self._CS0(d_B)

96 self.dCSa = self._CS_alpha(d_B)

97 self.dCSb = self._CS_beta(d_B)

98 self.dCSp = self._CS_pbar(d_B)

99 self.dCSLp = self._CS_Lpbar(d_B)

100 self.dCSq = self._CS_qbar(d_B)

101 self.dCSr = self._CS_rbar(d_B)

102 self.dCSda = self._CS_da(d_B)

103 self.dCSde = self._CS_de(d_B)

104

105 self.dCD0 = self._CD0(d_B)

106 self.dCDL = self._CD_L(d_B)

107 self.dCDL2 = self._CD_L2(d_B)

108 self.dCDS = self._CD_S(d_B)

109 self.dCDS2 = self._CD_S2(d_B)

110 self.dCDp = self._CD_pbar(d_B)

285

111 self.dCDSp = self._CD_Spbar(d_B)

112 self.dCDq = self._CD_qbar(d_B)

113 self.dCDLq = self._CD_Lqbar(d_B)

114 self.dCDL2q = self._CD_L2qbar(d_B)

115 self.dCDr = self._CD_rbar(d_B)

116 self.dCDSr = self._CD_Srbar(d_B)

117 self.dCDda = self._CD_da(d_B)

118 self.dCDSda = self._CD_Sda(d_B)

119 self.dCDde = self._CD_de(d_B)

120 self.dCDLde = self._CD_Lde(d_B)

121 self.dCDde2 = self._CD_de2(d_B)

122

123 self.dCl0 = self._Cl0(d_B)

124 self.dCla = self._Cl_alpha(d_B)

125 self.dClb = self._Cl_beta(d_B)

126 self.dClp = self._Cl_pbar(d_B)

127 self.dClq = self._Cl_qbar(d_B)

128 self.dClr = self._Cl_rbar(d_B)

129 self.dClLr = self._Cl_Lrbar(d_B)

130 self.dClda = self._Cl_da(d_B)

131 self.dClde = self._Cl_de(d_B)

132

133 self.dCm0 = self._Cm0(d_B)

134 self.dCma = self._Cm_alpha(d_B)

135 self.dCmb = self._Cm_beta(d_B)

136 self.dCmp = self._Cm_pbar(d_B)

137 self.dCmq = self._Cm_qbar(d_B)

138 self.dCmr = self._Cm_rbar(d_B)

139 self.dCmda = self._Cm_da(d_B)

140 self.dCmde = self._Cm_de(d_B)

141

142 self.dCn0 = self._Cn0(d_B)

143 self.dCna = self._Cn_alpha(d_B)

144 self.dCnb = self._Cn_beta(d_B)

145 self.dCnp = self._Cn_pbar(d_B)

146 self.dCnLp = self._Cn_Lpbar(d_B)

147 self.dCnq = self._Cn_qbar(d_B)

148 self.dCnr = self._Cn_rbar(d_B)

149 self.dCnda = self._Cn_da(d_B)

150 self.dCnLda = self._Cn_Lda(d_B)

151 self.dCnde = self._Cn_de(d_B)

152 self.deriv = False

153

154

155 def _CL0(self, d_B):

156 Cdict = self.CL_coeffs["CL_0"]

157 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

158 if not self.deriv:

159 return A*np.sin(w*d_B + phi) + z

160 else:

161 return A*w*np.cos(w*d_B + phi)

162

163 def _CL_alpha(self, d_B):

164 Cdict = self.CL_coeffs["CL_alpha"]

165 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

166 if not self.deriv:

286

167 return A*np.sin(w*d_B + phi) + z

168 else:

169 return A*w*np.cos(w*d_B + phi)

170

171 def _CL_beta(self, d_B):

172 Cdict = self.CL_coeffs["CL_beta"]

173 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

174 if not self.deriv:

175 return A*np.sin(w*d_B + phi) + z

176 else:

177 return A*w*np.cos(w*d_B + phi)

178

179 def _CL_pbar(self, d_B):

180 Cdict = self.CL_coeffs["CL_pbar"]

181 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

182 if not self.deriv:

183 return A*np.sin(w*d_B + phi) + z

184 else:

185 return A*w*np.cos(w*d_B + phi)

186

187 def _CL_qbar(self, d_B, deriv=False):

188 Cdict = self.CL_coeffs["CL_qbar"]

189 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

190 z += delta

191 if not self.deriv:

192 return A*np.sin(w*d_B + phi) + z

193 else:

194 return A*w*np.cos(w*d_B + phi)

195

196 def _CL_rbar(self, d_B):

197 Cdict = self.CL_coeffs["CL_rbar"]

198 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

199 if not self.deriv:

200 return A*np.sin(w*d_B + phi) + z

201 else:

202 return A*w*np.cos(w*d_B + phi)

203

204 def _CL_da(self, d_B):

205 Cdict = self.CL_coeffs["CL_da"]

206 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

207 if not self.deriv:

208 return A*np.sin(w*d_B + phi) + z

209 else:

210 return A*w*np.cos(w*d_B + phi)

211

212 def _CL_de(self, d_B):

213 Cdict = self.CL_coeffs["CL_de"]

214 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

215 if not self.deriv:

216 return A*np.sin(w*d_B + phi) + z

217 else:

218 return A*w*np.cos(w*d_B + phi)

219

220 def _CS0(self, d_B):

221 Cdict = self.CS_coeffs["CS_0"]

222 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

287

223 if not self.deriv:

224 return A*np.sin(w*d_B + phi) + z

225 else:

226 return A*w*np.cos(w*d_B + phi)

227

228 def _CS_alpha(self, d_B):

229 Cdict = self.CS_coeffs["CS_alpha"]

230 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

231 if not self.deriv:

232 return A*np.sin(w*d_B + phi) + z

233 else:

234 return A*w*np.cos(w*d_B + phi)

235

236 def _CS_beta(self, d_B):

237 Cdict = self.CS_coeffs["CS_beta"]

238 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

239 z += delta

240 if not self.deriv:

241 return A*np.sin(w*d_B + phi) + z

242 else:

243 return A*w*np.cos(w*d_B + phi)

244

245 def _CS_pbar(self, d_B):

246 Cdict = self.CS_coeffs["CS_pbar"]

247 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

248 if not self.deriv:

249 return A*np.sin(w*d_B + phi) + z

250 else:

251 return A*w*np.cos(w*d_B + phi)

252

253 def _CS_Lpbar(self, d_B):

254 Cdict = self.CS_coeffs["CS_Lpbar"]

255 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

256 if not self.deriv:

257 return A*np.sin(w*d_B + phi) + z

258 else:

259 return A*w*np.cos(w*d_B + phi)

260

261 def _CS_qbar(self, d_B):

262 Cdict = self.CS_coeffs["CS_qbar"]

263 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

264 if not self.deriv:

265 return A*np.sin(w*d_B + phi) + z

266 else:

267 return A*w*np.cos(w*d_B + phi)

268

269 def _CS_rbar(self, d_B):

270 Cdict = self.CS_coeffs["CS_rbar"]

271 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

272 z += delta

273 if not self.deriv:

274 return A*np.sin(w*d_B + phi) + z

275 else:

276 return A*w*np.cos(w*d_B + phi)

277

278 def _CS_de(self, d_B):

288

279 Cdict = self.CS_coeffs["CS_de"]

280 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

281 if not self.deriv:

282 return A*np.sin(w*d_B + phi) + z

283 else:

284 return A*w*np.cos(w*d_B + phi)

285

286 def _CS_da(self, d_B):

287 Cdict = self.CS_coeffs["CS_da"]

288 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

289 if not self.deriv:

290 return A*np.sin(w*d_B + phi) + z

291 else:

292 return A*w*np.cos(w*d_B + phi)

293

294 def _CD0(self, d_B):

295 Cdict = self.CD_coeffs["CD_0"]

296 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

297 A = A*sigma

298 z = z*sigma

299 if not self.deriv:

300 return A*np.sin(w*d_B + phi) + z

301 else:

302 return A*w*np.cos(w*d_B + phi)

303

304 def _CD_L(self, d_B):

305 Cdict = self.CD_coeffs["CD_L"]

306 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

307 z += delta

308 if not self.deriv:

309 return A*np.sin(w*d_B + phi) + z

310 else:

311 return A*w*np.cos(w*d_B + phi)

312

313 def _CD_L2(self, d_B):

314 Cdict = self.CD_coeffs["CD_L2"]

315 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

316 z += delta

317 if not self.deriv:

318 return A*np.sin(w*d_B + phi) + z

319 else:

320 return A*w*np.cos(w*d_B + phi)

321

322 def _CD_S(self, d_B):

323 Cdict = self.CD_coeffs["CD_S"]

324 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

325 if not self.deriv:

326 return A*np.sin(w*d_B + phi) + z

327 else:

328 return A*w*np.cos(w*d_B + phi)

329

330 def _CD_S2(self, d_B):

331 Cdict = self.CD_coeffs["CD_S2"]

332 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

333 if not self.deriv:

334 return A*np.sin(w*d_B + phi) + z

289

335 else:

336 return A*w*np.cos(w*d_B + phi)

337

338 def _CD_pbar(self, d_B):

339 Cdict = self.CD_coeffs["CD_pbar"]

340 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

341 if not self.deriv:

342 return A*np.sin(w*d_B + phi) + z

343 else:

344 return A*w*np.cos(w*d_B + phi)

345

346 def _CD_Spbar(self, d_B):

347 Cdict = self.CD_coeffs["CD_Spbar"]

348 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

349 if not self.deriv:

350 return A*np.sin(w*d_B + phi) + z

351 else:

352 return A*w*np.cos(w*d_B + phi)

353

354 def _CD_qbar(self, d_B):

355 Cdict = self.CD_coeffs["CD_qbar"]

356 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

357 z += delta

358 if not self.deriv:

359 return A*np.sin(w*d_B + phi) + z

360 else:

361 return A*w*np.cos(w*d_B + phi)

362

363 def _CD_Lqbar(self, d_B):

364 Cdict = self.CD_coeffs["CD_Lqbar"]

365 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

366 z += delta

367 if not self.deriv:

368 return A*np.sin(w*d_B + phi) + z

369 else:

370 return A*w*np.cos(w*d_B + phi)

371

372 def _CD_L2qbar(self, d_B):

373 Cdict = self.CD_coeffs["CD_L2qbar"]

374 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

375 z += delta

376 if not self.deriv:

377 return A*np.sin(w*d_B + phi) + z

378 else:

379 return A*w*np.cos(w*d_B + phi)

380

381 def _CD_rbar(self, d_B):

382 Cdict = self.CD_coeffs["CD_rbar"]

383 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

384 if not self.deriv:

385 return A*np.sin(w*d_B + phi) + z

386 else:

387 return A*w*np.cos(w*d_B + phi)

388

389 def _CD_Srbar(self, d_B):

390 Cdict = self.CD_coeffs["CD_Srbar"]

290

391 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

392 z += delta

393 if not self.deriv:

394 return A*np.sin(w*d_B + phi) + z

395 else:

396 return A*w*np.cos(w*d_B + phi)

397

398 def _CD_da(self, d_B):

399 Cdict = self.CD_coeffs["CD_da"]

400 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

401 if not self.deriv:

402 return A*np.sin(w*d_B + phi) + z

403 else:

404 return A*w*np.cos(w*d_B + phi)

405

406 def _CD_Sda(self, d_B):

407 Cdict = self.CD_coeffs["CD_Sda"]

408 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

409 if not self.deriv:

410 return A*np.sin(w*d_B + phi) + z

411 else:

412 return A*w*np.cos(w*d_B + phi)

413

414 def _CD_de(self, d_B):

415 Cdict = self.CD_coeffs["CD_de"]

416 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

417 z += delta

418 if not self.deriv:

419 return A*np.sin(w*d_B + phi) + z

420 else:

421 return A*w*np.cos(w*d_B + phi)

422

423 def _CD_Lde(self, d_B):

424 Cdict = self.CD_coeffs["CD_Lde"]

425 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

426 if not self.deriv:

427 return A*np.sin(w*d_B + phi) + z

428 else:

429 return A*w*np.cos(w*d_B + phi)

430

431 def _CD_de2(self, d_B):

432 Cdict = self.CD_coeffs["CD_de2"]

433 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

434 if not self.deriv:

435 return A*np.sin(w*d_B + phi) + z

436 else:

437 return A*w*np.cos(w*d_B + phi)

438

439 def _Cl0(self, d_B):

440 Cdict = self.Cl_coeffs["Cl_0"]

441 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

442 if not self.deriv:

443 return A*np.sin(w*d_B + phi) + z

444 else:

445 return A*w*np.cos(w*d_B + phi)

446

291

447 def _Cl_alpha(self, d_B):

448 Cdict = self.Cl_coeffs["Cl_alpha"]

449 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

450 if not self.deriv:

451 return A*np.sin(w*d_B + phi) + z

452 else:

453 return A*w*np.cos(w*d_B + phi)

454

455 def _Cl_beta(self, d_B):

456 Cdict = self.Cl_coeffs["Cl_beta"]

457 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

458 z += delta

459 if not self.deriv:

460 return A*np.sin(w*d_B + phi) + z

461 else:

462 return A*w*np.cos(w*d_B + phi)

463

464 def _Cl_pbar(self, d_B):

465 Cdict = self.Cl_coeffs["Cl_pbar"]

466 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

467 if not self.deriv:

468 return A*np.sin(w*d_B + phi) + z

469 else:

470 return A*w*np.cos(w*d_B + phi)

471

472 def _Cl_qbar(self, d_B):

473 Cdict = self.Cl_coeffs["Cl_qbar"]

474 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

475 if not self.deriv:

476 return A*np.sin(w*d_B + phi) + z

477 else:

478 return A*w*np.cos(w*d_B + phi)

479

480 def _Cl_rbar(self, d_B):

481 Cdict = self.Cl_coeffs["Cl_rbar"]

482 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

483 if not self.deriv:

484 return A*np.sin(w*d_B + phi) + z

485 else:

486 return A*w*np.cos(w*d_B + phi)

487

488 def _Cl_Lrbar(self, d_B):

489 Cdict = self.Cl_coeffs["Cl_Lrbar"]

490 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

491 if not self.deriv:

492 return A*np.sin(w*d_B + phi) + z

493 else:

494 return A*w*np.cos(w*d_B + phi)

495

496 def _Cl_da(self, d_B):

497 Cdict = self.Cl_coeffs["Cl_da"]

498 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

499 z += delta

500 if not self.deriv:

501 return A*np.sin(w*d_B + phi) + z

502 else:

292

503 return A*w*np.cos(w*d_B + phi)

504

505 def _Cl_de(self, d_B):

506 Cdict = self.Cl_coeffs["Cl_de"]

507 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

508 if not self.deriv:

509 return A*np.sin(w*d_B + phi) + z

510 else:

511 return A*w*np.cos(w*d_B + phi)

512

513 def _Cm0(self, d_B):

514 Cdict = self.Cm_coeffs["Cm_0"]

515 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

516 z += delta

517 if not self.deriv:

518 return A*np.sin(w*d_B + phi) + z

519 else:

520 return A*w*np.cos(w*d_B + phi)

521

522 def _dCm0_dB(self, d_B):

523 Cdict = self.Cm_coeffs["Cm_0"]

524 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

525 return A*w*np.cos(w*d_B + phi)

526

527 def _Cm_alpha(self, d_B):

528 Cdict = self.Cm_coeffs["Cm_alpha"]

529 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

530 if not self.deriv:

531 return A*np.sin(w*d_B + phi) + z

532 else:

533 return A*w*np.cos(w*d_B + phi)

534

535 def _dCma_dB(self, d_B):

536 Cdict = self.Cm_coeffs["Cm_alpha"]

537 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

538 return A*w*np.cos(w*d_B + phi)

539

540 def _Cm_beta(self, d_B):

541 Cdict = self.Cm_coeffs["Cm_beta"]

542 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

543 if not self.deriv:

544 return A*np.sin(w*d_B + phi) + z

545 else:

546 return A*w*np.cos(w*d_B + phi)

547

548 def _dCmb_dB(self, d_B):

549 Cdict = self.Cm_coeffs["Cm_beta"]

550 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

551 return A*w*np.cos(w*d_B + phi)

552

553 def _Cm_pbar(self, d_B):

554 Cdict = self.Cm_coeffs["Cm_pbar"]

555 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

556 if not self.deriv:

557 return A*np.sin(w*d_B + phi) + z

558 else:

293

559 return A*w*np.cos(w*d_B + phi)

560

561 def _dCmp_dB(self, d_B):

562 Cdict = self.Cm_coeffs["Cm_pbar"]

563 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

564 return A*w*np.cos(w*d_B + phi)

565

566 def _Cm_qbar(self, d_B):

567 Cdict = self.Cm_coeffs["Cm_qbar"]

568 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

569 z += delta

570 if not self.deriv:

571 return A*np.sin(w*d_B + phi) + z

572 else:

573 return A*w*np.cos(w*d_B + phi)

574

575 def _dCmq_dB(self, d_B):

576 Cdict = self.Cm_coeffs["Cm_qbar"]

577 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

578 return A*w*np.cos(w*d_B + phi)

579

580 def _Cm_rbar(self, d_B):

581 Cdict = self.Cm_coeffs["Cm_rbar"]

582 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

583 if not self.deriv:

584 return A*np.sin(w*d_B + phi) + z

585 else:

586 return A*w*np.cos(w*d_B + phi)

587

588 def _dCmr_dB(self, d_B):

589 Cdict = self.Cm_coeffs["Cm_rbar"]

590 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

591 return A*w*np.cos(w*d_B + phi)

592

593 def _Cm_da(self, d_B):

594 Cdict = self.Cm_coeffs["Cm_da"]

595 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

596 if not self.deriv:

597 return A*np.sin(w*d_B + phi) + z

598 else:

599 return A*w*np.cos(w*d_B + phi)

600

601 def _dCmda_dB(self, d_B):

602 Cdict = self.Cm_coeffs["Cm_da"]

603 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

604 return A*w*np.cos(w*d_B + phi)

605

606 def _Cm_de(self, d_B):

607 Cdict = self.Cm_coeffs["Cm_de"]

608 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

609 if not self.deriv:

610 return A*np.sin(w*d_B + phi) + z

611 else:

612 return A*w*np.cos(w*d_B + phi)

613

614 def _dCmde_dB(self, d_B):

294

615 Cdict = self.Cm_coeffs["Cm_de"]

616 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

617 return A*w*np.cos(w*d_B + phi)

618

619 def _Cn0(self, d_B):

620 Cdict = self.Cn_coeffs["Cn_0"]

621 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

622 if not self.deriv:

623 return A*np.sin(w*d_B + phi) + z

624 else:

625 return A*w*np.cos(w*d_B + phi)

626

627 def _dCn0_dB(self, d_B):

628 Cdict = self.Cn_coeffs["Cn_0"]

629 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

630 return A*w*np.cos(w*d_B + phi)

631

632 def _Cn_alpha(self, d_B):

633 Cdict = self.Cn_coeffs["Cn_alpha"]

634 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

635 if not self.deriv:

636 return A*np.sin(w*d_B + phi) + z

637 else:

638 return A*w*np.cos(w*d_B + phi)

639

640 def _dCna_dB(self, d_B):

641 Cdict = self.Cn_coeffs["Cn_alpha"]

642 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

643 return A*w*np.cos(w*d_B + phi)

644

645 def _Cn_beta(self, d_B):

646 Cdict = self.Cn_coeffs["Cn_beta"]

647 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

648 if not self.deriv:

649 return A*np.sin(w*d_B + phi) + z

650 else:

651 return A*w*np.cos(w*d_B + phi)

652

653 def _dCnb_dB(self, d_B):

654 Cdict = self.Cn_coeffs["Cn_beta"]

655 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

656 return A*w*np.cos(w*d_B + phi)

657

658 def _Cn_pbar(self, d_B):

659 Cdict = self.Cn_coeffs["Cn_pbar"]

660 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

661 if not self.deriv:

662 return A*np.sin(w*d_B + phi) + z

663 else:

664 return A*w*np.cos(w*d_B + phi)

665

666 def _dCnp_dB(self, d_B):

667 Cdict = self.Cn_coeffs["Cn_pbar"]

668 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

669 return A*w*np.cos(w*d_B + phi)

670

295

671 def _Cn_Lpbar(self, d_B):

672 Cdict = self.Cn_coeffs["Cn_Lpbar"]

673 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

674 if not self.deriv:

675 return A*np.sin(w*d_B + phi) + z

676 else:

677 return A*w*np.cos(w*d_B + phi)

678

679 def _dCnLp_dB(self, d_B):

680 CnLdict = self.Cn_coeffs["Cn_Lpbar"]

681 [A_nL, w_nL, phi_nL, z_nL] = [CnLdict[c] for c in CnLdict]

682 CL0dict = self.CL_coeffs["CL_0"]

683 [A_0, w_0, phi_0, z_0] = [CL0dict[c] for c in CL0dict]

684 CLadict = self.CL_coeffs["CL_alpha"]

685 [A_a, w_a, phi_a, z_a] = [CLadict[c] for c in CLadict]

686 C1 = A_nL*w_nL*np.cos(w_nL*d_B + phi_nL)*(A_0*np.sin(w_0*d_B + phi_0) + z_0)

687 C2 = A_0*w_0*np.cos(w_0*d_B + phi_0)*(A_nL*np.sin(w_nL*d_B + phi_nL) + z_nL)

688 C3 = A_nL*w_nL*np.cos(w_nL*d_B + phi_nL)*(A_a*np.sin(w_a*d_B + phi_a) + z_a)

689 C4 = A_a*w_a*np.cos(w_a*d_B + phi_a)*(A_nL*np.sin(w_nL*d_B + phi_nL) + z_nL)

690 return [C1, C2, C3, C4]

691

692 def _Cn_qbar(self, d_B):

693 Cdict = self.Cn_coeffs["Cn_qbar"]

694 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

695 if not self.deriv:

696 return A*np.sin(w*d_B + phi) + z

697 else:

698 return A*w*np.cos(w*d_B + phi)

699

700 def _dCnq_dB(self, d_B):

701 Cdict = self.Cn_coeffs["Cn_qbar"]

702 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

703 return A*w*np.cos(w*d_B + phi)

704

705 def _Cn_rbar(self, d_B):

706 Cdict = self.Cn_coeffs["Cn_rbar"]

707 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

708 z += delta

709 if not self.deriv:

710 return A*np.sin(w*d_B + phi) + z

711 else:

712 return A*w*np.cos(w*d_B + phi)

713

714 def _dCnr_dB(self, d_B):

715 Cdict = self.Cn_coeffs["Cn_rbar"]

716 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

717 return A*w*np.cos(w*d_B + phi)

718

719 def _Cn_da(self, d_B):

720 Cdict = self.Cn_coeffs["Cn_da"]

721 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

722 if not self.deriv:

723 return A*np.sin(w*d_B + phi) + z

724 else:

725 return A*w*np.cos(w*d_B + phi)

726

296

727 def _dCnda_dB(self, d_B):

728 Cndadict = self.Cn_coeffs["Cn_da"]

729 [A_da, w_da, phi_da, z_da] = [Cndadict[c] for c in Cndadict]

730 CL0dict = self.CL_coeffs["CL_0"]

731 [A_0, w_0, phi_0, z_0] = [CL0dict[c] for c in CL0dict]

732 CLadict = self.CL_coeffs["CL_alpha"]

733 [A_a, w_a, phi_a, z_a] = [CLadict[c] for c in CLadict]

734 C1 = A_da*w_da*np.cos(w_da*d_B + phi_da)*(A_0*np.sin(w_0*d_B + phi_0) + z_0)

735 C2 = A_0*w_0*np.cos(w_0*d_B + phi_0)*(A_da*np.sin(w_da*d_B + phi_da) + z_da)

736 C3 = A_da*w_da*np.cos(w_da*d_B + phi_da)*(A_a*np.sin(w_a*d_B + phi_a) + z_a)

737 C4 = A_a*w_a*np.cos(w_a*d_B + phi_a)*(A_da*np.sin(w_da*d_B + phi_da) + z_da)

738 return [C1, C2, C3, C4]

739

740 def _Cn_Lda(self, d_B):

741 Cdict = self.Cn_coeffs["Cn_Lda"]

742 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

743 if not self.deriv:

744 return A*np.sin(w*d_B + phi) + z

745 else:

746 return A*w*np.cos(w*d_B + phi)

747

748 def _Cn_de(self, d_B):

749 Cdict = self.Cn_coeffs["Cn_de"]

750 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

751 if not self.deriv:

752 return A*np.sin(w*d_B + phi) + z

753 else:

754 return A*w*np.cos(w*d_B + phi)

755

756 def _dCnde_dB(self, d_B):

757 Cdict = self.Cn_coeffs["Cn_de"]

758 [A, w, phi, z, sigma, delta] = [Cdict[c] for c in Cdict]

759 return A*w*np.cos(w*d_B + phi)

760

761 def _CL(self, alpha, beta, pbar, qbar, rbar, da, de, dB):

762 CL1 = self._CL0(dB) + self._CL_alpha(dB)*alpha

763 CL = (CL1 + self._CL_beta(dB)*beta + self._CL_pbar(dB)*pbar +

764 self._CL_qbar(dB)*qbar + self._CL_rbar(dB)*rbar +

765 self._CL_da(dB)*da + self._CL_de(dB)*de)

766 return CL

767

768 def _CS(self, alpha, beta, pbar, qbar, rbar, da, de, dB):

769 CL1 = self._CL0(dB) + self._CL_alpha(dB)*alpha

770 CS = (self._CS0(dB) + self._CS_alpha(dB)*alpha +

771 self._CS_beta(dB)*beta +

772 (self._CS_pbar(dB) + self._CS_Lpbar(dB)*CL1)*pbar +

773 self._CS_qbar(dB)*qbar + self._CS_rbar(dB)*rbar +

774 self._CS_da(dB)*da + self._CS_de(dB)*de)

775 return CS

776

777 def _CD(self, alpha, beta, pbar, qbar, rbar, da, de, dB):

778 CL1 = self._CL0(dB) + self._CL_alpha(dB)*alpha

779 CS1 = self._CS0(dB) + self._CS_beta(dB)*beta

780 CD = (self._CD0(dB) + self._CD_L(dB)*CL1 + self._CD_L2(dB)*CL1**2 +

781 self._CD_S(dB)*CS1 + self._CD_S2(dB)*CS1**2 +

782 (self._CD_pbar(dB) + self._CD_Spbar(dB)*CS1)*pbar +

297

783 (self._CD_qbar(dB) + self._CD_Lqbar(dB)*CL1 +

784 self._CD_L2qbar(dB)*CL1**2)*qbar +

785 (self._CD_rbar(dB) + self._CD_Srbar(dB)*CS1)*rbar +

786 (self._CD_da(dB) + self._CD_Sda(dB)*CS1)*da +

787 (self._CD_de(dB) + self._CD_Lde(dB)*CL1)*de +

788 self._CD_de2(dB)*de**2)

789 return CD

790

791 def _Cl(self, alpha, beta, pbar, qbar, rbar, da, de, dB):

792 CL1 = self._CL0(dB) + self._CL_alpha(dB)*alpha

793 Cl = (self._Cl0(dB) + self._Cl_alpha(dB)*alpha +

794 self._Cl_beta(dB)*beta + self._Cl_pbar(dB)*pbar +

795 self._Cl_qbar(dB)*qbar +

796 (self._Cl_rbar(dB) + self._Cl_Lrbar(dB)*CL1)*rbar +

797 self._Cl_da(dB)*da + self._Cl_de(dB)*de)

798 return Cl

799

800 def _Cm(self, alpha, beta, pbar, qbar, rbar, da, de, dB):

801 Cm = (self._Cm0(dB) + self._Cm_alpha(dB)*alpha +

802 self._Cm_beta(dB)*beta + self._Cm_pbar(dB)*pbar +

803 self._Cm_qbar(dB)*qbar + self._Cm_rbar(dB)*rbar +

804 self._Cm_da(dB)*da + self._Cm_de(dB)*de)

805 return Cm

806

807 def _dCm_dB(self, alpha, beta, pbar, qbar, rbar, da, de, dB):

808 dCmdB = (self._dCm0_dB(dB) + self._dCma_dB(dB)*alpha +

809 self._dCmb_dB(dB)*beta + self._dCmp_dB(dB)*pbar +

810 self._dCmq_dB(dB)*qbar + self._dCmr_dB(dB)*rbar +

811 self._dCmda_dB(dB)*da + self._dCmde_dB(dB)*de)

812 return dCmdB

813

814 def _Cn(self, alpha, beta, pbar, qbar, rbar, da, de, dB):

815 CL1 = self._CL0(dB) + self._CL_alpha(dB)*alpha

816 Cn = (self._Cn0(dB) + self._Cn_alpha(dB)*alpha +

817 self._Cn_beta(dB)*beta +

818 (self._Cn_pbar(dB) + self._Cn_Lpbar(dB)*CL1)*pbar +

819 self._Cn_qbar(dB)*qbar + self._Cn_rbar(dB)*rbar +

820 (self._Cn_da(dB) + self._Cn_Lda(dB)*CL1)*da +

821 self._Cn_de(dB)*de)

822 return Cn

823

824 def _dCn_dB(self, alpha, beta, pbar, qbar, rbar, da, de, dB):

825 dCnLp_dB = self._dCnLp_dB(dB)

826 dCnda_dB = self._dCnda_dB(dB)

827 dCndB = (self._dCn0_dB(dB) + self._dCna_dB(dB)*alpha +

828 self._dCnb_dB(dB)*beta +

829 (dCnLp_dB[0] + dCnLp_dB[1] +

830 alpha*(dCnLp_dB[2] + dCnLp_dB[3]))*pbar +

831 self._dCnq_dB(dB)*qbar + self._dCnr_dB(dB)*rbar +

832 (dCnda_dB[0] + dCnda_dB[1] +

833 alpha*(dCnda_dB[2] + dCnda_dB[3]))*da +

834 self._dCnde_dB(dB)*de)

835 return dCndB

836

837 def aero_results(self, alpha, beta, pbar, qbar, rbar, da, de, dB):

838 params = alpha, beta, pbar, qbar, rbar, da, de, dB

298

839 return [self._CL(*params), self._CS(*params), self._CD(*params),

840 self._Cl(*params), self._Cm(*params), self._Cn(*params)]

841

842 def Cn_dB(self, alpha, beta, pbar, qbar, rbar, da, de, dB, method='fd', h=0.001):

843 if method=='fd':

844 params_p = alpha, beta, pbar, qbar, rbar, da, de, dB + h

845 params_m = alpha, beta, pbar, qbar, rbar, da, de, dB - h

846 Cn_plus = self._Cn(*params_p)

847 Cn_minus = self._Cn(*params_m)

848 Cn_dB = (Cn_plus - Cn_minus)/(2.*h)

849 return Cn_dB

850 elif method=='complex-step':

851 h = 1e-16

852 params_complex = alpha, beta, pbar, qbar, rbar, da, de, complex(dB, h)

853 Cn_complex = self._Cn(*params_complex)

854 Cn_dB = Cn_complex.imag/h

855 return Cn_dB

856 elif method=='fit':

857 A = -0.0199462

858 w = 2.

859 phi = np.pi/2.

860 z = 0.

861 return A*np.sin(w*dB + phi) + z

862 elif method=='analytic':

863 Cdict = self.Cn_coeffs["Cn_0"]

864 [A0, w0, phi0, z0] = [Cdict[c] for c in Cdict]

865 Cdict = self.Cn_coeffs["Cn_alpha"]

866 [Aa, wa, phia, za] = [Cdict[c] for c in Cdict]

867 Cdict = self.Cn_coeffs["Cn_beta"]

868 [Ab, wb, phib, zb] = [Cdict[c] for c in Cdict]

869 Cdict = self.Cn_coeffs["Cn_qbar"]

870 [Aq, wq, phiq, zq] = [Cdict[c] for c in Cdict]

871 Cdict = self.Cn_coeffs["Cn_rbar"]

872 [Ar, wr, phir, zr] = [Cdict[c] for c in Cdict]

873 Cdict = self.Cn_coeffs["Cn_de"]

874 [Ade, wde, phide, zde] = [Cdict[c] for c in Cdict]

875 dCn0 = A0*np.cos(w0*dB + phi0)

876 dCna = Aa*np.cos(wa*dB + phia)

877 dCnb = Ab*np.cos(wb*dB + phib)

878 dCnq = Aq*np.cos(wq*dB + phiq)

879 dCnr = Ar*np.cos(wr*dB + phir)

880 dCnde = Ade*np.cos(wde*dB + phide)

881 Cn_dB = dCn0 + dCna*alpha + dCnb*beta + dCnq*qbar + dCnr*rbar + dCnde*de

882 return Cn_dB

883

884 def control_matrix(self, alpha, beta, pbar, qbar, rbar, da, de, dB):

885 A = np.zeros((2, 2))

886 A[0, 0] = self._dCm_dB(alpha, beta, pbar, qbar, rbar, da, de, dB)

887 A[0, 1] = self._Cm_de(dB)

888 A[1, 0] = self._dCn_dB(alpha, beta, pbar, qbar, rbar, da, de, dB)

889 A[1, 1] = self._Cn_de(dB)

890 return A

891

892

893 if __name__ == "__main__":

894 case = BIREAero()

299

895 params = np.deg2rad([10., 10., 10., 10., 10., 10., 10., 10.])

896 [CL, CS, CD, Cl, Cm, Cn] = case.aero_results(*params)

300

C.3 Aerodynamic Model Coefficient Evaluation

Standard Atmosphere Calculator

1 import numpy as np

2

3 def stdatm_si(h):

4 Psa = np.zeros(9)

5 zsa = [0., 11000., 20000., 32000., 47000., 52000., 61000., 79000., 9.9e20]

6 Tsa = [288.15, 216.65, 216.65, 228.65, 270.65, 270.65, 252.65, 180.65,

7 180.65]

8 g0 = 9.80665

9 R = 287.0528

10 Re = 6356766.

11 Psa[0] = 101325.

12 z = Re*h/(Re+h)

13 for i in range(1, 9):

14 Lt = -(Tsa[i] - Tsa[i-1])/(zsa[i] - zsa[i-1])

15 if Lt == 0:

16 if z <= zsa[i]:

17 t = Tsa[i-1]

18 p = Psa[i-1]*np.exp(-g0*(z-zsa[i-1])/R/Tsa[i-1])

19 d = p/R/t

20 return z, t, p, d

21 else:

22 Psa[i] = Psa[i-1]*np.exp(-g0*(zsa[i] - zsa[i-1])/R/Tsa[i-1])

23 else:

24 ex = g0/R/Lt

25 if z < zsa[i]:

26 t = Tsa[i-1] - Lt*(z-zsa[i-1])

27 p = Psa[i-1]*(t/Tsa[i-1])**ex

28 d = p/R/t

29 return z, t, p, d

30 else:

31 Psa[i] = Psa[i-1]*(Tsa[i]/Tsa[i-1])**ex

32 t = Tsa[8]

33 a = np.sqrt(1.4*287.0528*t)

34 return z, t, p, d, a

35

36

37 def stdatm_english(h):

38 hsi = h*0.3048

39 zsi, tsi, psi, dsi, asi = statsi(hsi)

40 z = zsi/0.3048

41 t = tsi*1.8

42 p = psi*0.02088543

43 d = dsi*0.001940320

44 a = asi/0.3048

45 return z, t, p, d, a

301

NASA Wind Tunnel Model [64]

Wind tunnel data can be obtained using the data extraction tools in the GitHub

repository published on the USU Aerolab GitHub page.

1 import numpy as np

2 from scipy.interpolate import RegularGridInterpolator as rgi

3 from scipy.interpolate import interp1d

4 import stdatmos as atmos

5

6 class F16_windtunnel:

7 def __init__(self, data_dir="./NASA Data/Python Data/"):

8 self.c_ref = 11.32

9 self.b_w = 30.

10 self.S_w = 300.

11 self.xcgref_cref = 0.35

12 alpha = np.concatenate((np.arange(-20., 60., 5.),

13 np.arange(60., 100., 10.)))

14 alpha_lef = np.arange(-20., 50., 5.)

15 beta = np.array([-30., -25., -20., -15., -10., -8., -6., -4., -2., 0.,

16 2., 4., 6., 8., 10., 15., 20., 25., 30.])

17 dh = np.array([-25., -10., 0., 10., 25.])

18 dh_ds = np.array([-25., -10., 0., 10., 15., 20., 25.])

19 dh_n = np.array([-25., 0., 25.])

20 M = np.arange(0.0, 1.2, 0.2)

21 H = np.arange(0.0, 60000., 10000.)

22

23 # X-force coefficient data import

24 C_X = np.load(data_dir + "C_X(a,b,d_h).npy")

25 self.CX_abdh = rgi((dh, alpha, beta), C_X, bounds_error=False)

26 C_Xlef = np.load(data_dir + "C_X,lef(a,b).npy")

27 self.CXlef_ab = rgi((alpha_lef, beta), C_Xlef, bounds_error=False)

28 C_Xq = np.load(data_dir + "C_X_q(a).npy")

29 self.CXq_a = interp1d(alpha, C_Xq, bounds_error=False,

30 fill_value="extrapolate")

31 DC_Xsb = np.load(data_dir + "DC_X,sb(a).npy")

32 self.DCXsb_a = interp1d(alpha, DC_Xsb, bounds_error=False,

33 fill_value="extrapolate")

34 DC_Xqlef = np.load(data_dir + "DC_X_q,lef(a).npy")

35 self.DCXqlef_a = interp1d(alpha_lef, DC_Xqlef, bounds_error=False,

36 fill_value="extrapolate")

37

38 # Y-force coefficient data import

39 C_Y = np.load(data_dir + "C_Y(a,b).npy")

40 self.CY_ab = rgi((alpha, beta), C_Y, bounds_error=False)

41 C_Yda20 = np.load(data_dir + "C_Y,d_a=20(a,b).npy")

42 self.CYda20_ab = rgi((alpha, beta), C_Yda20, bounds_error=False)

43 C_Yda20lef = np.load(data_dir + "C_Y,d_a=20,lef(a,b).npy")

44 self.CYda20lef_ab = rgi((alpha_lef, beta), C_Yda20lef, bounds_error=False)

45 C_Ydr30 = np.load(data_dir + "C_Y,d_r=30(a,b).npy")

46 self.CYdr30_ab = rgi((alpha, beta), C_Ydr30, bounds_error=False)

47 C_Ylef = np.load(data_dir + "C_Y,lef(a,b).npy")

48 self.CYlef_ab = rgi((alpha_lef, beta), C_Ylef, bounds_error=False)

49 C_Yp = np.load(data_dir + "C_Y_p(a).npy")

50 self.CYp_a = interp1d(alpha, C_Yp, bounds_error=False,

https://github.com/usuaero/fighter_aerodynamics_Nguyen_etal
https://github.com/usuaero/fighter_aerodynamics_Nguyen_etal

302

51 fill_value="extrapolate")

52 C_Yr = np.load(data_dir + "C_Y_r(a).npy")

53 self.CYr_a = interp1d(alpha, C_Yr, bounds_error=False,

54 fill_value="extrapolate")

55 DC_Yplef = np.load(data_dir + "DC_Y_p,lef(a).npy")

56 self.DCYplef_a = interp1d(alpha_lef, DC_Yplef, bounds_error=False,

57 fill_value="extrapolate")

58 DC_Yrlef = np.load(data_dir + "DC_Y_r,lef(a).npy")

59 self.DCYrlef_a = interp1d(alpha_lef, DC_Yrlef, bounds_error=False,

60 fill_value="extrapolate")

61

62 # Z-force coefficient data import

63 C_Z = np.load(data_dir + "C_Z(a,b,d_h).npy")

64 self.CZ_abdh = rgi((dh, alpha, beta), C_Z, bounds_error=False)

65 C_Zlef = np.load(data_dir + "C_Z,lef(a,b).npy")

66 self.CZlef_ab = rgi((alpha_lef, beta), C_Zlef, bounds_error=False)

67 C_Zq = np.load(data_dir + "C_Z_q(a).npy")

68 self.CZq_a = interp1d(alpha, C_Zq, bounds_error=False,

69 fill_value="extrapolate")

70 DC_Zsb = np.load(data_dir + "DC_Z,sb(a).npy")

71 self.DCZsb_a = interp1d(alpha, DC_Zsb, bounds_error=False,

72 fill_value="extrapolate")

73 DC_Zqlef = np.load(data_dir + "DC_Z_q,lef(a).npy")

74 self.DCZqlef_a = interp1d(alpha_lef, DC_Zqlef, bounds_error=False,

75 fill_value="extrapolate")

76

77 # Pitching moment coefficient data import

78 C_m = np.load(data_dir + "C_m(a,b,d_h).npy")

79 self.Cm_abdh = rgi((dh, alpha, beta), C_m, bounds_error=False)

80 C_mlef = np.load(data_dir + "C_m,lef(a,b).npy")

81 self.Cmlef_ab = rgi((alpha_lef, beta), C_mlef, bounds_error=False)

82 C_mq = np.load(data_dir + "C_m_q(a).npy")

83 self.Cmq_a = interp1d(alpha, C_mq, bounds_error=False,

84 fill_value="extrapolate")

85 DC_m = np.load(data_dir + "DC_m(a).npy")

86 self.DCm_a = interp1d(alpha, DC_m, bounds_error=False,

87 fill_value="extrapolate")

88 DC_mds = np.load(data_dir + "DC_m,ds(a,d_h).npy")

89 self.DCmds_adh = rgi((alpha, dh_ds), DC_mds, bounds_error=False)

90 DC_msb = np.load(data_dir + "DC_m,sb(a).npy")

91 self.DCmsb_a = interp1d(alpha, DC_msb, bounds_error=False,

92 fill_value="extrapolate")

93 DC_mqlef = np.load(data_dir + "DC_m_q,lef(a).npy")

94 self.DCmqlef_a = interp1d(alpha_lef, DC_mqlef, bounds_error=False,

95 fill_value="extrapolate")

96 n_dh = np.load(data_dir + "n_d_h(d_h).npy")

97 self.ndh_dh = interp1d(dh, n_dh, bounds_error=False,

98 fill_value="extrapolate")

99

100 # Rolling moment coefficient data import

101 C_l = np.load(data_dir + "C_l(a,b,d_h).npy")

102 self.Cl_abdh = rgi((dh_n, alpha, beta), C_l, bounds_error=False)

103 C_lda20 = np.load(data_dir + "C_l,d_a=20(a,b).npy")

104 self.Clda20_ab = rgi((alpha, beta), C_lda20, bounds_error=False)

105 C_lda20lef = np.load(data_dir + "C_l,d_a=20,lef(a,b).npy")

106 self.Clda20lef_ab = rgi((alpha_lef, beta), C_lda20lef, bounds_error=False)

303

107 C_ldr30 = np.load(data_dir + "C_l,d_r=30(a,b).npy")

108 self.Cldr30_ab = rgi((alpha, beta), C_ldr30, bounds_error=False)

109 C_llef = np.load(data_dir + "C_l,lef(a,b).npy")

110 self.Cllef_ab = rgi((alpha_lef, beta), C_llef, bounds_error=False)

111 C_lp = np.load(data_dir + "C_l_p(a).npy")

112 self.Clp_a = interp1d(alpha, C_lp, bounds_error=False,

113 fill_value="extrapolate")

114 C_lr = np.load(data_dir + "C_l_r(a).npy")

115 self.Clr_a = interp1d(alpha, C_lr, bounds_error=False,

116 fill_value="extrapolate")

117 DC_lb = np.load(data_dir + "DC_l_b(a).npy")

118 self.DClb_a = interp1d(alpha, DC_lb, bounds_error=False,

119 fill_value="extrapolate")

120 DC_lplef = np.load(data_dir + "DC_l_p,lef(a).npy")

121 self.DClplef_a = interp1d(alpha_lef, DC_lplef, bounds_error=False,

122 fill_value="extrapolate")

123 DC_lrlef = np.load(data_dir + "DC_l_r,lef(a).npy")

124 self.DClrlef_a = interp1d(alpha_lef, DC_lrlef, bounds_error=False,

125 fill_value="extrapolate")

126

127 # Yawing moment coefficient data import

128 C_n = np.load(data_dir + "C_n(a,b,d_h).npy")

129 self.Cn_abdh = rgi((dh_n, alpha, beta), C_n, bounds_error=False)

130 C_nda20 = np.load(data_dir + "C_n,d_a=20(a,b).npy")

131 self.Cnda20_ab = rgi((alpha, beta), C_nda20, bounds_error=False)

132 C_nda20lef = np.load(data_dir + "C_n,d_a=20,lef(a,b).npy")

133 self.Cnda20lef_ab = rgi((alpha_lef, beta), C_nda20lef, bounds_error=False)

134 C_ndr30 = np.load(data_dir + "C_n,d_r=30(a,b).npy")

135 self.Cndr30_ab = rgi((alpha, beta), C_ndr30, bounds_error=False)

136 C_nlef = np.load(data_dir + "C_n,lef(a,b).npy")

137 self.Cnlef_ab = rgi((alpha_lef, beta), C_nlef, bounds_error=False)

138 C_np = np.load(data_dir + "C_n_p(a).npy")

139 self.Cnp_a = interp1d(alpha, C_np, bounds_error=False,

140 fill_value="extrapolate")

141 C_nr = np.load(data_dir + "C_n_r(a).npy")

142 self.Cnr_a = interp1d(alpha, C_nr, bounds_error=False,

143 fill_value="extrapolate")

144 DC_nb = np.load(data_dir + "DC_n_b(a).npy")

145 self.DCnb_a = interp1d(alpha, DC_nb, bounds_error=False,

146 fill_value="extrapolate")

147 DC_nda = np.load(data_dir + "DC_n_d_a(a).npy")

148 self.DCnda_a = interp1d(alpha, DC_nda, bounds_error=False,

149 fill_value="extrapolate")

150 DC_nplef = np.load(data_dir + "DC_n_p,lef(a).npy")

151 self.DCnplef_a = interp1d(alpha_lef, DC_nplef, bounds_error=False,

152 fill_value="extrapolate")

153 DC_nrlef = np.load(data_dir + "DC_n_r,lef(a).npy")

154 self.DCnrlef_a = interp1d(alpha_lef, DC_nrlef, bounds_error=False,

155 fill_value="extrapolate")

156

157 T = np.load(data_dir + "Thrust_En(M,H).npy")

158 self.T_idle = rgi((M, H), T[0])

159 self.T_mil = rgi((M, H), T[1])

160 self.T_max = rgi((M, H), T[2])

161

162

304

163 def set_state(self, alpha, beta, dh, dlef, dsb, da, dr,

164 xcg_cref, p, q, r, M, H, thtl):

165 self.alpha = alpha

166 self.beta = beta

167 self.dh = dh

168 self.dlef = dlef

169 self.dsb = dsb

170 self.da = da

171 self.dr = dr

172 self.xcg_cref = xcg_cref

173 self.p = p

174 self.q = q

175 self.r = r

176 self.H = H

177 self.rho, self.a = atmos.stdatm_english(H)[-2:]

178 self.M = M

179 self.V = M*self.a

180 self.pbar = p*self.b_w/(2.*self.V)

181 self.qbar = q*self.c_ref/(2.*self.V)

182 self.rbar = r*self.b_w/(2.*self.V)

183 self.thtl = thtl

184

185 def _CX(self):

186 DC_Xlef = self.CXlef_ab([self.alpha, self.beta]) - \

187 self.CX_abdh([0., self.alpha, self.beta])

188 C_Xt = self.CX_abdh([self.dh, self.alpha, self.beta]) + \

189 DC_Xlef*(1. - (self.dlef/25.)) + \

190 self.DCXsb_a(self.alpha)*(self.dsb/60.) + \

191 self.qbar*(self.CXq_a(self.alpha) +

192 self.DCXqlef_a(self.alpha)*(1. - (self.dlef/25.)))

193 return C_Xt[0]

194

195 def _CZ(self):

196 DC_Zlef = self.CZlef_ab([self.alpha, self.beta]) - \

197 self.CZ_abdh([0., self.alpha, self.beta])

198 C_Zt = self.CZ_abdh([self.dh, self.alpha, self.beta]) + \

199 DC_Zlef*(1. - (self.dlef/25.)) + \

200 self.DCZsb_a(self.alpha)*(self.dsb/60.) + \

201 self.qbar*(self.CZq_a(self.alpha) +

202 self.DCZqlef_a(self.alpha)*(1. - (self.dlef/25.)))

203 return C_Zt[0]

204

205 def _Cm(self):

206 DC_mlef = self.Cmlef_ab([self.alpha, self.beta]) - \

207 self.Cm_abdh([0., self.alpha, self.beta])

208 C_mt = self.Cm_abdh([self.dh, self.alpha, self.beta])*self.ndh_dh(self.dh) + \

209 self.C_Zt*(self.xcgref_cref - self.xcg_cref) + \

210 DC_mlef*(1. - (self.dlef/25.)) + \

211 self.DCmsb_a(self.alpha)*(self.dsb/60.) + \

212 self.qbar*(self.Cmq_a(self.alpha) +

213 self.DCmqlef_a(self.alpha)*(1. - (self.dlef/25.))) + \

214 self.DCm_a(self.alpha) + \

215 self.DCmds_adh([self.alpha, self.dh])

216 return C_mt[0]

217

218 def _CY(self):

305

219 ab = [self.alpha, self.beta]

220 DC_Ylef = self.CYlef_ab(ab) - self.CY_ab(ab)

221 DC_Yda20 = self.CYda20_ab(ab) - self.CY_ab(ab)

222 DC_Yda20lef = self.CYda20lef_ab(ab) - self.CYlef_ab(ab) - DC_Yda20

223 DC_Ydr30 = self.CYdr30_ab(ab) - self.CY_ab(ab)

224 C_Yt = self.CY_ab(ab) + \

225 DC_Ylef*(1. - (self.dlef/25.)) + \

226 (DC_Yda20 + DC_Yda20lef*(1. - (self.dlef/25.)))*(self.da/20.) + \

227 DC_Ydr30*(self.dr/30.) + \

228 self.rbar*(self.CYr_a(self.alpha) +

229 self.DCYrlef_a(self.alpha)*(1. - (self.dlef/25.))) + \

230 self.pbar*(self.CYp_a(self.alpha) +

231 self.DCYplef_a(self.alpha)*(1. - (self.dlef/25.)))

232 return C_Yt[0]

233

234 def _Cn(self):

235 ab = [self.alpha, self.beta]

236 Cn_abdh0 = self.Cn_abdh([0., self.alpha, self.beta])

237 DC_nlef = self.Cnlef_ab(ab) - Cn_abdh0

238 DC_nda20 = self.Cnda20_ab(ab) - Cn_abdh0

239 DC_nda20lef = self.Cnda20lef_ab(ab) - self.Cnlef_ab(ab) - DC_nda20

240 DC_ndr30 = self.Cndr30_ab(ab) - Cn_abdh0

241 C_nt = self.Cn_abdh([self.dh, self.alpha, self.beta]) + \

242 DC_nlef*(1. - (self.dlef/25.)) - \

243 self.C_Yt*(self.xcgref_cref - self.xcg_cref)*(self.c_ref/self.b_w) + \

244 (DC_nda20 + DC_nda20lef*(1. - (self.dlef/25.)))*(self.da/20.) + \

245 DC_ndr30*(self.dr/30.) + \

246 self.rbar*(self.Cnr_a(self.alpha) +

247 self.DCnrlef_a(self.alpha)*(1. - (self.dlef/25.))) + \

248 self.pbar*(self.Cnp_a(self.alpha) +

249 self.DCnplef_a(self.alpha)*(1. - (self.dlef/25.))) + \

250 self.DCnb_a(self.alpha)*np.deg2rad(self.beta)

251 return C_nt[0]

252

253 def _Cl(self):

254 ab = [self.alpha, self.beta]

255 Cl_abdh0 = self.Cl_abdh([0., self.alpha, self.beta])

256 DC_llef = self.Cllef_ab(ab) - Cl_abdh0

257 DC_lda20 = self.Clda20_ab(ab) - Cl_abdh0

258 DC_lda20lef = self.Clda20lef_ab(ab) - self.Cllef_ab(ab) - DC_lda20

259 DC_ldr30 = self.Cldr30_ab(ab) - Cl_abdh0

260 C_lt = self.Cl_abdh([self.dh, self.alpha, self.beta]) + \

261 DC_llef*(1. - (self.dlef/25.)) + \

262 (DC_lda20 + DC_lda20lef*(1. - (self.dlef/25.)))*(self.da/20.) + \

263 DC_ldr30*(self.dr/30.) + \

264 self.pbar*(self.Clp_a(self.alpha) +

265 self.DClplef_a(self.alpha)*(1. - (self.dlef/25.))) + \

266 self.rbar*(self.Clr_a(self.alpha) +

267 self.DClrlef_a(self.alpha)*(1. - (self.dlef/25.))) + \

268 self.DClb_a(self.alpha)*np.deg2rad(self.beta)

269 return C_lt[0]

270

271 def _tau_inv(self, dp):

272 if dp <= 25.0:

273 t_inv = 1.0

274 elif dp >= 50.0:

306

275 t_inv = 0.1

276 else:

277 t_inv = 1.9 - 0.036*dp

278 return t_inv

279

280 def thrust(self):

281 MH = [self.M, self.H]

282 if self.thtl <= 0.77:

283 pow_c = 64.94*self.thtl

284 else:

285 pow_c = 217.38*self.thtl - 117.38

286 if pow_c >= 50.0:

287 T = self.T_mil(MH) + (self.T_max(MH) -

288 self.T_mil(MH))*(pow_c - 50.0)/50.0

289 else:

290 T = self.T_idle(MH) + (self.T_mil(MH) - self.T_idle(MH))*pow_c/50.0

291 return T

292

293 def _body_to_stab(self, FM, alpha):

294 CX, CY, CZ, Cl, Cm, Cn = FM

295 CA = -CX

296 CN = -CZ

297 alpha_rad = np.deg2rad(alpha)

298 c_a = np.cos(alpha_rad)

299 s_a = np.sin(alpha_rad)

300 CD_s = CA*c_a + CN*s_a

301 CL = CN*c_a - CA*s_a

302 Cl_s = Cl*c_a + Cn*s_a

303 Cn_s = Cn*c_a - Cl*s_a

304 return [CD_s, CY, CL, Cl_s, Cm, Cn_s]

305

306 def _body_to_wind(self, FM, alpha, beta):

307 CX, CY, CZ, Cl, Cm, Cn = FM

308 CA = -CX

309 CN = -CZ

310 alpha_rad = np.deg2rad(alpha)

311 beta_rad = np.deg2rad(beta)

312 c_a = np.cos(alpha_rad)

313 s_a = np.sin(alpha_rad)

314 c_b = np.cos(beta_rad)

315 s_b = np.sin(beta_rad)

316 CD = CA*c_a*c_b - CY*s_b + CN*s_a*c_b

317 CS = CA*c_a*s_b + CY*c_b + CN*s_a*s_b

318 CL = CN*c_a - CA*s_a

319 Cl_w = Cl*c_a*c_b + Cm*s_b + Cn*s_a*c_b

320 Cm_w = Cm*c_b - Cl*c_a*s_b - Cn*s_a*s_b

321 Cn_w = Cn*c_a - Cl*s_a

322 return [CD, CS, CL, Cl_w, Cm_w, Cn_w]

323

324

325 def calc_forces(self, body_frame=True, stab_frame=False,

326 wind_frame=False, dimensional=False,

327 verbose=False):

328 self.C_Xt = self._CX()

329 self.C_Zt = self._CZ()

330 self.C_mt = self._Cm()

307

331 self.C_Yt = self._CY()

332 self.C_nt = self._Cn()

333 self.C_lt = self._Cl()

334 body_fm = [self.C_Xt, self.C_Yt, self.C_Zt,

335 self.C_lt, self.C_mt, self.C_nt]

336 dim_const = 0.5*self.rho*self.V**2*self.S_w

337 forces = {'F16' : {}}

338 if body_frame:

339 body_keys = ['CX', 'CY', 'CZ', 'Cl', 'Cm', 'Cn']

340 forces['F16'].update({key : fm for key, fm in zip(body_keys, body_fm)})

341 if dimensional:

342 body_keys_dim = ['Fx_b', 'Fy_b', 'Fz_b', 'Mx_b', 'My_b', 'Mz_b']

343 body_fm_dim = [fm*dim_const for fm in body_fm]

344 body_fm_dim[3] *= self.b_w

345 body_fm_dim[4] *= self.c_ref

346 body_fm_dim[5] *= self.b_w

347 forces['F16'].update({key : fm for key, fm in zip(body_keys_dim,

348 body_fm_dim)})

349 if stab_frame:

350 stab_keys = ['CD_s', 'CY_s', 'CL_s', 'Cl_s', 'Cm_s', 'Cn_s']

351 stab_fm = self._body_to_stab(body_fm, self.alpha)

352 forces['F16'].update({key : fm for key, fm in zip(stab_keys, stab_fm)})

353 if dimensional:

354 stab_keys_dim = ['Fx_s', 'Fy_s', 'Fz_s', 'Mx_s', 'My_s', 'Mz_s']

355 stab_fm_dim = [fm*dim_const for fm in stab_fm]

356 stab_fm_dim[3] *= self.b_w

357 stab_fm_dim[4] *= self.c_ref

358 stab_fm_dim[5] *= self.b_w

359 forces['F16'].update({key : fm for key, fm in zip(stab_keys_dim,

360 stab_fm_dim)})

361 if wind_frame:

362 wind_keys = ['CD', 'CS', 'CL', 'Cl_w', 'Cm_w', 'Cn_w']

363 wind_fm = self._body_to_wind(body_fm, self.alpha, self.beta)

364 forces['F16'].update({key : fm for key, fm in zip(wind_keys, wind_fm)})

365 if dimensional:

366 wind_keys_dim = ['Fx_w', 'Fy_w', 'Fz_w', 'Mx_w', 'My_w', 'Mz_w']

367 wind_fm_dim = [fm*dim_const for fm in wind_fm]

368 wind_fm_dim[3] *= self.b_w

369 wind_fm_dim[4] *= self.c_ref

370 wind_fm_dim[5] *= self.b_w

371 forces['F16'].update({key : fm for key, fm in zip(wind_keys_dim,

372 wind_fm_dim)})

373 if verbose:

374 print(forces['F16'])

375 return forces

376

377 if __name__ == "__main__":

378 case = F16_windtunnel()

379 alpha = 0.

380 beta = 0.

381 dh = 10.

382 da = 0.

383 dr = 0.

384 p = 0.

385 q = 0.

386 r = 0.

308

387 xcg_cref = 0.

388 dsb = 0.

389 dlef = 0.

390 H = 1000.

391 M = 0.2

392 thtl = 0.

393 case.set_state(alpha, beta, dh, dlef, dsb, da, dr, xcg_cref, p, q, r, M, H, thtl)

394 forces_options = {'body_frame': True,

395 'stab_frame': True,

396 'wind_frame': True,

397 'dimensional': True,

398 'verbose': True}

399 fm = case.calc_forces(**forces_options)

309

Baseline Aerodynamic Model

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import machupX as mx

4 import pandas as pd

5 from os.path import exists

6 import json

7 import windtunnelmodel as wind

8

9

10 def generate_data(params):

11 alpha = params[0]

12 beta = params[1]

13 d_e = params[2]

14 d_a = params[3]

15 d_r = params[4]

16 p = params[5]

17 q = params[6]

18 r = params[7]

19 rates = [p, q, r]

20 if nasa:

21 case.set_state(alpha, beta, d_e, 0., 0., d_a, d_r,

22 0.35, p, q, r, 0.2, 1000., 0.)

23 x = case.calc_forces(**forces_options)["F16"]

24 else:

25 my_scene.set_aircraft_state(state={"alpha": alpha,

26 "beta": beta,

27 "angular_rates": rates,

28 "velocity": 222.5211})

29 my_scene.set_aircraft_control_state(control_state={"elevator": d_e,

30 "aileron": d_a,

31 "rudder": d_r})

32 x = my_scene.solve_forces(**forces_options)["F16"]["total"]

33 fm = [x['CD'], x['CS'], x['CL'], x['Cl'], x['Cm'], x['Cn']]

34 return (*params, *fm)

35

36 def plot_model(x, y, color, ls, tag, marker, ax, label):

37 first = True

38 for i in range(len(y)):

39 if tag[i] == "data":

40 if first:

41 ax.scatter(x, y[i], ec=color[i], fc="None",

42 marker=marker, label=label)

43 else:

44 ax.scatter(x, y[i], ec=color[i], fc="None", marker=marker)

45 first = False

46 else:

47 ax.plot(x, y[i], color=color[i], linestyle=ls[i])

48

49 def remove_outliers(data, m=2.):

50 d = np.abs(data - np.median(data))

51 mdev = np.median(d)

52 s = d/mdev if mdev else 0.

53 return s < m

54

310

55 def _CL0_CLalpha(CLalpha_data, plot, skip_mask=False):

56 alphas = CLalpha_data[:, 0]*np.pi/180.

57 CL = CLalpha_data[:, 10]

58 if skip_mask:

59 out_mask = [True]*len(alphas)

60 else:

61 out_mask = remove_outliers(CL)

62 [CL_alpha, CL0] = np.polyfit(alphas[out_mask], CL[out_mask], 1)

63 if plot:

64 x = alphas*180./np.pi

65 y = [CL, CL0 + CL_alpha*alphas]

66 color = ['0.0', '0.0']

67 ls = ['-', '-']

68 tag = ['data', 'not']

69 marker = 'o'

70 return [x, y, color, ls, tag, marker]

71 return CL0, CL_alpha

72

73 def _CL_de(CLde_data, plot, skip_mask=False):

74 CLde_p = np.array([x[10] for x in CLde_data if x[2] == 10.])

75 CLde_m = np.array([x[10] for x in CLde_data if x[2] == -10.])

76 de = np.deg2rad(10.)

77 CL_de = (CLde_p - CLde_m)/(2.*de)

78 if skip_mask:

79 out_mask = [True]*len(CLde_p)

80 else:

81 out_mask = remove_outliers(CL_de)

82 CL_de = np.average(CL_de[out_mask])

83

84 CL0, CL_alpha = _CL0_CLalpha(np.array([x for x in CLde_data if x[2] == 0.]),

85 False)

86 a0 = np.array([x[0] for x in CLde_data if x[2] == 0.])

87 alpha = a0/180.*np.pi

88 CL1 = CL0 + CL_alpha*alpha

89 if plot:

90 x = a0

91 y = [CLde_p, CLde_m, CL1 + CL_de*de, CL1 + CL_de*-de]

92 color = ['0.0']*4

93 ls = ['--']*4

94 tag = ['data']*2 + ['not']*2

95 marker = 'v'

96 return [x, y, color, ls, tag, marker]

97 return CL_de

98

99 def _CL_qbar(CLqbar_data, plot, skip_mask=False):

100 CLq_p = np.array([x[10] for x in CLqbar_data if x[6] == 30.*np.pi/180.])

101 CLq_m = np.array([x[10] for x in CLqbar_data if x[6] == -30.*np.pi/180.])

102 qbar = np.deg2rad(30.)*c_w/(2.*V)

103 CL_qbar = (CLq_p - CLq_m)/(2.*qbar)

104 if skip_mask:

105 out_mask = [True]*len(CLq_p)

106 else:

107 out_mask = remove_outliers(CL_qbar)

108 CL_qbar = np.average(CL_qbar[out_mask])

109

110 CL0, CL_alpha = _CL0_CLalpha(np.array([x for x in CLqbar_data if x[6] == 0.]),

311

111 False)

112 a0 = np.array([x[0] for x in CLqbar_data if x[6] == 0.])

113 alpha = a0/180.*np.pi

114 CL1 = CL0 + CL_alpha*alpha

115 if plot:

116 x = a0

117 y = [CLq_p, CLq_m, CL1 + CL_qbar*qbar, CL1 + CL_qbar*-qbar]

118 color = ['0.0']*4

119 ls = [':']*4

120 tag = ['data']*2 + ['not']*2

121 marker = '^'

122 return [x, y, color, ls, tag, marker]

123 return CL_qbar

124

125 def _CS_beta(CSbeta_data, plot, skip_mask=False):

126 betas = CSbeta_data[:, 1]*np.pi/180.

127 CS = CSbeta_data[:, 9]

128 if skip_mask:

129 out_mask = [True]*len(betas)

130 else:

131 out_mask = remove_outliers(CS)

132 [CS_beta, CS0] = np.polyfit(betas[out_mask], CS[out_mask], 1)

133 if plot:

134 x = betas*180./np.pi

135 y = [CS, CS0 + CS_beta*betas]

136 color = ['0.0']*2

137 ls = ['-']*2

138 tag = ['data', 'not']

139 marker = 'o'

140 return [x, y, color, ls, tag, marker]

141 return CS0, CS_beta

142

143 def _CS_da(CSda_data, plot, skip_mask=False):

144 CS1 = np.array([x[9] for x in CSda_data if x[3] == 0.])

145 CSda_p = np.array([x[9] for x in CSda_data if x[3] == 20.])

146 da = np.deg2rad(20.)

147 CS_da = (CSda_p - CS1)/da

148 if skip_mask:

149 out_mask = [True]*len(CS1)

150 else:

151 out_mask = remove_outliers(CS_da)

152 CS_da = np.average(CS_da[out_mask])

153

154 CS0, CS_beta = _CS_beta(np.array([x for x in CSda_data if x[3] == 0.]), False)

155 b0 = np.array([x[1] for x in CSda_data if x[3] == 0.])

156 beta = b0*np.pi/180.

157 CS1 = CS0 + CS_beta*beta

158 if plot:

159 x = b0

160 y = [CSda_p, CS1 + CS_da*da]

161 color = ['0.0']*2

162 ls = ['--']*2

163 tag = ['data', 'not']

164 marker = 'v'

165 return [x, y, color, ls, tag, marker]

166 return CS_da

312

167

168 def _CS_dr(CSdr_data, plot, skip_mask=False):

169 CS1 = np.array([x[9] for x in CSdr_data if x[4] == 0.])

170 CSdr_p = np.array([x[9] for x in CSdr_data if x[4] == 30.])

171 dr = np.deg2rad(30.)

172 CS_dr = (CSdr_p - CS1)/dr

173 if skip_mask:

174 out_mask = [True]*len(CS1)

175 else:

176 out_mask = remove_outliers(CS_dr)

177 CS_dr = np.average(CS_dr[out_mask])

178

179 CS0, CS_beta = _CS_beta(np.array([x for x in CSdr_data if x[4] == 0.]), False)

180 b0 = np.array([x[1] for x in CSdr_data if x[4] == 0.])

181 beta = b0*np.pi/180.

182 CS1 = CS0 + CS_beta*beta

183 if plot:

184 x = b0

185 y = [CSdr_p, CS1 + CS_dr*dr]

186 color = ['0.0']*2

187 ls = [':']*2

188 tag = ['data', 'not']

189 marker = '^'

190 return [x, y, color, ls, tag, marker]

191 return CS_dr

192

193 def _CS_rbar(CSr_data, plot, skip_mask=False):

194 CSr_p = np.array([x[9] for x in CSr_data if x[7] == 30.*np.pi/180.])

195 CSr_m = np.array([x[9] for x in CSr_data if x[7] == -30.*np.pi/180.])

196 rbar = np.deg2rad(30.)*b_w/(2.*V)

197 CS_rbar = (CSr_p - CSr_m)/(2.*rbar)

198 if skip_mask:

199 out_mask = [True]*len(CSr_p)

200 else:

201 out_mask = remove_outliers(CS_rbar)

202 CS_rbar = np.average(CS_rbar[out_mask])

203

204 CS1 = np.array([x[9] for x in CSr_data if x[7] == 0.])

205 a0 = np.array([x[0] for x in CSr_data if x[7] == 0.])

206 if plot:

207 x = a0

208 y = [CSr_p, CSr_m, CS1 + CS_rbar*rbar, CS1 + CS_rbar*-rbar]

209 color = ['0.0']*4

210 ls = ['-.']*4

211 tag = ['data', 'data', 'not', 'not']

212 marker = '<'

213 return [x, y, color, ls, tag, marker]

214 return CS_rbar

215

216 def _CS_pbar(CSp_data, plot, skip_mask=False):

217 CS1 = np.array([x[9] for x in CSp_data if x[5] == 0.])

218 CL1 = np.array([x[10] for x in CSp_data if x[5] == 0.])

219 CSp_p = np.array([x[9] for x in CSp_data if x[5] == 90.*np.pi/180.])

220 CSp_m = np.array([x[9] for x in CSp_data if x[5] == -90.*np.pi/180.])

221 pbar = np.deg2rad(90.)*b_w/(2.*V)

222 CS_pbar = (CSp_p - CSp_m)/(2.*pbar)

313

223 if skip_mask:

224 out_mask = [True]*len(CS1)

225 else:

226 out_mask = remove_outliers(CS_pbar)

227 [CS_Lpbar, CS_pbar] = np.polyfit(CL1[out_mask], CS_pbar[out_mask], 1)

228

229 CL0, CL_alpha = _CL0_CLalpha(np.array([x for x in CSp_data if x[5] == 0.]), False)

230 a0 = np.array([x[0] for x in CSp_data if x[5] == 0.])

231 alpha = a0/180.*np.pi

232 CL1 = CL0 + CL_alpha*alpha

233 if plot:

234 x = a0

235 y = [CSp_p, CSp_m, CS1 + (CS_Lpbar*CL1 + CS_pbar)*pbar,

236 CS1 + (CS_Lpbar*CL1 + CS_pbar)*-pbar]

237 color = ['0.0']*4

238 ls = [(0, (3, 5, 1, 5, 1, 5))]*4

239 tag = ['data', 'data', 'not', 'not']

240 marker = '>'

241 return [x, y, color, ls, tag, marker]

242 return CS_pbar, CS_Lpbar

243

244 def _CD_de(CDde_data, plot, skip_mask=False):

245 CD1 = np.array([x[8] for x in CDde_data if x[2] == 0.])

246 CL1 = np.array([x[10] for x in CDde_data if x[2] == 0.])

247 CDde_p = np.array([x[8] for x in CDde_data if x[2] == 10.])

248 CDde_m = np.array([x[8] for x in CDde_data if x[2] == -10.])

249 de = np.deg2rad(10.)

250 CD_de = (CDde_p - CDde_m)/(2.*de)

251 if skip_mask:

252 out_mask = [True]*len(CD1)

253 else:

254 out_mask = remove_outliers(CD_de)

255 [CD_Lde, CD_de] = np.polyfit(CL1[out_mask], CD_de[out_mask], 1)

256 if skip_mask:

257 out_mask = [True]*len(CD1)

258 else:

259 out_mask = remove_outliers(CD1)

260 CD_de2 = np.average((CDde_p - CD1)[out_mask]/(de**2))

261

262 CL0, CL_alpha = _CL0_CLalpha(np.array([x for x in CDde_data if x[2] == 0.]),

263 False)

264 a0 = np.array([x[0] for x in CDde_data if x[2] == 0.])

265 alpha = a0/180.*np.pi

266 CL = CL0 + CL_alpha*alpha

267 CD_0, CD_L, CD_L2 = _CD_polar(CDde_data, False)

268 CD1 = CD_0 + CD_L*CL + CD_L2*np.square(CL)

269 if plot:

270 x = CL1

271 y = [CDde_p, CDde_m, CD1 + (CD_Lde*CL1 + CD_de)*de + CD_de2*de**2,

272 CD1 + (CD_Lde*CL1 + CD_de)*-de + CD_de2*de**2]

273 color = ['0.0']*4

274 ls = ['--']*4

275 tag = ['data', 'data', 'not', 'not']

276 marker = 'v'

277 return [x, y, color, ls, tag, marker]

278 return CD_de, CD_Lde, CD_de2

314

279

280 def _CD_polar(CDalpha_data, plot, skip_mask=False):

281 CD = CDalpha_data[:, 8]

282 CL = CDalpha_data[:, 10]

283 if skip_mask:

284 out_mask = [True]*len(CD)

285 else:

286 out_mask = remove_outliers(CD)

287 out_mask *= remove_outliers(CL)

288 out_mask *= (CD >= 0.)

289 [CD_L2, CD_L, CD_0] = np.polyfit(CL[out_mask], CD[out_mask], 2)

290 if plot:

291 x = CL

292 y = [CD, CD_0 + CD_L*CL + CD_L2*np.square(CL)]

293 color = ['0.0']*2

294 ls = ['-']*2

295 tag = ['data', 'not']

296 marker = 'o'

297 coeffs = [CD_0, CD_L, CD_L2]

298 return [x, y, color, ls, tag, marker, coeffs]

299 return CD_0, CD_L, CD_L2

300

301 def _CD_Spolar(CDbeta_data, plot, skip_mask=False):

302 CD = CDbeta_data[:, 8]

303 CS = CDbeta_data[:, 9]

304 if skip_mask:

305 out_mask = [True]*len(CD)

306 else:

307 out_mask = remove_outliers(CD, m=1.5)

308 out_mask *= remove_outliers(CS, m=1.5)

309 out_mask *= (CD >= 0.)

310 [CD_S2, CD_S, CD_0] = np.polyfit(CS[out_mask], CD[out_mask], 2)

311 if plot:

312 x = CS

313 y = [CD, CD_0 + CD_S*CS + CD_S2*np.square(CS)]

314 color = ['0.3']*2

315 ls = ['-']*2

316 tag = ['data', 'not']

317 marker = '<'

318 coeffs = [CD_0, CD_S, CD_S2]

319 return [x, y, color, ls, tag, marker, coeffs]

320 return CD_0, CD_S, CD_S2

321

322 def _CD_pbar(CDp_data, plot, skip_mask=False):

323 CD1 = np.array([x[8] for x in CDp_data if x[5] == 0.])

324 CS1 = np.array([x[9] for x in CDp_data if x[5] == 0.])

325 CDp_p = np.array([x[8] for x in CDp_data if x[5] == 90.*np.pi/180.])

326 CDp_m = np.array([x[8] for x in CDp_data if x[5] == -90.*np.pi/180.])

327 pbar = np.deg2rad(90.)*b_w/(2.*V)

328 CD_pbar = (CDp_p - CDp_m)/(2.*pbar)

329 if skip_mask:

330 out_mask = [True]*len(CD1)

331 else:

332 out_mask = remove_outliers(CD_pbar)

333 out_mask*= (CD1 >= 0.)

334 [CD_Spbar, CD_pbar] = np.polyfit(CS1[out_mask], CD_pbar[out_mask], 1)

315

335

336 # Shift to view accuracy of trends rather than discrepancy in CD_pbar

337 CD1 = CDp_p[len(CD1)//2]

338 if plot:

339 x = CS1

340 y = [CDp_p, CDp_m, CD1 + (CD_Spbar*CS1 + CD_pbar)*pbar,

341 CD1 + (CD_Spbar*CS1 + CD_pbar)*-pbar]

342 color = ['0.3']*4

343 ls = ['--']*4

344 tag = ['data', 'data', 'not', 'not']

345 marker = '>'

346 return [x, y, color, ls, tag, marker]

347 return CD_pbar, CD_Spbar

348

349 def _CD_rbar(CDr_data, plot, skip_mask=False):

350 CD1 = np.array([x[8] for x in CDr_data if x[7] == 0.])

351 CS1 = np.array([x[9] for x in CDr_data if x[7] == 0.])

352 CDr_p = np.array([x[8] for x in CDr_data if x[7] == 30.*np.pi/180.])

353 CDr_m = np.array([x[8] for x in CDr_data if x[7] == -30.*np.pi/180.])

354 rbar = np.deg2rad(30.)*b_w/(2.*V)

355 CD_rbar = (CDr_p - CDr_m)/(2.*rbar)

356 if skip_mask:

357 out_mask = [True]*len(CD1)

358 else:

359 out_mask = remove_outliers(CD_rbar)

360 out_mask *= (CD1 >= 0.)

361 [CD_Srbar, CD_rbar] = np.polyfit(CS1[out_mask], CD_rbar[out_mask], 1)

362

363 # Shift to view accuracy of trends rather than discrepancy in CD_rbar

364 CD1 = CDr_p[len(CD1)//2]

365 if plot:

366 x = CS1

367 y = [CDr_p, CDr_m, CD1 + (CD_Srbar*CS1 + CD_rbar)*rbar,

368 CD1 + (CD_Srbar*CS1 + CD_rbar)*-rbar]

369 color = ['0.3']*4

370 ls = [':']*4

371 tag = ['data', 'data', 'not', 'not']

372 marker = 's'

373 return [x, y, color, ls, tag, marker]

374 return CD_rbar, CD_Srbar

375

376 def _CD_da(CDda_data, plot, skip_mask=False):

377 CD1 = np.array([x[8] for x in CDda_data if x[3] == 0.])

378 CS1 = np.array([x[9] for x in CDda_data if x[3] == 0.])

379 CDda_p = np.array([x[8] for x in CDda_data if x[3] == 20.])

380 CDda_m = np.array([x[8] for x in CDda_data if x[3] == -20.])

381 da = np.deg2rad(20.)

382 CD_da = (CDda_p - CDda_m)/(2.*da)

383 if skip_mask:

384 out_mask = [True]*len(CD1)

385 else:

386 out_mask = remove_outliers(CD_da)

387 out_mask*= (CD1 >= 0.)

388 [CD_Sda, CD_da] = np.polyfit(CS1[out_mask], CD_da[out_mask], 1)

389

390 # Shift to view accuracy of trends rather than discrepancy in CD_da

316

391 CD1 = CDda_p[len(CD1)//2]

392 if plot:

393 x = CS1

394 y = [CDda_p, CDda_m, CD1 + (CD_Sda*CS1 + CD_da)*da,

395 CD1 + (CD_Sda*CS1 + CD_da)*-da]

396 color = ['0.3']*4

397 ls = ['-.']*4

398 tag = ['data', 'data', 'not', 'not']

399 marker = 'h'

400 return [x, y, color, ls, tag, marker]

401 return CD_da, CD_Sda

402

403 def _CD_dr(CDdr_data, plot, skip_mask=False):

404 CD1 = np.array([x[8] for x in CDdr_data if x[4] == 0.])

405 CS1 = np.array([x[9] for x in CDdr_data if x[4] == 0.])

406 CDdr_p = np.array([x[8] for x in CDdr_data if x[4] == 30.])

407 CDdr_m = np.array([x[8] for x in CDdr_data if x[4] == -30.])

408 dr = np.deg2rad(30.)

409 CD_dr = (CDdr_p - CDdr_m)/(2.*dr)

410 if skip_mask:

411 out_mask = [True]*len(CD1)

412 else:

413 out_mask = remove_outliers(CD_dr)

414 out_mask*= (CD1 >= 0.)

415 [CD_Sdr, CD_dr] = np.polyfit(CS1[out_mask], CD_dr[out_mask], 1)

416

417 CD_0, CD_S, CD_S2 = _CD_Spolar(np.array([x for x in CDdr_data if x[4] == 0.]),

418 False)

419

420 # Shift to view accuracy of trends rather than discrepancy in CD_dr

421 CD1 = CDdr_p[len(CD1)//2]

422 if plot:

423 x = CS1

424 y = [CDdr_p, CDdr_m, CD1 + (CD_Sdr*CS1 + CD_dr)*dr,

425 CD1 + (CD_Sdr*CS1 + CD_dr)*-dr]

426 color = ['0.3']*4

427 ls = [(0, (3, 5, 1, 5, 1, 5))]*4

428 tag = ['data', 'data', 'not', 'not']

429 marker = 'd'

430 return [x, y, color, ls, tag, marker]

431 return CD_dr, CD_Sdr

432

433 def _CD_qbar(CDq_data, plot, skip_mask=False):

434 CD1 = np.array([x[8] for x in CDq_data if x[6] == 0.])

435 CL1 = np.array([x[10] for x in CDq_data if x[6] == 0.])

436 CDq_p = np.array([x[8] for x in CDq_data if x[6] == 30.*np.pi/180.])

437 CDq_m = np.array([x[8] for x in CDq_data if x[6] == -30.*np.pi/180.])

438 qbar = np.deg2rad(30.)*c_w/(2.*V)

439 CD_qbar = (CDq_p - CDq_m)/(2.*qbar)

440 if skip_mask:

441 out_mask = [True]*len(CD1)

442 else:

443 out_mask = remove_outliers(CD_qbar)

444 out_mask *= (CD1 >= 0.)

445 [CD_L2qbar, CD_Lqbar, CD_qbar] = np.polyfit(CL1[out_mask], CD_qbar[out_mask], 2)

446

317

447 CL0, CL_alpha = _CL0_CLalpha(np.array([x for x in CDq_data if x[6] == 0.]), False)

448 a0 = np.array([x[0] for x in CDq_data if x[6] == 0.])

449 alpha = a0/180.*np.pi

450 CL = CL0 + CL_alpha*alpha

451 CD_0, CD_L, CD_L2 = _CD_polar(np.array([x for x in CDq_data if x[6] == 0.]),

452 False)

453 CD1 = CD_0 + CD_L*CL + CD_L2*np.square(CL)

454 if plot:

455 x = CL1

456 y = [CDq_p, CDq_m,

457 CD1 + (CD_L2qbar*np.square(CL1) + CD_Lqbar*CL1 + CD_qbar)*qbar,

458 CD1 + (CD_L2qbar*np.square(CL1) + CD_Lqbar*CL1 + CD_qbar)*-qbar]

459 color = ['0.0']*4

460 ls = [':']*4

461 tag = ['data', 'data', 'not', 'not']

462 marker = '^'

463 return [x, y, color, ls, tag, marker]

464 return CD_qbar, CD_Lqbar, CD_L2qbar

465

466 def _Cl_beta(Clbeta_data, plot, skip_mask=False):

467 betas = Clbeta_data[:, 1]*np.pi/180.

468 Cl = Clbeta_data[:, 11]

469 if skip_mask:

470 out_mask = [True]*len(betas)

471 else:

472 out_mask = remove_outliers(Cl)

473 [Cl_beta, Cl0] = np.polyfit(betas[out_mask], Cl[out_mask], 1)

474

475 b0 = betas*180./np.pi

476 if plot:

477 x = b0

478 y = [Cl, Cl0 + Cl_beta*betas]

479 color = ['0.0']*2

480 ls = ['-']*2

481 tag = ['data', 'not']

482 marker = 'o'

483 return [x, y, color, ls, tag, marker]

484 return Cl0, Cl_beta

485

486 def _Cl_pbar(Clp_data, plot, skip_mask=False):

487 Cl1 = np.array([x[11] for x in Clp_data if x[5] == 0.])

488 Clp_p = np.array([x[11] for x in Clp_data if x[5] == 90.*np.pi/180.])

489 Clp_m = np.array([x[11] for x in Clp_data if x[5] == -90.*np.pi/180.])

490 pbar = np.deg2rad(90.)*b_w/(2.*V)

491 if skip_mask:

492 out_mask = [True]*len(Cl1)

493 else:

494 out_mask = remove_outliers(Clp_p)

495 Cl_pbar = np.average((Clp_p - Clp_m)[out_mask]/(2.*pbar))

496

497 a0 = np.array([x[0] for x in Clp_data if x[5] == 0.])

498 Cl1 = np.zeros(len(Cl1))

499 if plot:

500 x = a0

501 y = [Clp_p, Clp_m, Cl1 + Cl_pbar*pbar, Cl1 + Cl_pbar*-pbar]

502 color = ['0.0']*4

318

503 ls = ['-.']*4

504 tag = ['data', 'data', 'not', 'not']

505 marker = '<'

506 return [x, y, color, ls, tag, marker]

507 return Cl_pbar

508

509 def _Cl_rbar(Clr_data, plot, skip_mask=False):

510 Cl1 = np.array([x[11] for x in Clr_data if x[7] == 0.])

511 CL1 = np.array([x[10] for x in Clr_data if x[7] == 0.])

512 Clr_p = np.array([x[11] for x in Clr_data if x[7] == 30.*np.pi/180.])

513 Clr_m = np.array([x[11] for x in Clr_data if x[7] == -30.*np.pi/180.])

514 rbar = np.deg2rad(30.)*b_w/(2.*V)

515 Cl_rbar = (Clr_p - Clr_m)/(2.*rbar)

516 if skip_mask:

517 out_mask = [True]*len(CL1)

518 else:

519 out_mask = remove_outliers(Cl_rbar)

520 [Cl_Lrbar, Cl_rbar] = np.polyfit(CL1[out_mask], Cl_rbar[out_mask], 1)

521

522 a0 = np.array([x[0] for x in Clr_data if x[7] == 0.])

523 Cl1 = np.zeros(len(a0))

524 [CL0, CL_alpha] = _CL0_CLalpha(np.array([x for x in Clr_data if x[7] == 0.]),

525 False)

526 CL1 = CL0 + CL_alpha*a0*np.pi/180.

527 if plot:

528 x = a0

529 y = [Clr_p, Clr_m, Cl1 + (Cl_Lrbar*CL1 + Cl_rbar)*rbar,

530 Cl1 + (Cl_Lrbar*CL1 + Cl_rbar)*-rbar]

531 color = ['0.0']*4

532 ls = [(0, (3, 5, 1, 5, 1, 5))]*4

533 tag = ['data', 'data', 'not', 'not']

534 marker = '>'

535 return [x, y, color, ls, tag, marker]

536 return Cl_rbar, Cl_Lrbar

537

538 def _Cl_da(Clda_data, plot, skip_mask=False):

539 Cl1 = np.array([x[11] for x in Clda_data if x[3] == 0.])

540 Clda_p = np.array([x[11] for x in Clda_data if x[3] == 20.])

541 da = np.deg2rad(20.)

542 if skip_mask:

543 out_mask = [True]*len(Cl1)

544 else:

545 out_mask = remove_outliers(Cl1)

546 Cl_da = np.average((Clda_p - Cl1)[out_mask]/da)

547

548 b0 = np.array([x[1] for x in Clda_data if x[3] == 0.])

549 [Cl0, Cl_beta] = _Cl_beta(np.array([x for x in Clda_data if x[3] == 0.]), False)

550 Cl1 = Cl0 + Cl_beta*b0*np.pi/180.

551 if plot:

552 x = b0

553 y = [Clda_p, Cl1 + Cl_da*np.full(len(Cl1), da)]

554 color = ['0.0']*2

555 ls = ['--']*2

556 tag = ['data', 'not']

557 marker = 'v'

558 return [x, y, color, ls, tag, marker]

319

559 return Cl_da

560

561 def _Cl_dr(Cldr_data, plot, skip_mask=False):

562 Cl1 = np.array([x[11] for x in Cldr_data if x[4] == 0.])

563 Cldr_p = np.array([x[11] for x in Cldr_data if x[4] == 30.])

564 dr = np.deg2rad(30.)

565 if skip_mask:

566 out_mask = [True]*len(Cl1)

567 else:

568 out_mask = remove_outliers(Cl1)

569 Cl_dr = np.average((Cldr_p - Cl1)[out_mask]/dr)

570

571 b0 = np.array([x[1] for x in Cldr_data if x[4] == 0.])

572 [Cl0, Cl_beta] = _Cl_beta(np.array([x for x in Cldr_data if x[4] == 0.]), False)

573 Cl1 = Cl0 + Cl_beta*b0*np.pi/180.

574 if plot:

575 x = b0

576 y = [Cldr_p, Cl1 + Cl_dr*np.full(len(Cl1), dr)]

577 color = ['0.0']*2

578 ls = [':']*2

579 tag = ['data', 'not']

580 marker = '^'

581 return [x, y, color, ls, tag, marker]

582 return Cl_dr

583

584 def _Cm0_Cmalpha(Cmalpha_data, plot, skip_mask=False):

585 alphas = Cmalpha_data[:, 0]*np.pi/180.

586 Cm = Cmalpha_data[:, 12]

587 if skip_mask:

588 out_mask = [True]*len(alphas)

589 else:

590 out_mask = alphas <= 0. # Effect of LEV

591 out_mask[0] = False # using data points centered around zero-lift alpha

592 [Cm_alpha, Cm0] = np.polyfit(alphas[out_mask], Cm[out_mask], 1)

593

594 a0 = Cmalpha_data[:, 0]

595 if plot:

596 x = a0

597 y = [Cm, Cm0 + Cm_alpha*alphas]

598 color = ['0.0']*2

599 ls = ['-']*2

600 tag = ['data', 'not']

601 marker = 'o'

602 return [x, y, color, ls, tag, marker]

603 return Cm0, Cm_alpha

604

605 def _Cm_qbar(Cmq_data, plot, skip_mask=False):

606 Cm1 = np.array([x[12] for x in Cmq_data if x[6] == 0.])

607 Cmq_p = np.array([x[12] for x in Cmq_data if x[6] == 30.*np.pi/180.])

608 Cmq_m = np.array([x[12] for x in Cmq_data if x[6] == -30.*np.pi/180.])

609 qbar = np.deg2rad(30.)*c_w/(2.*V)

610 if skip_mask:

611 out_mask = [True]*len(Cm1)

612 else:

613 out_mask = remove_outliers(Cm1)

614 Cm_qbar = np.average((Cmq_p - Cmq_m)[out_mask]/(2.*qbar))

320

615

616 a0 = np.array([x[0] for x in Cmq_data if x[6] == 0.])

617 [Cm0, Cm_alpha] = _Cm0_Cmalpha(np.array([x for x in Cmq_data if x[6] == 0.]),

618 False)

619 Cm1 = Cm0 + Cm_alpha*a0*np.pi/180.

620 if plot:

621 x = a0

622 y = [Cmq_p, Cmq_m, Cm1 + Cm_qbar*qbar, Cm1 + Cm_qbar*-qbar]

623 color = ['0.0']*4

624 ls = ['--']*4

625 tag = ['data', 'data', 'not', 'not']

626 marker = 'v'

627 return [x, y, color, ls, tag, marker]

628 return Cm_qbar

629

630 def _Cm_de(Cmde_data, plot, skip_mask=False):

631 Cm1 = np.array([x[12] for x in Cmde_data if x[2] == 0.])

632 Cmde_p = np.array([x[12] for x in Cmde_data if x[2] == 10.])

633 Cmde_m = np.array([x[12] for x in Cmde_data if x[2] == -10.])

634 de = np.deg2rad(10.)

635 if skip_mask:

636 out_mask = [True]*len(Cm1)

637 else:

638 out_mask = remove_outliers(Cm1)

639 Cm_de = np.average((Cmde_p - Cmde_m)[out_mask]/(2.*de))

640

641 a0 = np.array([x[0] for x in Cmde_data if x[2] == 0.])

642 [Cm0, Cm_alpha] = _Cm0_Cmalpha(np.array([x for x in Cmde_data if x[2] == 0.]),

643 False)

644 Cm1 = Cm0 + Cm_alpha*a0*np.pi/180.

645 if plot:

646 x = a0

647 y = [Cmde_p, Cmde_m, Cm1 + Cm_de*de, Cm1 + Cm_de*-de]

648 color = ['0.0']*4

649 ls = [':']*4

650 tag = ['data', 'data', 'not', 'not']

651 marker = '^'

652 return [x, y, color, ls, tag, marker]

653 return Cm_de

654

655 def _Cn_beta(Cnbeta_data, plot, skip_mask=False):

656 betas = Cnbeta_data[:, 1]*np.pi/180.

657 Cn = Cnbeta_data[:, 13]

658 if skip_mask:

659 out_mask = [True]*len(Cn)

660 else:

661 out_mask = remove_outliers(Cn)

662 [Cn_beta, Cn0] = np.polyfit(betas[out_mask], Cn[out_mask], 1)

663

664 b0 = betas*180./np.pi

665 if plot:

666 x = b0

667 y = [Cn, Cn0 + Cn_beta*betas]

668 color = ['0.0']*2

669 ls = ['-']*2

670 tag = ['data', 'not']

321

671 marker = 'o'

672 return [x, y, color, ls, tag, marker]

673 return Cn0, Cn_beta

674

675 def _Cn_pbar(Cnp_data, plot, skip_mask=False):

676 Cn1 = np.array([x[13] for x in Cnp_data if x[5] == 0.])

677 Cnp_p = np.array([x[13] for x in Cnp_data if x[5] == 90.*np.pi/180.])

678 Cnp_m = np.array([x[13] for x in Cnp_data if x[5] == -90.*np.pi/180.])

679 CL1 = np.array([x[10] for x in Cnp_data if x[5] == 0.])

680 pbar = np.deg2rad(90.)*b_w/(2.*V)

681 Cn_pbar = (Cnp_p - Cnp_m)/(2.*pbar)

682 if skip_mask:

683 out_mask = [True]*len(Cn1)

684 else:

685 out_mask = remove_outliers(Cn_pbar)

686 [Cn_Lpbar, Cn_pbar] = np.polyfit(CL1[out_mask], Cn_pbar[out_mask], 1)

687

688 a0 = np.array([x[0] for x in Cnp_data if x[5] == 0.])

689 Cn1 = np.zeros(len(Cn1))

690 if plot:

691 x = a0

692 y = [Cnp_p, Cnp_m, Cn1 + (Cn_Lpbar*CL1 + Cn_pbar)*pbar,

693 Cn1 + (Cn_Lpbar*CL1 + Cn_pbar)*-pbar]

694 color = ['0.0']*4

695 ls = [':']*4

696 tag = ['data', 'data', 'not', 'not']

697 marker = '^'

698 return [x, y, color, ls, tag, marker]

699 return Cn_pbar, Cn_Lpbar

700

701 def _Cn_rbar(Cnr_data, plot, skip_mask=False):

702 Cn1 = np.array([x[13] for x in Cnr_data if x[7] == 0.])

703 Cnr_p = np.array([x[13] for x in Cnr_data if x[7] == 30.*np.pi/180.])

704 Cnr_m = np.array([x[13] for x in Cnr_data if x[7] == -30.*np.pi/180.])

705 rbar = np.deg2rad(30.)*b_w/(2.*V)

706 if skip_mask:

707 out_mask = [True]*len(Cn1)

708 else:

709 out_mask = remove_outliers(Cnr_p)

710 Cn_rbar = np.average((Cnr_p - Cnr_m)[out_mask]/(2.*rbar))

711

712 a0 = np.array([x[0] for x in Cnr_data if x[7] == 0.])

713 Cn1 = np.zeros(len(Cn1))

714 if plot:

715 x = a0

716 y = [Cnr_p, Cnr_m, Cn1 + Cn_rbar*rbar, Cn1 + Cn_rbar*-rbar]

717 color = ['0.0']*4

718 ls = ['-.']*4

719 tag = ['data', 'data', 'not', 'not']

720 marker = '<'

721 return [x, y, color, ls, tag, marker]

722 return Cn_rbar

723

724 def _Cn_da(Cnda_data, plot, skip_mask=False):

725 Cn1 = np.array([x[13] for x in Cnda_data if x[3] == 0.])

726 Cnda_p = np.array([x[13] for x in Cnda_data if x[3] == 20.])

322

727 CL1 = np.array([x[10] for x in Cnda_data if x[3] == 0.])

728 da = np.deg2rad(20.)

729 Cn_da = (Cnda_p - Cn1)/da

730 if skip_mask:

731 out_mask = [True]*len(Cn1)

732 else:

733 out_mask = remove_outliers(Cn_da)

734 [Cn_Lda, Cn_da] = np.polyfit(CL1[out_mask], Cn_da[out_mask], 1)

735

736 a0 = np.array([x[0] for x in Cnda_data if x[3] == 0.])

737 Cn1 = np.zeros(len(Cn1))

738 if plot:

739 x = a0

740 y = [Cnda_p, Cn1 + (Cn_Lda*CL1 + Cn_da)*da]

741 color = ['0.0']*2

742 ls = [(0, (3, 5, 1, 5, 1, 5))]*2

743 tag = ['data', 'not']

744 marker = '>'

745 return [x, y, color, ls, tag, marker]

746 return Cn_da, Cn_Lda

747

748 def _Cn_dr(Cndr_data, plot, skip_mask=False):

749 Cn1 = np.array([x[13] for x in Cndr_data if x[4] == 0.])

750 Cndr_p = np.array([x[13] for x in Cndr_data if x[4] == 30.])

751 dr = np.deg2rad(30.)

752 if skip_mask:

753 out_mask = [True]*len(Cn1)

754 else:

755 out_mask = remove_outliers(Cndr_p)

756 Cn_dr = np.average((Cndr_p - Cn1)[out_mask]/dr)

757

758 b0 = np.array([x[1] for x in Cndr_data if x[4] == 0.])

759 [Cn0, Cn_beta] = _Cn_beta(np.array([x for x in Cndr_data if x[4] == 0.]), False)

760 Cn1 = Cn0 + Cn_beta*b0*np.pi/180.

761 if plot:

762 x = b0

763 y = [Cndr_p, Cn1 + Cn_dr*dr]

764 color = ['0.0']*2

765 ls = ['--']*2

766 tag = ['data', 'not']

767 marker = 'v'

768 return [x, y, color, ls, tag, marker]

769 return Cn_dr

770

771

772 def create_database():

773 data = np.zeros((N_alpha*N_other_a + N_beta*N_other_b, 14))

774 params = np.zeros(8)

775 zz = 0

776 #len(alpha_range) 1a

777 for a in alpha_range:

778 params[0] = a

779 data[zz, :] = generate_data(params)

780 zz += 1

781 params[0] = 0.

782 #len(beta_range) 1b

323

783 for b in beta_range:

784 params[1] = b

785 data[zz, :] = generate_data(params)

786 zz += 1

787 params[1] = 0.

788 #len(de_range)*len(a_range) len(de_range)*1a

789 for e in de_range:

790 params[2] = e

791 for a in alpha_range:

792 params[0] = a

793 data[zz, :] = generate_data(params)

794 zz += 1

795 params[2] = 0.

796 params[0] = 0.

797 for da in da_range:

798 params[3] = da

799 #len(beta_range)

800 for b in beta_range:

801 params[1] = b

802 data[zz, :] = generate_data(params)

803 zz += 1

804 params[1] = 0.

805 #len(alpha_range)

806 for a in alpha_range:

807 params[0] = a

808 data[zz, :] = generate_data(params)

809 zz += 1

810 params[0] = 0.

811 params[3] = 0.

812 #len(beta_range)

813 for dr in dr_range:

814 params[4] = dr

815 for b in beta_range:

816 params[1] = b

817 data[zz, :] = generate_data(params)

818 zz += 1

819 params[1] = 0.

820 params[4] = 0.

821 #len(p_range)*(len(alpha_range) + len(beta_range))

822 for p in p_range:

823 params[5] = p

824 for a in alpha_range:

825 params[0] = a

826 data[zz, :] = generate_data(params)

827 zz += 1

828 params[0] = 0.

829 for b in beta_range:

830 params[1] = b

831 data[zz, :] = generate_data(params)

832 zz += 1

833 params[1] = 0.

834 params[5] = 0.

835 for q in q_range:

836 params[6] = q

837 for a in alpha_range:

838 params[0] = a

324

839 data[zz, :] = generate_data(params)

840 zz += 1

841 params[6] = 0.

842 #len(r_range)*(len(alpha_range) + len(beta_range))

843 for r in r_range:

844 params[7] = r

845 for a in alpha_range:

846 params[0] = a

847 data[zz, :] = generate_data(params)

848 zz += 1

849 params[0] = 0.

850 for b in beta_range:

851 params[1] = b

852 data[zz, :] = generate_data(params)

853 zz += 1

854 params[1] = 0.

855 params[7] = 0.

856 return data

857

858 def find_model(database):

859 plot = False

860 df = pd.DataFrame(database,

861 columns = ['Alpha','Beta','d_e', 'd_a', 'd_r', 'p', 'q', 'r',

862 'CD', 'CS', 'CL', 'Cl', 'Cm', 'Cn'])

863 CLalpha_data = df.loc[df['Beta'] + df['d_e'] + df['d_a'] + df['d_r'] +

864 df['p'] + df['q'] + df['r'] == 0].to_numpy()

865 CL_0, CL_alpha = _CL0_CLalpha(CLalpha_data, plot)

866 CLde_data = df.loc[df['Beta'] + df['d_a'] + df['d_r'] +

867 df['p'] + df['q'] + df['r'] == 0].to_numpy()

868 CL_de = _CL_de(CLde_data, plot)

869 CLqbar_data = df.loc[df['Beta'] + df['d_e'] + df['d_a'] + df['d_r'] +

870 df['p'] + df['r'] == 0].to_numpy()

871 CL_qbar = _CL_qbar(CLqbar_data, plot)

872 CSbeta_data = df.loc[((df['Alpha'] + df['d_e'] + df['d_a'] + df['d_r'] +

873 df['p'] + df['q'] + df['r'] == 0) &

874 (df['Alpha'] == 0.))].sort_values(by=['Beta']).to_numpy()

875 CS_0, CS_beta = _CS_beta(CSbeta_data, plot)

876 CSda_data = df.loc[((df['Alpha'] + df['d_e'] + df['d_r'] +

877 df['p'] + df['q'] + df['r'] == 0) &

878 (df['Alpha'] == 0.))].sort_values(by=['Beta']).to_numpy()

879 CS_da = _CS_da(CSda_data, plot)

880 CSdr_data = df.loc[((df['Alpha'] + df['d_e'] + df['d_a'] +

881 df['p'] + df['q'] + df['r'] == 0) &

882 (df['Alpha'] == 0.))].sort_values(by=['Beta']).to_numpy()

883 CS_dr = _CS_dr(CSdr_data, plot)

884 CSr_data = df.loc[((df['Beta'] + df['d_e'] + df['d_a'] +

885 df['p'] + df['q'] + df['d_r'] == 0))].to_numpy()

886 CS_rbar = _CS_rbar(CSr_data, plot)

887 CSp_data = df.loc[((df['Beta'] + df['d_e'] + df['d_a'] + df['d_r'] +

888 df['q'] + df['r'] == 0))].to_numpy()

889 CS_pbar, CS_Lpbar = _CS_pbar(CSp_data, plot, skip_mask=True)

890 CDde_data = df.loc[((df['Beta'] + df['p'] + df['d_a'] + df['d_r'] +

891 df['q'] + df['r'] == 0))].to_numpy()

892 CD_de, CD_Lde, CD_de2 = _CD_de(CDde_data, plot)

893 CD_0, CD_L, CD_L2 = _CD_polar(CLalpha_data, plot)

894 CD_S2 = _CD_Spolar(CSbeta_data, plot)[2]

325

895 CD_qbar, CD_Lqbar, CD_L2qbar = _CD_qbar(CLqbar_data, plot)

896 CDp_data = df.loc[((df['Alpha'] + df['d_e'] + df['d_a'] + df['d_r'] +

897 df['q'] + df['r'] == 0) &

898 (df['Alpha'] == 0.))].to_numpy()

899 CDr_data = df.loc[((df['Alpha'] + df['d_e'] + df['d_a'] + df['d_r'] +

900 df['q'] + df['p'] == 0) &

901 (df['Alpha'] == 0.))].to_numpy()

902 CD_pbar, CD_Spbar = _CD_pbar(CDp_data, plot, skip_mask=True)

903 CD_rbar, CD_Srbar = _CD_rbar(CDr_data, plot)

904 CD_da, CD_Sda = _CD_da(CSda_data, plot)

905 CD_dr, CD_Sdr = _CD_dr(CSdr_data, plot)

906 Cl_0, Cl_beta = _Cl_beta(CSbeta_data, plot)

907 Cl_pbar = _Cl_pbar(CSp_data, plot)

908 Cl_rbar, Cl_Lrbar = _Cl_rbar(CSr_data, plot)

909 Cl_da = _Cl_da(CSda_data, plot)

910 Cl_dr = _Cl_dr(CSdr_data, plot)

911 Cm_0, Cm_alpha = _Cm0_Cmalpha(CLalpha_data, plot)

912 Cm_qbar = _Cm_qbar(CLqbar_data, plot)

913 Cm_de = _Cm_de(CLde_data, plot)

914 Cn_0, Cn_beta = _Cn_beta(CSbeta_data, plot)

915 Cn_pbar, Cn_Lpbar = _Cn_pbar(CSp_data, plot, skip_mask=True)

916 Cn_rbar = _Cn_rbar(CSr_data, plot)

917 Cnda_data = df.loc[((df['Beta'] + df['p'] + df['d_e'] + df['d_r'] +

918 df['q'] + df['r'] == 0))].to_numpy()

919 Cn_da, Cn_Lda = _Cn_da(Cnda_data, plot)

920 Cn_dr = _Cn_dr(CSdr_data, plot)

921 coeff_database = {"CL": {"CL_0": CL_0,

922 "CL_alpha": CL_alpha,

923 "CL_qbar": CL_qbar,

924 "CL_de": CL_de},

925 "CS": {"CS_beta": CS_beta,

926 "CS_pbar": CS_pbar,

927 "CS_Lpbar": CS_Lpbar,

928 "CS_rbar": CS_rbar,

929 "CS_da": CS_da,

930 "CS_dr": CS_dr},

931 "CD": {"CD_0": CD_0,

932 "CD_L": CD_L,

933 "CD_L2": CD_L2,

934 "CD_S2": CD_S2,

935 "CD_Spbar": CD_Spbar,

936 "CD_qbar": CD_qbar,

937 "CD_Lqbar": CD_Lqbar,

938 "CD_L2qbar": CD_L2qbar,

939 "CD_Srbar": CD_Srbar,

940 "CD_de": CD_de,

941 "CD_Lde": CD_Lde,

942 "CD_de2": CD_de2,

943 "CD_Sda": CD_Sda,

944 "CD_Sdr": CD_Sdr},

945 "Cell": {"Cl_beta": Cl_beta,

946 "Cl_pbar": Cl_pbar,

947 "Cl_rbar": Cl_rbar,

948 "Cl_Lrbar": Cl_Lrbar,

949 "Cl_da": Cl_da,

950 "Cl_dr": Cl_dr},

326

951 "Cm": {"Cm_0": Cm_0,

952 "Cm_alpha": Cm_alpha,

953 "Cm_qbar": Cm_qbar,

954 "Cm_de": Cm_de},

955 "Cn": {"Cn_beta": Cn_beta,

956 "Cn_pbar": Cn_pbar,

957 "Cn_Lpbar": Cn_Lpbar,

958 "Cn_rbar": Cn_rbar,

959 "Cn_da": Cn_da,

960 "Cn_Lda": Cn_Lda,

961 "Cn_dr": Cn_dr}}

962 return coeff_database

963

964 c_w = 11.46

965 b_w = 31.92

966 V = 222.5211

967 if __name__ == "__main__":

968 plt.close('all')

969 nasa = True

970 save = True

971 path_to_Ndb_file = './nasa_database.csv'

972 path_to_Mdb_file = './f16_database.csv'

973 Nfile_exists = exists(path_to_Ndb_file)

974 Mfile_exists = exists(path_to_Mdb_file)

975 alpha_range = np.arange(-10., 11., 5.)

976 N_alpha = len(alpha_range)

977 beta_range = np.arange(-6., 7., 2.)

978 N_beta = len(beta_range)

979 da_range = np.array([-20., 20.])

980 dr_range = np.array([-30., 30.])

981 de_range = np.array([-10., 10.])

982 p_range = np.array([-90., 90.])*np.pi/180.

983 q_range = np.array([-30., 30.])*np.pi/180.

984 r_range = np.array([-30., 30.])*np.pi/180.

985 N_other_a = 1 + len(de_range) + len(p_range) + len(q_range) + len(r_range) +\

986 len(da_range)

987 N_other_b = 1 + len(da_range) + len(p_range) + len(r_range) + len(dr_range)

988 input_file = "F16_input.json"

989 my_scene = mx.Scene(input_file)

990 forces_options = {'body_frame': True,

991 'stab_frame': False,

992 'wind_frame': True,

993 'dimensional': False,

994 'verbose': False}

995 if not Nfile_exists:

996 nasa = True

997 case = wind.F16_windtunnel()

998 N_database = np.unique(create_database(), axis=0)

999 np.savetxt(path_to_Ndb_file, N_database, delimiter=',')

1000 if not Mfile_exists:

1001 nasa = False

1002 M_database = np.unique(create_database(), axis=0)

1003 np.savetxt(path_to_Mdb_file, M_database, delimiter=',')

1004 if Mfile_exists*Nfile_exists:

1005 M_database = np.genfromtxt(path_to_Mdb_file, delimiter=',')

1006 N_database = np.genfromtxt(path_to_Ndb_file, delimiter=',')

327

1007 if nasa:

1008 N_coeff_data = find_model(N_database)

1009 with open("nasa_model.json", "w") as outfile:

1010 json.dump(N_coeff_data, outfile, indent=4)

1011 M_coeff_data = find_model(M_database)

1012 with open("f16_model.json", "w") as outfile:

1013 json.dump(M_coeff_data, outfile, indent=4)

328

BIRE Aerodynamic Model

1 import numpy as np

2 import f16_model

3 import matplotlib.pyplot as plt

4 import machupX as mx

5 import pandas as pd

6 from os.path import exists, isdir

7 import scipy.optimize as optimize

8 import json

9 from os import mkdir, remove

10

11 def remove_outliers(data, m=2.):

12 d = np.abs(data - np.median(data))

13 mdev = np.median(d)

14 s = d/mdev if mdev else 0.

15 return s < m

16

17 def create_inputs(inp_dir, d_B):

18 rotation_angle = str(int(d_B))

19

20 f_inp = open(inp_dir + 'BIRE_input.json',)

21 inp_data = json.load(f_inp)

22

23 f_air = open(inp_dir + 'BIRE_airplane.json',)

24 air_data = json.load(f_air)

25

26 bire_left = d_B

27 bire_right = -d_B

28 air_data["wings"]["BIRE_left"]["dihedral"] = bire_left

29 air_data["wings"]["BIRE_right"]["dihedral"] = bire_right

30

31 new_air_fn = inp_dir + 'BIRE_airplane_dB_' + rotation_angle + '.json'

32 with open(new_air_fn, 'w') as fp:

33 json.dump(air_data, fp, indent=5)

34

35 inp_data["scene"]["aircraft"]["BIRE"]["file"] = new_air_fn

36 new_inp_fn = inp_dir + 'BIRE_input_dB_' + rotation_angle + '.json'

37 with open(new_inp_fn, 'w') as fp:

38 json.dump(inp_data, fp, indent=5)

39 return new_inp_fn

40

41 def bire_case(params, inp_dir, scene=None):

42 [alpha, beta, d_e, d_a, d_B, p, q, r] = params

43 rotation_angle = str(int(d_B))

44 forces_options = {'body_frame': True,

45 'stab_frame': False,

46 'wind_frame': True,

47 'dimensional': False,

48 'verbose': False}

49 try:

50 f = open(inp_dir + 'BIRE_input_dB_' + rotation_angle + '.json',)

51 except FileNotFoundError:

52 create_inputs(inp_dir, d_B)

53 if scene is None:

54 input_file = inp_dir + 'BIRE_input_dB_' + rotation_angle + '.json'

329

55 BIRE_scene = mx.Scene(input_file)

56 else:

57 BIRE_scene = scene

58 rates = [p, q, r]

59 BIRE_scene.set_aircraft_state(state={"alpha": alpha,

60 "beta": beta,

61 "angular_rates": rates,

62 "velocity": 222.5211})

63 BIRE_scene.set_aircraft_control_state(control_state={"elevator": d_e,

64 "aileron": d_a})

65 x = BIRE_scene.solve_forces(**forces_options)["BIRE"]["total"]

66 fm = [x['CD'], x['CS'], x['CL'], x['Cl'], x['Cm'], x['Cn']]

67 return (*params, *fm)

68

69 def _plot_data_fit(mean, coeff_data, coeff_delta, model, params, range_1p, ylabel,

70 baseline_coeff, scale=1., **kwargs):

71 fig, ax = plt.subplots()

72 dB_plot = np.arange(-180., 185., 1.)*np.pi/180.

73 model_plot = scale*(params[0]*np.sin(params[1]*dB_plot + params[2]) +

74 params[3] + coeff_delta)

75 ax.scatter(dB_rad*180./np.pi, scale*(coeff_data + coeff_delta), facecolor='none',

76 edgecolor='k', label='BIRE Coefficient')

77 ax.plot(dB_plot*180/np.pi, model_plot, label='BIRE Fit', color='k')

78 ax.axhline((baseline_coeff + coeff_delta)*scale, label='Baseline Coefficient',

79 color='0.5', linestyle='--')

80 ax.set_xlabel(r'\textbf{BIRE Rotation, }\boldmathδ_B\textbf{ [deg]}',

81 fontsize=14)

82 ax.set_ylabel(r'\boldmath$' + ylabel[5:], fontsize=14)

83 loc = kwargs.get('loc', 'upper right')

84 handles, labels = ax.get_legend_handles_labels()

85 # sort both labels and handles by labels

86 labels, handles = zip(*sorted(zip(labels, handles), key=lambda t: t[0]))

87 order = [0, 1, 2]

88 ax.legend([handles[idx] for idx in order], [labels[idx] for idx in order],

89 loc=loc, fontsize=14)

90 xlims = (-190, 190)

91 dx = {"major": 45., "minor": 45./4.}

92 ylims = kwargs.get('y_lim', (model_plot.min()*0.7, model_plot.max()*1.3))

93 dy = kwargs.get('dy', {'major': (ylims[1] - ylims[0])/5,

94 'minor': (ylims[1] - ylims[0])/20})

95 ax = pretty_plot(ax, xlims, ylims, dx, dy)

96 ax.grid()

97 plt.tight_layout()

98 return fig

99

100 def _CL_beta(CLbeta_data):

101 betas = CLbeta_data[:, 1]*np.pi/180.

102 CL = CLbeta_data[:, 10]

103 mask = remove_outliers(CL)

104 [CL_beta, CL0] = np.polyfit(betas[mask], CL[mask], 1)

105 return CL_beta

106

107 def _CL_pbar(CLpbar_data):

108 CL1 = np.array([x[10] for x in CLpbar_data if x[5] == 0.])

109 CLp_p = np.array([x[10] for x in CLpbar_data if x[5] == 90.*np.pi/180.])

110 CLp_m = np.array([x[10] for x in CLpbar_data if x[5] == -90.*np.pi/180.])

330

111 DCLpbar_p = (CLp_p - CL1)/(np.deg2rad(90.)*b_w/(2.*V))

112 DCLpbar_m = (CLp_m - CL1)/(np.deg2rad(-90.)*b_w/(2.*V))

113 mask = remove_outliers(DCLpbar_p)*remove_outliers(DCLpbar_m)

114 CL_pbar = np.average(np.vstack((DCLpbar_p[mask], DCLpbar_m[mask])))

115 return CL_pbar

116

117 def _CL_rbar(CLrbar_data):

118 CL1 = np.array([x[10] for x in CLrbar_data if x[7] == 0.])

119 CLr_p = np.array([x[10] for x in CLrbar_data if x[7] == 30.*np.pi/180.])

120 CLr_m = np.array([x[10] for x in CLrbar_data if x[7] == -30.*np.pi/180.])

121 DCLrbar_p = (CLr_p - CL1)/(np.deg2rad(30.)*b_w/(2.*V))

122 DCLrbar_m = (CLr_m - CL1)/(np.deg2rad(-30.)*b_w/(2.*V))

123 mask = remove_outliers(DCLrbar_m)*remove_outliers(DCLrbar_p)

124 CL_rbar = np.average(np.vstack((DCLrbar_p[mask], DCLrbar_m[mask])))

125 return CL_rbar

126

127 def _CL_da(CLda_data):

128 CL1 = np.array([x[10] for x in CLda_data if x[3] == 0.])

129 CLda_p = np.array([x[10] for x in CLda_data if x[3] == 20.])

130 DCLda_p = (CLda_p - CL1)/np.deg2rad(20.)

131 mask = remove_outliers(DCLda_p)

132 CL_da = np.average(DCLda_p[mask])

133 return CL_da

134

135 def CL_models(baseline_coeffs, plot=True):

136 weight_CL0 = (abs(dB_range) > 135)*(abs(dB_range) < 45)

137 modelCL0 = lambda x : x[0]*np.sin(2.*dB_rad + np.pi/2.) + np.average(CL0_dB)

138 errorCL0 = lambda x : modelCL0(x) - CL0_dB

139 params_CL0 = np.append(optimize.leastsq(errorCL0, [0.2])[0],

140 [2., np.pi/2., np.average(CL0_dB)])

141

142 weight_CLalpha = [True]*N_dB

143 weight_CLalpha[13] = False

144 weight_CLalpha[59] = False

145 weight_CLalpha[23] = False

146 weight_CLalpha[49] = False

147 modelCLalpha = lambda x : x[0]*np.sin(2.*dB_rad + np.pi/2.) +

148 np.average(CLalpha_dB[weight_CLalpha])

149 errorCLalpha = lambda x : (x[0]*np.sin(2.*dB_rad[weight_CLalpha] + np.pi/2.) +

150 np.average(CLalpha_dB[weight_CLalpha]) -

151 CLalpha_dB[weight_CLalpha])

152 params_CLalpha = np.append(optimize.leastsq(errorCLalpha, [0.2])[0],

153 [2., np.pi/2., np.average(CLalpha_dB[weight_CLalpha])])

154

155 modelCLbeta = lambda x : x[0]*np.sin(2.*dB_rad)

156 errorCLbeta = lambda x : (x[0]*np.sin(2.*dB_rad) - CLbeta_dB)

157 params_CLbeta = np.append(optimize.leastsq(errorCLbeta, [0.6])[0], [2., 0., 0.])

158

159 modelCLpbar = lambda x: 0*dB_rad

160 params_CLpbar = [0.]*4

161

162 weight_CLqbar = [True]*N_dB

163 modelCLqbar = lambda x : x[0]*np.sin(2.*dB_rad + np.pi/2.) +

164 np.average(CLqbar_dB[weight_CLqbar])

165 errorCLqbar = lambda x : (x[0]*np.sin(2.*dB_rad[weight_CLqbar] + np.pi/2.) +

166 np.average(CLqbar_dB[weight_CLqbar]) -

331

167 CLqbar_dB[weight_CLqbar])

168 params_CLqbar = np.append(optimize.leastsq(errorCLqbar, [2.])[0],

169 [2., np.pi/2.,

170 np.average(CLqbar_dB[weight_CLqbar])])

171

172 modelCLrbar = lambda x : x[0]*np.sin(2.*dB_rad)

173 errorCLrbar = lambda x : (x[0]*np.sin(2.*dB_rad) - CLrbar_dB)

174 params_CLrbar = np.append(optimize.leastsq(errorCLrbar, [1.0])[0], [2., 0., 0.])

175

176 modelCLda = lambda x : 0.*dB_rad + np.average(CLda_dB)

177 params_CLda = [0.]*3 + [np.average(CLda_dB)]

178

179 modelCLde = lambda x : x[0]*np.sin(1.*dB_rad + np.pi/2.) + 0

180 errorCLde = lambda x : (x[0]*np.sin(1.*dB_rad + np.pi/2.) + 0. - CLde_dB)

181 params_CLde = np.append(optimize.leastsq(errorCLde, [2.])[0], [1., np.pi/2., 0.])

182

183 models_dict["CL"]["CL_0"] = {key : coeff for key,coeff in

184 zip(model_coeff_keys, params_CL0)}

185 models_dict["CL"]["CL_alpha"] = {key : coeff for key,coeff in

186 zip(model_coeff_keys, params_CLalpha)}

187 models_dict["CL"]["CL_beta"] = {key : coeff for key,coeff in

188 zip(model_coeff_keys, params_CLbeta)}

189 models_dict["CL"]["CL_pbar"] = {key : coeff for key,coeff in

190 zip(model_coeff_keys, params_CLpbar)}

191 models_dict["CL"]["CL_qbar"] = {key : coeff for key,coeff in

192 zip(model_coeff_keys, params_CLqbar)}

193 models_dict["CL"]["CL_rbar"] = {key : coeff for key,coeff in

194 zip(model_coeff_keys, params_CLrbar)}

195 models_dict["CL"]["CL_da"] = {key : coeff for key,coeff in

196 zip(model_coeff_keys, params_CLda)}

197 models_dict["CL"]["CL_de"] = {key : coeff for key,coeff in

198 zip(model_coeff_keys, params_CLde)}

199

200 def _CS_alpha(CSalpha_data):

201 alphas = CSalpha_data[:, 0]*np.pi/180.

202 CS = CSalpha_data[:, 9]

203 [CS_alpha, CS0] = np.polyfit(alphas, CS, 1)

204 return CS_alpha

205

206 def _CS_qbar(CSqbar_data):

207 CS1 = np.array([x[9] for x in CSqbar_data if x[6] == 0.])

208 CSq_p = np.array([x[9] for x in CSqbar_data if x[6] == 30.*np.pi/180.])

209 CSq_m = np.array([x[9] for x in CSqbar_data if x[6] == -30.*np.pi/180.])

210 DCSqbar_p = (CSq_p - CS1)/(np.deg2rad(30.)*c_w/(2.*V))

211 DCSqbar_m = (CSq_m - CS1)/(np.deg2rad(-30.)*c_w/(2.*V))

212 CS_qbar = np.average(np.vstack((DCSqbar_p, DCSqbar_m)))

213 return CS_qbar

214

215 def _CS_de(CSde_data):

216 CS1 = np.array([x[9] for x in CSde_data if x[2] == 0.])

217 CSde_p = np.array([x[9] for x in CSde_data if x[2] == 10.])

218 CSde_m = np.array([x[9] for x in CSde_data if x[2] == -10.])

219 DCSde_p = (CSde_p - CS1)/np.deg2rad(10.)

220 DCSde_m = (CSde_m - CS1)/np.deg2rad(-10.)

221 CS_de = np.average(np.vstack((DCSde_p, DCSde_m)))

222 return CS_de

332

223

224 def CS_models(baseline_coeffs, plot=True):

225 modelCS0 = lambda x : x[0]*np.sin(2.*dB_rad)

226 errorCS0 = lambda x : (x[0]*np.sin(2.*dB_rad) - CS0_dB)

227 params_CS0 = np.append(optimize.leastsq(errorCS0, [-0.01])[0], [2., 0., 0.])

228

229

230 modelCSalpha = lambda x : x[0]*np.sin(2.*dB_rad)

231 errorCSalpha = lambda x : (x[0]*np.sin(2.*dB_rad) - CSalpha_dB)

232 params_CSalpha = np.append(optimize.leastsq(errorCSalpha, [0.2])[0], [2., 0., 0.])

233

234 modelCSbeta = lambda x : x[0]*np.sin(2.*dB_rad + np.pi/2.) +

235 np.average(CSbeta_dB)

236 errorCSbeta = lambda x : (x[0]*np.sin(2.*dB_rad + np.pi/2.) +

237 np.average(CSbeta_dB) - CSbeta_dB)

238 params_CSbeta = np.append(optimize.leastsq(errorCSbeta, [0.6])[0],

239 [2., np.pi/2., np.average(CSbeta_dB)])

240

241 modelCSpbar = lambda x : 0.*dB_rad + np.average(CSpbar_dB)

242 params_CSpbar = [0.]*3 + [np.average(CSpbar_dB)]

243

244 modelCSLpbar = lambda x : x[0]*np.sin(2.*dB_rad + np.pi/2.) +

245 np.average(CSLpbar_dB)

246 errorCSLpbar = lambda x : modelCSLpbar(x) - CSLpbar_dB

247 params_CSLpbar = np.append(optimize.leastsq(errorCSLpbar, [0.05])[0],

248 [2., np.pi/2., np.average(CSLpbar_dB)])

249

250 modelCSqbar = lambda x : x[0]*np.sin(2.*dB_rad)

251 errorCSqbar = lambda x : (x[0]*np.sin(2.*dB_rad) - CSqbar_dB)

252 params_CSqbar = np.append(optimize.leastsq(errorCSqbar, [1.6])[0], [2., 0., 0.])

253

254 weight_CSrbar = [True]*N_dB

255 weight_CSrbar[6:9] = [False]*3

256 weight_CSrbar[10:13] = [False]*3

257 weight_CSrbar[24:27] = [False]*3

258 weight_CSrbar[28:31] = [False]*3

259 modelCSrbar = lambda x : x[0]*np.sin(2.*dB_rad + np.pi/2.) + np.average(CSrbar_dB)

260 errorCSrbar = lambda x : (x[0]*np.sin(2.*dB_rad[weight_CSrbar] + np.pi/2.) +

261 np.average(CSrbar_dB) - CSrbar_dB[weight_CSrbar])

262 params_CSrbar = np.append(optimize.leastsq(errorCSrbar, [-2.])[0],

263 [2., np.pi/2., np.average(CSrbar_dB)])

264

265 weight_CSda = abs(CSda_dB) < 0.01

266 modelCSda = lambda x : x[0]*np.sin(2.*dB_rad[weight_CSda] + np.pi/2.) +

267 np.average(CSda_dB[weight_CSda])

268 errorCSda = lambda x : (x[0]*np.sin(2.*dB_rad[weight_CSda] + np.pi/2.) +

269 np.average(CSda_dB[weight_CSda]) - CSda_dB[weight_CSda])

270 params_CSda = np.append(optimize.leastsq(errorCSda, [0.6])[0],

271 [2., np.pi/2.,

272 np.average(CSda_dB[weight_CSda])])

273 # modelCSda = lambda x : 0.*dB_rad +

274

275 modelCSde = lambda x : x[0]*np.sin(1.*dB_rad)

276 errorCSde = lambda x : (x[0]*np.sin(1.*dB_rad) - CSde_dB)

277 params_CSde = np.append(optimize.leastsq(errorCSde, [2.])[0], [1., 0., 0.])

278

333

279 models_dict["CS"]["CS_0"] = {key : coeff for key,coeff in

280 zip(model_coeff_keys, params_CS0)}

281 models_dict["CS"]["CS_alpha"] = {key : coeff for key,coeff in

282 zip(model_coeff_keys, params_CSalpha)}

283 models_dict["CS"]["CS_beta"] = {key : coeff for key,coeff in

284 zip(model_coeff_keys, params_CSbeta)}

285 models_dict["CS"]["CS_pbar"] = {key : coeff for key,coeff in

286 zip(model_coeff_keys, params_CSpbar)}

287 models_dict["CS"]["CS_Lpbar"] = {key : coeff for key,coeff in

288 zip(model_coeff_keys, params_CSLpbar)}

289 models_dict["CS"]["CS_qbar"] = {key : coeff for key,coeff in

290 zip(model_coeff_keys, params_CSqbar)}

291 models_dict["CS"]["CS_rbar"] = {key : coeff for key,coeff in

292 zip(model_coeff_keys, params_CSrbar)}

293 models_dict["CS"]["CS_da"] = {key : coeff for key,coeff in

294 zip(model_coeff_keys, params_CSda)}

295 models_dict["CS"]["CS_de"] = {key : coeff for key,coeff in

296 zip(model_coeff_keys, params_CSde)}

297

298 def _CD_pbar(CDpbar_data):

299 CD1 = np.array([x[8] for x in CDpbar_data if x[5] == 0.])

300 CDp_p = np.array([x[8] for x in CDpbar_data if x[5] == 90.*np.pi/180.])

301 CDp_m = np.array([x[8] for x in CDpbar_data if x[5] == -90.*np.pi/180.])

302 DCDpbar_p = (CDp_p - CD1)/(np.deg2rad(90.)*b_w/(2.*V))

303 DCDpbar_m = (CDp_m - CD1)/(np.deg2rad(-90.)*b_w/(2.*V))

304 CD_pbar = np.average(np.vstack((DCDpbar_p, DCDpbar_m)))

305 return CD_pbar

306

307 def _CD_rbar(CDrbar_data):

308 CD1 = np.array([x[8] for x in CDrbar_data if x[7] == 0.])

309 CDr_p = np.array([x[8] for x in CDrbar_data if x[7] == 30.*np.pi/180.])

310 CDr_m = np.array([x[8] for x in CDrbar_data if x[7] == -30.*np.pi/180.])

311 DCDrbar_p = (CDr_p - CD1)/(np.deg2rad(30.)*b_w/(2.*V))

312 DCDrbar_m = (CDr_m - CD1)/(np.deg2rad(-30.)*b_w/(2.*V))

313 CD_rbar = np.average(np.vstack((DCDrbar_p, DCDrbar_m)))

314 return CD_rbar

315

316 def _CD_da(CDda_data):

317 CD1 = np.array([x[8] for x in CDda_data if x[3] == 0.])

318 CDda_p = np.array([x[8] for x in CDda_data if x[3] == 20.])

319 DCDda_p = (CDda_p - CD1)/np.deg2rad(20.)

320 CD_da = np.average(DCDda_p)

321 return CD_da

322

323 def CD_models(baseline_coeffs, plot=True):

324 weight_CD0 = [True]*N_dB

325 modelCD0 = lambda x : 0.*dB_rad + np.average(CD0_dB[weight_CD0])

326 errorCD0 = lambda x : x[0]*np.sin(2.*dB_rad[weight_CD0] + np.pi/2.) +

327 np.average(CD0_dB[weight_CD0]) - CD0_dB[weight_CD0]

328 params_CD0 = [0.]*3 + [np.average(CD0_dB[weight_CD0])]

329

330 weight_CDL = [True]*N_dB

331 weight_CDL[13] = False

332 weight_CDL[59] = False

333 weight_CDL[23] = False

334 weight_CDL[49] = False

334

335 modelCDL = lambda x : x[0]*np.sin(1.*dB_rad + np.pi/2.) +

336 np.average(CDL_dB[weight_CDL])

337 errorCDL = lambda x : (x[0]*np.sin(1.*dB_rad[weight_CDL] + np.pi/2.) +

338 np.average(CDL_dB[weight_CDL]) - CDL_dB[weight_CDL])

339 params_CDL = [0.]*3 + [np.average(CDL_dB[weight_CDL])]

340

341 weight_CDL2 = [True]*N_dB

342 weight_CDL2[11:26] = [False]*15

343 weight_CDL2[47:62] = [False]*15

344 modelCDL2 = lambda x : x[0]*np.sin(4.*dB_rad[weight_CDL2] + np.pi/2.) +

345 np.average(CDL2_dB[weight_CDL2])

346 errorCDL2 = lambda x : modelCDL2(x) - CDL2_dB[weight_CDL2]

347 params_CDL2 = np.append(optimize.leastsq(errorCDL2, [0.02])[0],

348 [4., np.pi/2.,

349 np.average(CDL2_dB[weight_CDL2])])

350

351 modelCDS = lambda x : x[0]*np.sin(2.*dB_rad) + np.average(CDS_dB)

352 errorCDS = lambda x : modelCDS(x) - CDS_dB

353 params_CDS = np.append(optimize.leastsq(errorCDS, [0.005])[0],

354 [2., 0., np.average(CDS_dB)])

355

356 weight_CDS2 = [True]*N_dB

357 weight_CDS2[:8] = [False]*8

358 weight_CDS2[-8:] = [False]*8

359 weight_CDS2[31:41] = [False]*10

360 modelCDS2 = lambda x : x[0]*np.sin(2.*dB_rad + np.pi/2.) +

361 np.average(CDS2_dB[weight_CDS2])

362 errorCDS2 = lambda x : (x[0]*np.sin(2.*dB_rad[weight_CDS2] + np.pi/2.) +

363 np.average(CDS2_dB[weight_CDS2]) -

364 CDS2_dB[weight_CDS2])

365 params_CDS2 = np.append(optimize.leastsq(errorCDS2, [1.])[0],

366 [2., np.pi/2., np.average(CDS2_dB[weight_CDS2])])

367

368 modelCDpbar = lambda x : 0.*dB_rad

369 params_CDpbar = [0.]*4

370

371 weight_CDSpbar = [True]*N_dB

372 weight_CDSpbar[:8] = [False]*8

373 weight_CDSpbar[-8:] = [False]*8

374 weight_CDSpbar[31:41] = [False]*10

375 modelCDSpbar = lambda x : 0.*np.sin(2.*dB_rad + np.pi/2.) +

376 np.average(CDSpbar_dB[weight_CDSpbar])

377 errorCDSpbar = lambda x : (x[0]*np.sin(2.*dB_rad[weight_CDSpbar] + np.pi/2.) +

378 np.average(CDSpbar_dB[weight_CDSpbar]) -

379 CDSpbar_dB[weight_CDSpbar])

380 params_CDSpbar = [0.]*3 + [np.average(CDSpbar_dB[weight_CDSpbar])]

381

382 weight_CDqbar = [True]*N_dB

383 modelCDqbar = lambda x : 0.*np.sin(2.*dB_rad + np.pi/2.) +

384 np.average(CDqbar_dB[weight_CDqbar])

385 errorCDqbar = lambda x : (modelCDqbar(x) - CDqbar_dB)[weight_CDqbar]

386 params_CDqbar = [0.]*3 + [np.average(CDqbar_dB)]

387

388 weight_CDLqbar = [True]*N_dB

389 modelCDLqbar = lambda x : x[0]*np.sin(2.*dB_rad + np.pi/2.) +

390 np.average(CDLqbar_dB[weight_CDLqbar])

335

391 errorCDLqbar = lambda x : (x[0]*np.sin(2.*dB_rad[weight_CDLqbar] + np.pi/2.) +

392 np.average(CDLqbar_dB[weight_CDLqbar]) -

393 CDLqbar_dB[weight_CDLqbar])

394 params_CDLqbar = np.append(optimize.leastsq(errorCDLqbar, [0.5])[0],

395 [2., np.pi/2.,

396 np.average(CDLqbar_dB[weight_CDLqbar])])

397

398 weight_CDL2qbar = [True]*N_dB

399 modelCDL2qbar = lambda x : 0.*dB_rad + np.average(CDL2qbar_dB[weight_CDL2qbar])

400 errorCDL2qbar = lambda x : modelCDL2qbar(x)[weight_CDL2qbar]

401 params_CDL2qbar = [0.]*3 + [np.average(CDL2qbar_dB[weight_CDL2qbar])]

402

403 modelCDrbar = lambda x : 0.*dB_rad

404 params_CDrbar = [0.]*4

405

406 weight_CDSrbar = [True]*N_dB

407 weight_CDSrbar[:8] = [False]*8

408 weight_CDSrbar[-8:] = [False]*8

409 weight_CDSrbar[31:41] = [False]*10

410 modelCDSrbar = lambda x : 0.*dB_rad + np.average(CDSrbar_dB[weight_CDSrbar])

411 errorCDSrbar = lambda x : (x[0]*np.sin(2.*dB_rad[weight_CDSrbar] + np.pi/2.) +

412 np.average(CDSrbar_dB[weight_CDSrbar]) -

413 CDSrbar_dB[weight_CDSrbar])

414 params_CDSrbar = [0.]*3 + [np.average(CDSrbar_dB[weight_CDSrbar])]

415

416 modelCDda = lambda x : x[0]*np.sin(2.*dB_rad) + np.average(CDda_dB)

417 errorCDda = lambda x : (x[0]*np.sin(2.*dB_rad) + np.average(CDda_dB) - CDda_dB)

418 params_CDda = np.append(optimize.leastsq(errorCDda, [0.015])[0],

419 [2., 0., np.average(CDda_dB)])

420

421 weight_CDSda = abs(CDSda_dB) < 0.1

422 modelCDSda = lambda x : x[0]*np.sin(2.*dB_rad + np.pi/2.) +

423 np.average(CDSda_dB[weight_CDSda])

424 errorCDSda = lambda x : (modelCDSda(x) - CDSda_dB)[weight_CDSda]

425 params_CDSda = np.append(optimize.leastsq(errorCDSda, 0.03)[0],

426 [2., np.pi/2.,

427 np.average(CDSda_dB[weight_CDSda])])

428

429 modelCDde = lambda x : x[0]*np.sin(1.*dB_rad + np.pi/2.) + np.average(CDde_dB)

430 errorCDde = lambda x : modelCDde(x) - CDde_dB

431 params_CDde = np.append(optimize.leastsq(errorCDde, [0.02])[0], [1., np.pi/2., np.average(CDde_dB)])

432

433 modelCDLde = lambda x : x[0]*np.sin(1.*dB_rad + np.pi/2.)

434 errorCDLde = lambda x : (x[0]*np.sin(1.*dB_rad + np.pi/2.) - CDLde_dB)

435 params_CDLde = np.append(optimize.leastsq(errorCDLde, [0.2])[0],

436 [1., np.pi/2., 0.])

437

438 modelCDde2 = lambda x : x[0]*np.sin(1.*dB_rad + np.pi/2.) + np.average(CDde2_dB)

439 errorCDde2 = lambda x : (x[0]*np.sin(1.*dB_rad + np.pi/2.) + np.average(CDde2_dB) -

440 CDde2_dB)

441 params_CDde2 = np.append(optimize.leastsq(errorCDde2, [0.3])[0],

442 [1., np.pi/2., np.average(CDde2_dB)])

443

444 models_dict["CD"]["CD_0"] = {key : coeff for key,coeff in

445 zip(model_coeff_keys, params_CD0)}

446 models_dict["CD"]["CD_L"] = {key : coeff for key,coeff in

336

447 zip(model_coeff_keys, params_CDL)}

448 models_dict["CD"]["CD_L2"] = {key : coeff for key,coeff in

449 zip(model_coeff_keys, params_CDL2)}

450 models_dict["CD"]["CD_S"] = {key : coeff for key,coeff in

451 zip(model_coeff_keys, params_CDS)}

452 models_dict["CD"]["CD_S2"] = {key : coeff for key,coeff in

453 zip(model_coeff_keys, params_CDS2)}

454 models_dict["CD"]["CD_pbar"] = {key : coeff for key,coeff in

455 zip(model_coeff_keys, params_CDpbar)}

456 models_dict["CD"]["CD_Spbar"] = {key : coeff for key,coeff in

457 zip(model_coeff_keys, params_CDSpbar)}

458 models_dict["CD"]["CD_qbar"] = {key : coeff for key,coeff in

459 zip(model_coeff_keys, params_CDqbar)}

460 models_dict["CD"]["CD_Lqbar"] = {key : coeff for key,coeff in

461 zip(model_coeff_keys, params_CDLqbar)}

462 models_dict["CD"]["CD_L2qbar"] = {key : coeff for key,coeff in

463 zip(model_coeff_keys, params_CDL2qbar)}

464 models_dict["CD"]["CD_rbar"] = {key : coeff for key,coeff in

465 zip(model_coeff_keys, params_CDrbar)}

466 models_dict["CD"]["CD_Srbar"] = {key : coeff for key,coeff in

467 zip(model_coeff_keys, params_CDSrbar)}

468 models_dict["CD"]["CD_da"] = {key : coeff for key,coeff in

469 zip(model_coeff_keys, params_CDda)}

470 models_dict["CD"]["CD_Sda"] = {key : coeff for key,coeff in

471 zip(model_coeff_keys, params_CDSda)}

472 models_dict["CD"]["CD_de"] = {key : coeff for key,coeff in

473 zip(model_coeff_keys, params_CDde)}

474 models_dict["CD"]["CD_Lde"] = {key : coeff for key,coeff in

475 zip(model_coeff_keys, params_CDLde)}

476 models_dict["CD"]["CD_de2"] = {key : coeff for key,coeff in

477 zip(model_coeff_keys, params_CDde2)}

478

479 def _Cl_alpha(Clalpha_data):

480 alphas = Clalpha_data[:, 0]*np.pi/180.

481 Cl = Clalpha_data[:, 11]

482 [Cl_alpha, Cl0] = np.polyfit(alphas, Cl, 1)

483 return Cl_alpha

484

485 def _Cl_qbar(Clqbar_data):

486 Cl1 = np.array([x[11] for x in Clqbar_data if x[6] == 0.])

487 Clq_p = np.array([x[11] for x in Clqbar_data if x[6] == 30.*np.pi/180.])

488 Clq_m = np.array([x[11] for x in Clqbar_data if x[6] == -30.*np.pi/180.])

489 DClqbar_p = (Clq_p - Cl1)/(np.deg2rad(30.)*c_w/(2.*V))

490 DClqbar_m = (Clq_m - Cl1)/(np.deg2rad(-30.)*c_w/(2.*V))

491 Cl_qbar = np.average(np.vstack((DClqbar_p, DClqbar_m)))

492 return Cl_qbar

493

494 def _Cl_de(Clde_data):

495 Cl1 = np.array([x[11] for x in Clde_data if x[2] == 0.])

496 Clde_p = np.array([x[11] for x in Clde_data if x[2] == 10.])

497 Clde_m = np.array([x[11] for x in Clde_data if x[2] == -10.])

498 DClde_p = (Clde_p - Cl1)/np.deg2rad(10.)

499 DClde_m = (Clde_m - Cl1)/np.deg2rad(-10.)

500 Cl_de = np.average(np.vstack((DClde_p, DClde_m)))

501 return Cl_de

502

337

503 def Cl_models(baseline_coeffs, plot=True):

504 modelCl0 = lambda x : x[0]*np.sin(2.*dB_rad)

505 errorCl0 = lambda x : (x[0]*np.sin(2.*dB_rad) - Cl0_dB)

506 params_Cl0 = np.append(optimize.leastsq(errorCl0, [0.01])[0], [2., 0., 0.])

507

508 weight_Clalpha = [True]*N_dB

509 modelClalpha = lambda x : x[0]*np.sin(4.*dB_rad)

510 errorClalpha = lambda x : x[0]*np.sin(4.*dB_rad[weight_Clalpha]) -

511 Clalpha_dB[weight_Clalpha]

512 params_Clalpha = np.append(optimize.leastsq(errorClalpha, [-0.04])[0],

513 [4., 0., 0.])

514

515 modelClbeta = lambda x : x[0]*np.sin(2.*dB_rad + np.pi/2.) +

516 np.average(Clbeta_dB)

517 errorClbeta = lambda x : (x[0]*np.sin(2.*dB_rad + np.pi/2.) +

518 np.average(Clbeta_dB) - Clbeta_dB)

519 params_Clbeta = np.append(optimize.leastsq(errorClbeta, [0.04])[0],

520 [2., np.pi/2., np.average(Clbeta_dB)])

521

522 weight_Clpbar = [True]*N_dB

523 weight_Clpbar[1:3] = [False]*2

524 weight_Clpbar[8:11] = [False]*3

525 weight_Clpbar[16:18] = [False]*2

526 weight_Clpbar[-3:-1] = [False]*2

527 weight_Clpbar[-11:-8] = [False]*3

528 weight_Clpbar[-18:-16] = [False]*2

529 modelClpbar = lambda x : x[0]*np.sin(2.*dB_rad + np.pi/2.) +

530 np.average(Clpbar_dB[weight_Clpbar])

531 errorClpbar = lambda x : (x[0]*np.sin(2.*dB_rad[weight_Clpbar] + np.pi/2.) +

532 np.average(Clpbar_dB[weight_Clpbar]) -

533 Clpbar_dB[weight_Clpbar])

534 params_Clpbar = np.append(optimize.leastsq(errorClpbar, [0.02])[0],

535 [2., np.pi/2., np.average(Clpbar_dB[weight_Clpbar])])

536

537 weight_Clqbar = abs(dB_rad) < np.pi/4

538 modelClqbar = lambda x : x[0]*np.sin(4.*dB_rad[weight_Clqbar])

539 errorClqbar = lambda x : modelClqbar(x) - Clqbar_dB[weight_Clqbar]

540 params_Clqbar = [0.]*4

541

542 modelClrbar = lambda x : x[0]*np.sin(2.*dB_rad + np.pi/2.) + np.average(Clrbar_dB)

543 errorClrbar = lambda x : modelClrbar(x) - Clrbar_dB

544 params_Clrbar = [0.]*3 + [np.average(Clrbar_dB)]

545

546 modelClLrbar = lambda x : x[0]*np.sin(3.*dB_rad + np.pi/2.) +

547 np.average(ClLrbar_dB)

548 errorClLrbar = lambda x : modelClLrbar(x) - ClLrbar_dB

549 params_ClLrbar = [0.]*3 + [np.average(ClLrbar_dB)]

550

551 weight_Clda = np.abs(Clda_dB) < 0.2

552 modelClda = lambda x : x[0]*np.sin(2.*dB_rad[weight_Clda] + np.pi/2.) +

553 np.average(Clda_dB[weight_Clda])

554 errorClda = lambda x : (x[0]*np.sin(2.*dB_rad[weight_Clda] + np.pi/2.) +

555 np.average(Clda_dB[weight_Clda]) -

556 Clda_dB[weight_Clda])

557 params_Clda = np.append(optimize.leastsq(errorClda, [0.03])[0],

558 [2., np.pi/2.,

338

559 np.average(Clda_dB[weight_Clda])])

560

561 weight_Clde = [True]*N_dB

562 weight_Clde[7:31] = [False]*24

563 weight_Clde[42:66] = [False]*24

564 modelClde = lambda x : x[0]*np.sin(dB_rad)

565 errorClde = lambda x : (x[0]*np.sin(dB_rad[weight_Clde]) - Clde_dB[weight_Clde])

566 params_Clde = np.append(optimize.leastsq(errorClde, [0.0005])[0], [1., 0., 0.])

567

568 models_dict["Cell"]["Cl_0"] = {key : coeff for key,coeff in

569 zip(model_coeff_keys, params_Cl0)}

570 models_dict["Cell"]["Cl_alpha"] = {key : coeff for key,coeff in

571 zip(model_coeff_keys, params_Clalpha)}

572 models_dict["Cell"]["Cl_beta"] = {key : coeff for key,coeff in

573 zip(model_coeff_keys, params_Clbeta)}

574 models_dict["Cell"]["Cl_pbar"] = {key : coeff for key,coeff in

575 zip(model_coeff_keys, params_Clpbar)}

576 models_dict["Cell"]["Cl_qbar"] = {key : coeff for key,coeff in

577 zip(model_coeff_keys, params_Clqbar)}

578 models_dict["Cell"]["Cl_rbar"] = {key : coeff for key,coeff in

579 zip(model_coeff_keys, params_Clrbar)}

580 models_dict["Cell"]["Cl_Lrbar"] = {key : coeff for key,coeff in

581 zip(model_coeff_keys, params_ClLrbar)}

582 models_dict["Cell"]["Cl_da"] = {key : coeff for key,coeff in

583 zip(model_coeff_keys, params_Clda)}

584 models_dict["Cell"]["Cl_de"] = {key : coeff for key,coeff in

585 zip(model_coeff_keys, params_Clde)}

586

587 def _Cm_beta(Cmbeta_data, plot=False, yminmax=(None, None), fn='', dB=0.):

588 betas = Cmbeta_data[:, 1]*np.pi/180.

589 Cm = Cmbeta_data[:, 12]

590 [Cm_beta, Cm0] = np.polyfit(betas, Cm, 1)

591 if plot:

592 plt.figure()

593 plt.scatter(betas*180/np.pi, Cm, edgecolors='k', facecolor='None', s=60,

594 label='Data')

595 plt.plot(betas*180/np.pi, Cm0 + Cm_beta*betas, color='r', label='Fit')

596 plt.annotate(f'$\delta_B =$ {dB:3.2f}', (-4., 0.13), fontsize=18)

597 plt.annotate(r'$C_{{m,\beta}} = {0:3.2f}$'.format(Cm_beta), (-4., 0.1),

598 fontsize=18)

599 plt.xlim(-6.1, 6.1)

600 plt.ylim(yminmax[0], yminmax[1])

601 plt.xlabel(r'β, deg')

602 plt.ylabel(r'C_m')

603 plt.legend()

604 plt.tight_layout()

605 plt.savefig(fn)

606 plt.close()

607 return Cm_beta

608

609 def _Cm_pbar(Cmpbar_data):

610 Cm1 = np.array([x[12] for x in Cmpbar_data if x[5] == 0.])

611 Cmp_p = np.array([x[12] for x in Cmpbar_data if x[5] == 90.*np.pi/180.])

612 Cmp_m = np.array([x[12] for x in Cmpbar_data if x[5] == -90.*np.pi/180.])

613 DCmpbar_p = (Cmp_p - Cm1)/(np.deg2rad(90.)*b_w/(2.*V))

614 DCmpbar_m = (Cmp_m - Cm1)/(np.deg2rad(-90.)*b_w/(2.*V))

339

615 Cm_pbar = np.average(np.vstack((DCmpbar_p, DCmpbar_m)))

616 return Cm_pbar

617

618 def _Cm_rbar(Cmrbar_data):

619 Cm1 = np.array([x[12] for x in Cmrbar_data if x[7] == 0.])

620 Cmr_p = np.array([x[12] for x in Cmrbar_data if x[7] == 30.*np.pi/180.])

621 Cmr_m = np.array([x[12] for x in Cmrbar_data if x[7] == -30.*np.pi/180.])

622 DCmrbar_p = (Cmr_p - Cm1)/(np.deg2rad(30.)*b_w/(2.*V))

623 DCmrbar_m = (Cmr_m - Cm1)/(np.deg2rad(-30.)*b_w/(2.*V))

624 Cm_rbar = np.average(np.vstack((DCmrbar_p, DCmrbar_m)))

625 return Cm_rbar

626

627 def _Cm_da(Cmda_data):

628 Cm1 = np.array([x[12] for x in Cmda_data if x[3] == 0.])

629 Cmda_p = np.array([x[12] for x in Cmda_data if x[3] == 20.])

630 DCmda_p = (Cmda_p - Cm1)/np.deg2rad(20.)

631 Cm_da = np.average(DCmda_p)

632 return Cm_da

633

634 def Cm_models(baseline_coeffs, plot=True):

635 weight_Cm0 = [True]*N_dB

636 modelCm0 = lambda x : x[0]*np.sin(2.*dB_rad + np.pi/2.) +

637 np.average(Cm0_dB[weight_Cm0])

638 errorCm0 = lambda x : (x[0]*np.sin(2.*dB_rad[weight_Cm0] + np.pi/2.) +

639 np.average(Cm0_dB[weight_Cm0]) -

640 Cm0_dB[weight_Cm0])

641 params_Cm0 = np.append(optimize.leastsq(errorCm0, [0.02])[0],

642 [2., np.pi/2., np.average(Cm0_dB)])

643

644 weight_Cmalpha = (abs(Cmalpha_dB) < 0.3)

645 modelCmalpha = lambda x : x[0]*np.sin(2.*dB_rad + np.pi/2.) +

646 np.average(Cmalpha_dB[weight_Cmalpha])

647 errorCmalpha = lambda x : (x[0]*np.sin(2.*dB_rad + np.pi/2.) +

648 np.average(Cmalpha_dB[weight_Cmalpha]) -

649 Cmalpha_dB)[weight_Cmalpha]

650 params_Cmalpha = np.append(optimize.leastsq(errorCmalpha, [0.4])[0],

651 [2., np.pi/2.,

652 np.average(Cmalpha_dB[weight_Cmalpha])])

653

654 modelCmbeta = lambda x : x[0]*np.sin(2.*dB_rad)

655 errorCmbeta = lambda x : (x[0]*np.sin(2.*dB_rad) - Cmbeta_dB)

656 params_Cmbeta = np.append(optimize.leastsq(errorCmbeta, [0.6])[0], [2., 0., 0.])

657

658 weight_Cmpbar = np.abs(Cmpbar_dB) <= 0.02

659 modelCmpbar = lambda x : x[0]*np.sin(2.*dB_rad)

660 errorCmpbar = lambda x : (x[0]*np.sin(2.*dB_rad) - Cmpbar_dB)[weight_Cmpbar]

661 params_Cmpbar = np.append(optimize.leastsq(errorCmpbar, [0.02])[0], [2., 0., 0.])

662

663 weight_Cmqbar = Cmqbar_dB < 0.

664 modelCmqbar = lambda x : x[0]*np.sin(2.*dB_rad + np.pi/2.) +

665 np.average(Cmqbar_dB[weight_Cmqbar])

666 errorCmqbar = lambda x : (x[0]*np.sin(2.*dB_rad + np.pi/2.) +

667 np.average(Cmqbar_dB[weight_Cmqbar]) -

668 Cmqbar_dB)[weight_Cmqbar]

669 params_Cmqbar = np.append(optimize.leastsq(errorCmqbar, [2.])[0],

670 [2., np.pi/2.,

340

671 np.average(Cmqbar_dB[weight_Cmqbar])])

672

673 weight_Cmrbar = [True]*N_dB

674 weight_Cmrbar[8] = False

675 weight_Cmrbar[10] = False

676 weight_Cmrbar[-9] = False

677 weight_Cmrbar[-11] = False

678 modelCmrbar = lambda x : x[0]*np.sin(2.*dB_rad)

679 errorCmrbar = lambda x : (x[0]*np.sin(2.*dB_rad[weight_Cmrbar]) -

680 Cmrbar_dB[weight_Cmrbar])

681 params_Cmrbar = np.append(optimize.leastsq(errorCmrbar, [2.])[0], [2., 0., 0.])

682

683 modelCmda = lambda x :x[0]*np.sin(2.*dB_rad) + np.average(Cmda_dB)

684 errorCmda = lambda x : (modelCmda(x) - Cmda_dB)

685 params_Cmda = np.append(optimize.leastsq(errorCmda, [0.01])[0],

686 [2., 0., np.average(Cmda_dB)])

687

688 modelCmde = lambda x : x[0]*np.sin(1.*dB_rad + np.pi/2.)

689 errorCmde = lambda x : (x[0]*np.sin(1.*dB_rad + np.pi/2.) - Cmde_dB)

690 params_Cmde = np.append(optimize.leastsq(errorCmde, [-2.])[0], [1., np.pi/2., 0.])

691

692 models_dict["Cm"]["Cm_0"] = {key : coeff for key,coeff in

693 zip(model_coeff_keys, params_Cm0)}

694 models_dict["Cm"]["Cm_alpha"] = {key : coeff for key,coeff in

695 zip(model_coeff_keys, params_Cmalpha)}

696 models_dict["Cm"]["Cm_beta"] = {key : coeff for key,coeff in

697 zip(model_coeff_keys, params_Cmbeta)}

698 models_dict["Cm"]["Cm_pbar"] = {key : coeff for key,coeff in

699 zip(model_coeff_keys, params_Cmpbar)}

700 models_dict["Cm"]["Cm_qbar"] = {key : coeff for key,coeff in

701 zip(model_coeff_keys, params_Cmqbar)}

702 models_dict["Cm"]["Cm_rbar"] = {key : coeff for key,coeff in

703 zip(model_coeff_keys, params_Cmrbar)}

704 models_dict["Cm"]["Cm_da"] = {key : coeff for key,coeff in

705 zip(model_coeff_keys, params_Cmda)}

706 models_dict["Cm"]["Cm_de"] = {key : coeff for key,coeff in

707 zip(model_coeff_keys, params_Cmde)}

708

709 def _Cn_alpha(Cnalpha_data):

710 alphas = Cnalpha_data[:, 0]*np.pi/180.

711 Cn = Cnalpha_data[:, 13]

712 [Cn_alpha, Cn0] = np.polyfit(alphas, Cn, 1)

713 return Cn_alpha

714

715 def _Cn_qbar(Cnqbar_data):

716 Cn1 = np.array([x[13] for x in Cnqbar_data if x[6] == 0.])

717 Cnq_p = np.array([x[13] for x in Cnqbar_data if x[6] == 30.*np.pi/180.])

718 Cnq_m = np.array([x[13] for x in Cnqbar_data if x[6] == -30.*np.pi/180.])

719 DCnqbar_p = (Cnq_p - Cn1)/(np.deg2rad(30.)*c_w/(2.*V))

720 DCnqbar_m = (Cnq_m - Cn1)/(np.deg2rad(-30.)*c_w/(2.*V))

721 Cn_qbar = np.average(np.vstack((DCnqbar_p, DCnqbar_m)))

722 return Cn_qbar

723

724 def _Cn_de(Cnde_data):

725 Cn1 = np.array([x[13] for x in Cnde_data if x[2] == 0.])

726 Cnde_p = np.array([x[13] for x in Cnde_data if x[2] == 10.])

341

727 Cnde_m = np.array([x[13] for x in Cnde_data if x[2] == -10.])

728 DCnde_p = (Cnde_p - Cn1)/np.deg2rad(10.)

729 DCnde_m = (Cnde_m - Cn1)/np.deg2rad(-10.)

730 Cn_de = np.average(np.vstack((DCnde_p, DCnde_m)))

731 return Cn_de

732

733 def Cn_models(baseline_coeffs, plot=True):

734 modelCn0 = lambda x : x[0]*np.sin(2.*dB_rad)

735 errorCn0 = lambda x : (x[0]*np.sin(2.*dB_rad) - Cn0_dB)

736 params_Cn0 = np.append(optimize.leastsq(errorCn0, [-0.01])[0], [2., 0., 0.])

737

738 modelCnalpha = lambda x : x[0]*np.sin(2.*dB_rad)

739 errorCnalpha = lambda x : (x[0]*np.sin(2.*dB_rad) - Cnalpha_dB)

740 params_Cnalpha = np.append(optimize.leastsq(errorCnalpha, [-0.2])[0],

741 [2., 0., 0.])

742

743 modelCnbeta = lambda x : x[0]*np.sin(2.*dB_rad + np.pi/2.) +

744 np.average(Cnbeta_dB)

745 errorCnbeta = lambda x : (x[0]*np.sin(2.*dB_rad + np.pi/2.) +

746 np.average(Cnbeta_dB) - Cnbeta_dB)

747 params_Cnbeta = np.append(optimize.leastsq(errorCnbeta, [1.])[0],

748 [2., np.pi/2., np.average(Cnbeta_dB)])

749

750 modelCnpbar = lambda x : 0.*dB_rad + Cnpbar_dB[N_dB//2]

751 params_Cnpbar = [0.]*3 + [Cnpbar_dB[N_dB//2]]

752

753 weight_CnLpbar = (CnLpbar_dB < -0.1)*(CnLpbar_dB > -0.14)

754 modelCnLpbar = lambda x : x[0]*np.sin(2.*dB_rad[weight_CnLpbar] + np.pi/2.) +

755 np.average(CnLpbar_dB[weight_CnLpbar])

756 errorCnLpbar = lambda x : modelCnLpbar(x) - CnLpbar_dB[weight_CnLpbar]

757 params_CnLpbar = np.append(optimize.leastsq(errorCnLpbar, [0.001])[0],

758 [2., np.pi/2.,

759 np.average(CnLpbar_dB[weight_CnLpbar])])

760

761 modelCnqbar = lambda x : x[0]*np.sin(2.*dB_rad)

762 errorCnqbar = lambda x : (x[0]*np.sin(2.*dB_rad) - Cnqbar_dB)

763 params_Cnqbar = np.append(optimize.leastsq(errorCnqbar, [1.6])[0], [2., 0., 0.])

764

765 weight_Cnrbar = [True]*N_dB

766 weight_Cnrbar[8] = False

767 weight_Cnrbar[10] = False

768 weight_Cnrbar[-9] = False

769 weight_Cnrbar[-11] = False

770 modelCnrbar = lambda x : x[0]*np.sin(2.*dB_rad + np.pi/2.) +

771 np.average(Cnrbar_dB[weight_Cnrbar])

772 errorCnrbar = lambda x : (x[0]*np.sin(2.*dB_rad[weight_Cnrbar] + np.pi/2.) +

773 np.average(Cnrbar_dB[weight_Cnrbar]) -

774 Cnrbar_dB[weight_Cnrbar])

775 params_Cnrbar = np.append(optimize.leastsq(errorCnrbar, [1.])[0],

776 [2., np.pi/2.,

777 np.average(Cnrbar_dB[weight_Cnrbar])])

778

779 modelCnda = lambda x : 0.*dB_rad + np.average(Cnda_dB)

780 params_Cnda = [0.]*3 + [np.average(Cnda_dB)]

781

782 modelCnLda = lambda x : x[0]*np.sin(2.*dB_rad + np.pi/2.) + np.average(CnLda_dB)

342

783 errorCnLda = lambda x : (x[0]*np.sin(2.*dB_rad + np.pi/2.) + np.average(CnLda_dB) - CnLda_dB)

784 params_CnLda = [0.]*3 + [np.average(CnLda_dB)]

785 params_CnLda = np.append(optimize.leastsq(errorCnLda, [1.])[0], [2., np.pi/2., np.average(CnLda_dB)])

786

787 modelCnde = lambda x : x[0]*np.sin(dB_rad)

788 errorCnde = lambda x : (x[0]*np.sin(dB_rad) - Cnde_dB)

789 params_Cnde = np.append(optimize.leastsq(errorCnde, [2.])[0], [1., 0., 0.])

790

791 models_dict["Cn"]["Cn_0"] = {key : coeff for key,coeff in

792 zip(model_coeff_keys, params_Cn0)}

793 models_dict["Cn"]["Cn_alpha"] = {key : coeff for key,coeff in

794 zip(model_coeff_keys, params_Cnalpha)}

795 models_dict["Cn"]["Cn_beta"] = {key : coeff for key,coeff in

796 zip(model_coeff_keys, params_Cnbeta)}

797 models_dict["Cn"]["Cn_pbar"] = {key : coeff for key,coeff in

798 zip(model_coeff_keys, params_Cnpbar)}

799 models_dict["Cn"]["Cn_Lpbar"] = {key : coeff for key,coeff in

800 zip(model_coeff_keys, params_CnLpbar)}

801 models_dict["Cn"]["Cn_qbar"] = {key : coeff for key,coeff in

802 zip(model_coeff_keys, params_Cnqbar)}

803 models_dict["Cn"]["Cn_rbar"] = {key : coeff for key,coeff in

804 zip(model_coeff_keys, params_Cnrbar)}

805 models_dict["Cn"]["Cn_da"] = {key : coeff for key,coeff in

806 zip(model_coeff_keys, params_Cnda)}

807 models_dict["Cn"]["Cn_Lda"] = {key : coeff for key,coeff in

808 zip(model_coeff_keys, params_CnLda)}

809 models_dict["Cn"]["Cn_de"] = {key : coeff for key,coeff in

810 zip(model_coeff_keys, params_Cnde)}

811

812 def create_database(inp_dir):

813 data = np.zeros((N_dB*(N_alpha*N_other_a + N_beta*N_other_b), 14))

814 params = np.zeros(8)

815 zz = 0

816 k = 0

817 for dB in dB_range:

818 params[4] = dB

819 print("BIRE Angle : ", dB)

820 for a in alpha_range:

821 params[0] = a

822 data[zz, :] = bire_case(params, inp_dir, scenes[k])

823 zz += 1

824 params[0] = 0.

825 for b in beta_range:

826 params[1] = b

827 data[zz, :] = bire_case(params, inp_dir, scenes[k])

828 zz += 1

829 params[1] = 0.

830 for e in de_range:

831 params[2] = e

832 for a in alpha_range:

833 params[0] = a

834 data[zz, :] = bire_case(params, inp_dir, scenes[k])

835 zz += 1

836 params[2] = 0.

837 params[0] = 0.

838 for da in da_range:

343

839 params[3] = da

840 for b in beta_range:

841 params[1] = b

842 data[zz, :] = bire_case(params, inp_dir, scenes[k])

843 zz += 1

844 params[1] = 0.

845 for a in alpha_range:

846 params[0] = a

847 data[zz, :] = bire_case(params, inp_dir, scenes[k])

848 zz += 1

849 params[0] = 0.

850 params[3] = 0.

851 for p in p_range:

852 params[5] = p

853 for a in alpha_range:

854 params[0] = a

855 data[zz, :] = bire_case(params, inp_dir, scenes[k])

856 zz += 1

857 params[0] = 0.

858 for b in beta_range:

859 params[1] = b

860 data[zz, :] = bire_case(params, inp_dir, scenes[k])

861 zz += 1

862 params[1] = 0.

863 params[5] = 0.

864 for q in q_range:

865 params[6] = q

866 for a in alpha_range:

867 params[0] = a

868 data[zz, :] = bire_case(params, inp_dir, scenes[k])

869 zz += 1

870 params[0] = 0.

871 for b in beta_range:

872 params[1] = b

873 data[zz, :] = bire_case(params, inp_dir, scenes[k])

874 zz += 1

875 params[1] = 0.

876 params[6] = 0.

877 for r in r_range:

878 params[7] = r

879 for a in alpha_range:

880 params[0] = a

881 data[zz, :] = bire_case(params, inp_dir, scenes[k])

882 zz += 1

883 params[0] = 0.

884 for b in beta_range:

885 params[1] = b

886 data[zz, :] = bire_case(params, inp_dir, scenes[k])

887 zz += 1

888 params[1] = 0.

889 params[7] = 0.

890 k += 1

891 return data

892

893 if __name__ == "__main__":

894 plt.close('all')

344

895 path_to_db_file = './BIRE_database.csv'

896 file_exists = exists(path_to_db_file)

897 c_w = 11.32

898 b_w = 30.

899 V = 222.5211

900 if not file_exists:

901 alpha_range = np.arange(-10., 11., 5.)

902 N_alpha = len(alpha_range)

903 beta_range = np.arange(-6., 7., 2.)

904 N_beta = len(beta_range)

905 da_range = np.array([-20., 20.])

906 dB_range = np.arange(-180., 185., 5.)

907 N_dB = len(dB_range)

908 de_range = np.array([-10., 10.])

909 p_range = np.array([-90., 90.])*np.pi/180.

910 q_range = np.array([-30., 30.])*np.pi/180.

911 r_range = np.array([-30., 30.])*np.pi/180.

912 N_other_a = 1 + len(de_range) + len(p_range) + len(q_range) + len(r_range) +

913 len(da_range)

914 N_other_b = 1 + len(p_range) + len(q_range) + len(r_range) + len(da_range)

915 scenes = []

916 print("Making Inputs")

917 for d_B in dB_range:

918 print(d_B)

919 input_file = "./BIRE Inputs/BIRE_input_dB_" + str(d_B) + ".json"

920 input_exists = exists(input_file)

921 if not input_exists:

922 input_file = create_inputs("./BIRE Inputs/", d_B)

923 scenes.append(mx.Scene(input_file))

924 forces_options = {'body_frame': True,

925 'stab_frame': False,

926 'wind_frame': True,

927 'dimensional': False,

928 'verbose': False}

929 print("Creating Database")

930 database = np.unique(create_database('./BIRE Inputs/'), axis=0)

931 np.savetxt(path_to_db_file, database, delimiter=',')

932 else:

933 dB_range = np.arange(-180., 185., 5.)

934 N_dB = len(dB_range)

935 database = np.genfromtxt(path_to_db_file, delimiter=',')

936 df = pd.DataFrame(database, columns = ['Alpha','Beta','d_e', 'd_a', 'd_B', 'p',

937 'q', 'r', 'CD', 'CS', 'CL', 'Cl', 'Cm',

938 'Cn'])

939

940 dB_rad = np.deg2rad(dB_range)

941

942 CL0_dB = np.zeros(N_dB)

943 CLalpha_dB = np.zeros(N_dB)

944 CLbeta_dB = np.zeros(N_dB)

945 CLpbar_dB = np.zeros(N_dB)

946 CLqbar_dB = np.zeros(N_dB)

947 CLrbar_dB = np.zeros(N_dB)

948 CLda_dB = np.zeros(N_dB)

949 CLde_dB = np.zeros(N_dB)

950

345

951 CL0_delta = 0.

952 CLalpha_delta = 0.

953 CLbeta_delta = 0.

954 CLpbar_delta = 0.

955 CLqbar_delta = 0.

956 CLrbar_delta = 0.

957 CLda_delta = 0.

958 CLde_delta = -0.1822

959

960 CS0_dB = np.zeros(N_dB)

961 CSalpha_dB = np.zeros(N_dB)

962 CSbeta_dB = np.zeros(N_dB)

963 CSpbar_dB = np.zeros(N_dB)

964 CSLpbar_dB = np.zeros(N_dB)

965 CSqbar_dB = np.zeros(N_dB)

966 CSrbar_dB = np.zeros(N_dB)

967 CSLrbar_dB = np.zeros(N_dB)

968 CSda_dB = np.zeros(N_dB)

969 CSde_dB = np.zeros(N_dB)

970

971 CS0_delta = 0.

972 CSalpha_delta = 0.

973 CSbeta_delta = -0.1785

974 CSpbar_delta = 0.

975 CSLpbar_delta = 0.

976 CSqbar_delta = 0.

977 CSrbar_delta = 0.

978 CSda_delta = -0.0448

979 CSde_delta = 0.

980

981 CD0_dB = np.zeros(N_dB)

982 CDL_dB = np.zeros(N_dB)

983 CDL2_dB = np.zeros(N_dB)

984 CDS_dB = np.zeros(N_dB)

985 CDS2_dB = np.zeros(N_dB)

986 CDpbar_dB = np.zeros(N_dB)

987 CDSpbar_dB = np.zeros(N_dB)

988 CDLqbar_dB = np.zeros(N_dB)

989 CDL2qbar_dB = np.zeros(N_dB)

990 CDqbar_dB = np.zeros(N_dB)

991 CDrbar_dB = np.zeros(N_dB)

992 CDSrbar_dB = np.zeros(N_dB)

993 CDda_dB = np.zeros(N_dB)

994 CDSda_dB = np.zeros(N_dB)

995 CDde_dB = np.zeros(N_dB)

996 CDLde_dB = np.zeros(N_dB)

997 CDde2_dB = np.zeros(N_dB)

998

999 CD0_delta = 0.0154

1000 CDL_delta = -0.0304

1001 CDL2_delta = 0.0714

1002 CDS_delta = 0.

1003 CDS2_delta = 0.1118

1004 CDpbar_delta = 0.

1005 CDSpbar_delta = 0.

1006 CDqbar_delta = 0.

346

1007 CDLqbar_delta = 0.

1008 CDL2qbar_delta = 0.

1009 CDrbar_delta = 0.

1010 CDSrbar_delta = 0.

1011 CDda_delta = 0.

1012 CDSda_delta = 0.

1013 CDde_delta = 0.

1014 CDLde_delta = 0.

1015 CDde2_delta = 0.

1016

1017 Cl0_dB = np.zeros(N_dB)

1018 Clalpha_dB = np.zeros(N_dB)

1019 Clbeta_dB = np.zeros(N_dB)

1020 Clpbar_dB = np.zeros(N_dB)

1021 Clqbar_dB = np.zeros(N_dB)

1022 Clrbar_dB = np.zeros(N_dB)

1023 ClLrbar_dB = np.zeros(N_dB)

1024 Clda_dB = np.zeros(N_dB)

1025 Clde_dB = np.zeros(N_dB)

1026

1027 Cl0_delta = 0.

1028 Clalpha_delta = 0.

1029 Clbeta_delta = -0.0101

1030 Clpbar_delta = 0.

1031 Clqbar_delta = 0.

1032 Clrbar_delta = 0.

1033 ClLrbar_delta = 0.

1034 Clda_delta = 0.

1035 Clde_delta = 0.

1036

1037 Cm0_dB = np.zeros(N_dB)

1038 Cmalpha_dB = np.zeros(N_dB)

1039 Cmbeta_dB = np.zeros(N_dB)

1040 Cmpbar_dB = np.zeros(N_dB)

1041 Cmqbar_dB = np.zeros(N_dB)

1042 Cmrbar_dB = np.zeros(N_dB)

1043 Cmda_dB = np.zeros(N_dB)

1044 Cmde_dB = np.zeros(N_dB)

1045

1046 Cm0_delta = -0.0196

1047 Cma_delta = 0.2865

1048 Cmbeta_delta = 0.

1049 Cmpbar_delta = 0.

1050 Cmqbar_delta = 0.

1051 Cmrbar_delta = 0.

1052 Cmda_delta = 0.

1053 Cmde_delta = 0.2914

1054

1055 Cn0_dB = np.zeros(N_dB)

1056 Cnalpha_dB = np.zeros(N_dB)

1057 Cnbeta_dB = np.zeros(N_dB)

1058 Cnpbar_dB = np.zeros(N_dB)

1059 CnLpbar_dB = np.zeros(N_dB)

1060 Cnqbar_dB = np.zeros(N_dB)

1061 Cnrbar_dB = np.zeros(N_dB)

1062 Cnda_dB = np.zeros(N_dB)

347

1063 CnLda_dB = np.zeros(N_dB)

1064 Cnde_dB = np.zeros(N_dB)

1065

1066 Cn0_delta = 0.

1067 Cnalpha_delta = 0.

1068 Cnbeta_delta = -0.0326

1069 Cnpbar_delta = 0.

1070 CnLpbar_delta = 0.0602

1071 Cnqbar_delta = 0.

1072 Cnrbar_delta = 0.

1073 Cnda_delta = 0.0122

1074 CnLda_delta = 0.0254

1075 Cnde_delta = 0.0

1076

1077 for i in range(N_dB):

1078 print(dB_range[i])

1079 CLalpha_data = df.loc[(df['Beta'] + df['d_e'] + df['d_a'] + df['p'] +

1080 df['q'] + df['r'] == 0) &

1081 (df['d_B'] == dB_range[i])].to_numpy()

1082 CL0_dB[i], CLalpha_dB[i] = f16_model._CL0_CLalpha(CLalpha_data, False)

1083

1084

1085 CLbeta_data = df.loc[(df['Alpha'] + df['d_e'] + df['d_a'] + df['p'] +

1086 df['q'] + df['r'] == 0) & (df['d_B'] == dB_range[i]) &

1087 (df['Alpha'] == 0)].to_numpy()

1088 CLbeta_dB[i] = _CL_beta(CLbeta_data)

1089

1090 CLpbar_data = df.loc[(df['Beta'] + df['d_e'] + df['d_a'] + df['q'] +

1091 df['r'] == 0) & (df['d_B'] == dB_range[i])].to_numpy()

1092 CLpbar_dB[i] = _CL_pbar(CLpbar_data)

1093

1094 CLqbar_data = df.loc[(df['Beta'] + df['d_e'] + df['d_a'] + df['p'] +

1095 df['r'] == 0) & (df['d_B'] == dB_range[i])].to_numpy()

1096 CLqbar_dB[i] = f16_model._CL_qbar(CLqbar_data, False)

1097

1098 CLrbar_data = df.loc[(df['Beta'] + df['d_e'] + df['d_a'] + df['p'] +

1099 df['q'] == 0) & (df['d_B'] == dB_range[i])].to_numpy()

1100 CLrbar_dB[i] = _CL_rbar(CLrbar_data)

1101

1102 CLda_data = df.loc[(df['Beta'] + df['d_e'] + df['p'] + df['q'] +

1103 df['r'] == 0) & (df['d_B'] == dB_range[i])].to_numpy()

1104 CLda_dB[i] = _CL_da(CLda_data)

1105

1106 CLde_data = df.loc[(df['Beta'] + df['d_a'] + df['p'] + df['q'] +

1107 df['r'] == 0) & (df['d_B'] == dB_range[i])].to_numpy()

1108 CDp_data = df.loc[((df['Alpha'] + df['d_e'] + df['d_a'] + df['q'] +

1109 df['r'] == 0) &

1110 (df['Alpha'] == 0.) &

1111 (df['d_B'] == dB_range[i]))].to_numpy()

1112 CDr_data = df.loc[((df['Alpha'] + df['d_e'] + df['d_a'] + df['q'] +

1113 df['p'] == 0) &

1114 (df['Alpha'] == 0.) &

1115 (df['d_B'] == dB_range[i]))].to_numpy()

1116

1117 CLde_dB[i] = f16_model._CL_de(CLde_data, False)

1118

348

1119 CS0_dB[i], CSbeta_dB[i] = f16_model._CS_beta(CLbeta_data, False)

1120

1121 CSalpha_dB[i] = _CS_alpha(CLalpha_data)

1122

1123 CSpbar_dB[i], CSLpbar_dB[i] = f16_model._CS_pbar(CLpbar_data, False)

1124

1125 CSqbar_dB[i] = _CS_qbar(CLqbar_data)

1126

1127 CSrbar_dB[i] = f16_model._CS_rbar(CLrbar_data, False)

1128

1129 CSda_data = df.loc[((df['Alpha'] + df['d_e'] + df['r'] + df['q'] +

1130 df['p'] == 0) &

1131 (df['Alpha'] == 0.) &

1132 (df['d_B'] == dB_range[i]))].to_numpy()

1133 CSda_dB[i] = f16_model._CS_da(CSda_data, False, skip_mask=True)

1134

1135 CSde_dB[i] = _CS_de(CLde_data)

1136

1137 CD0_dB[i], CDL_dB[i], CDL2_dB[i] = f16_model._CD_polar(CLalpha_data, False)

1138

1139 CDS_dB[i], CDS2_dB[i] = f16_model._CD_Spolar(CLbeta_data, False)[1:]

1140

1141 CDpbar_dB[i], CDSpbar_dB[i] = f16_model._CD_pbar(CDp_data, False)

1142

1143 CDqbar_dB[i], CDLqbar_dB[i], CDL2qbar_dB[i] = f16_model._CD_qbar(CLqbar_data,

1144 False)

1145

1146 CDrbar_dB[i], CDSrbar_dB[i] = f16_model._CD_rbar(CDr_data, False)

1147

1148 CDda_dB[i], CDSda_dB[i] = f16_model._CD_da(CLda_data, False)[:2]

1149

1150 CDde_dB[i], CDLde_dB[i], CDde2_dB[i] = f16_model._CD_de(CLde_data, False)

1151

1152 Cl0_dB[i], Clbeta_dB[i] = f16_model._Cl_beta(CLbeta_data, False)

1153

1154 Clalpha_dB[i] = _Cl_alpha(CLalpha_data)

1155

1156 Clpbar_dB[i] = f16_model._Cl_pbar(CLpbar_data, False)

1157

1158 Clqbar_dB[i] = _Cl_qbar(CLqbar_data)

1159

1160 Clrbar_dB[i], ClLrbar_dB[i] = f16_model._Cl_rbar(CLrbar_data, False)

1161

1162 Clda_dB[i] = f16_model._Cl_da(CSda_data, False)

1163

1164 Clde_dB[i] = _Cl_de(CLde_data)

1165

1166 Cm0_dB[i], Cmalpha_dB[i] = f16_model._Cm0_Cmalpha(CLalpha_data, False,

1167 skip_mask=False)

1168

1169 Cmbeta_dB[i] = _Cm_beta(CLbeta_data)

1170

1171 Cmpbar_dB[i] = _Cm_pbar(CLpbar_data)

1172

1173 Cmqbar_dB[i] = f16_model._Cm_qbar(CLqbar_data, False)

1174

349

1175 Cmrbar_dB[i] = _Cm_rbar(CLrbar_data)

1176

1177 Cmda_dB[i] = _Cm_da(CLda_data)

1178

1179 Cmde_dB[i] = f16_model._Cm_de(CLde_data, False)

1180

1181 Cn0_dB[i], Cnbeta_dB[i] = f16_model._Cn_beta(CLbeta_data, False)

1182

1183 Cnalpha_dB[i] = _Cn_alpha(CLalpha_data)

1184

1185 Cnpbar_dB[i], CnLpbar_dB[i] = f16_model._Cn_pbar(CLpbar_data, False)

1186

1187 Cnqbar_dB[i] = _Cn_qbar(CLqbar_data)

1188

1189 Cnrbar_dB[i] = f16_model._Cn_rbar(CLrbar_data, False)

1190

1191 Cnda_dB[i], CnLda_dB[i] = f16_model._Cn_da(CLda_data, False)

1192

1193 Cnde_dB[i] = _Cn_de(CLde_data)

1194 max_alpha = 20.*np.pi/180.

1195 max_beta = 10.*np.pi/180.

1196 max_pbar = 90.*b_w/(2.*V)*np.pi/180.

1197 max_qbar = 30.*c_w/(2.*V)*np.pi/180.

1198 max_rbar = 30.*b_w/(2.*V)*np.pi/180.

1199 max_da = 21.5*np.pi/180.

1200 max_de = 25.*np.pi/180.

1201 CL1_data = df.loc[(df['Beta'] + df['d_e'] + df['d_a'] + df['p'] + df['q'] +

1202 df['r'] == 0)].to_numpy()

1203 CS1_data = df.loc[(df['Alpha'] + df['d_e'] + df['d_a'] + df['p'] + df['q'] +

1204 df['r'] == 0)].to_numpy()

1205 max_CL1 = np.max(np.abs(CL1_data[:, 10]))

1206 max_CS1 = np.max(np.abs(CS1_data[:, 9]))

1207

1208 meanCL_1p = np.average(np.abs(database[:, 10]))*0.01

1209 meanCS_1p = np.average(np.abs(database[:, 9]))*0.01

1210 meanCD_1p = np.average(np.abs(database[:, 8]))*0.01

1211 meanCl_1p = np.average(np.abs(database[:, 11]))*0.01

1212 meanCm_1p = np.average(np.abs(database[:, 12]))*0.01

1213 meanCn_1p = np.average(np.abs(database[:, 13]))*0.01

1214

1215 model_coeff_keys = ["A", "w", "phi", "z"]

1216 model_coeff_dict = {key: 0. for key in model_coeff_keys}

1217

1218 models_dict = {"CL": {

1219 "CL_0" : model_coeff_dict,

1220 "CL_alpha" : model_coeff_dict,

1221 "CL_beta" : model_coeff_dict,

1222 "CL_pbar" : model_coeff_dict,

1223 "CL_qbar" : model_coeff_dict,

1224 "CL_rbar" : model_coeff_dict,

1225 "CL_da" : model_coeff_dict,

1226 "CL_de" : model_coeff_dict

1227 },

1228 "CS": {

1229 "CS_0" : model_coeff_dict,

1230 "CS_alpha" : model_coeff_dict,

350

1231 "CS_beta" : model_coeff_dict,

1232 "CS_pbar" : model_coeff_dict,

1233 "CS_Lpbar" : model_coeff_dict,

1234 "CS_qbar" : model_coeff_dict,

1235 "CS_rbar" : model_coeff_dict,

1236 "CS_da" : model_coeff_dict,

1237 "CS_de" : model_coeff_dict

1238 },

1239 "CD": {

1240 "CD_0" : model_coeff_dict,

1241 "CD_L" : model_coeff_dict,

1242 "CD_L2" : model_coeff_dict,

1243 "CD_S" : model_coeff_dict,

1244 "CD_S2" : model_coeff_dict,

1245 "CD_pbar" : model_coeff_dict,

1246 "CD_Spbar" : model_coeff_dict,

1247 "CD_qbar" : model_coeff_dict,

1248 "CD_Lqbar" : model_coeff_dict,

1249 "CD_L2qbar" : model_coeff_dict,

1250 "CD_rbar" : model_coeff_dict,

1251 "CD_Srbar" : model_coeff_dict,

1252 "CD_da" : model_coeff_dict,

1253 "CD_Sda" : model_coeff_dict,

1254 "CD_de" : model_coeff_dict,

1255 "CD_Lde" : model_coeff_dict,

1256 "CD_de2" : model_coeff_dict

1257 },

1258 "Cell": {

1259 "Cl_0" : model_coeff_dict,

1260 "Cl_alpha" : model_coeff_dict,

1261 "Cl_beta" : model_coeff_dict,

1262 "Cl_pbar" : model_coeff_dict,

1263 "Cl_qbar" : model_coeff_dict,

1264 "Cl_rbar" : model_coeff_dict,

1265 "Cl_Lrbar" : model_coeff_dict,

1266 "Cl_da" : model_coeff_dict,

1267 "Cl_de" : model_coeff_dict

1268 },

1269 "Cm": {

1270 "Cm_0" : model_coeff_dict,

1271 "Cm_alpha" : model_coeff_dict,

1272 "Cm_beta" : model_coeff_dict,

1273 "Cm_pbar" : model_coeff_dict,

1274 "Cm_qbar" : model_coeff_dict,

1275 "Cm_rbar" : model_coeff_dict,

1276 "Cm_da" : model_coeff_dict,

1277 "Cm_de" : model_coeff_dict

1278 },

1279 "Cn": {

1280 "Cn_0" : model_coeff_dict,

1281 "Cn_alpha" : model_coeff_dict,

1282 "Cn_beta" : model_coeff_dict,

1283 "Cn_pbar" : model_coeff_dict,

1284 "Cn_Lpbar" : model_coeff_dict,

1285 "Cn_qbar" : model_coeff_dict,

1286 "Cn_rbar" : model_coeff_dict,

351

1287 "Cn_da" : model_coeff_dict,

1288 "Cn_Lda" : model_coeff_dict,

1289 "Cn_de" : model_coeff_dict

1290 }

1291 }

1292

1293 base_coeffs_dict = json.load(open('./f16_model.json'))

1294

1295

1296 CL_models(base_coeffs_dict["CL"], plot=False)

1297 CS_models(base_coeffs_dict["CS"], plot=False)

1298 CD_models(base_coeffs_dict["CD"], plot=False)

1299 Cl_models(base_coeffs_dict["Cell"], plot=False)

1300 Cm_models(base_coeffs_dict["Cm"], plot=False)

1301 Cn_models(base_coeffs_dict["Cn"], plot=False)

1302 with open("bire_model.json", "w") as outfile:

1303 json.dump(models_dict, outfile, indent=4)

352

C.4 Static Trim Analysis

Thrust Modeling

1 import numpy as np

2 import scipy.optimize as optimize

3 import matplotlib.pyplot as plt

4 from hunsaker_atm import stdatm_english

5

6

7 def find_coeffs(C, T_data, rho, V):

8 [a, T0, T1, T2] = C

9 T = (rho/rho_0)**a*(T0 + T1*V + T2*np.square(V))

10 return np.linalg.norm(T - T_data)

11

12 def a_coeff(a, T_data, rho):

13 T = (rho/rho_0)**a*(T_data)

14 print(a)

15 print(np.linalg.norm(T - T_data))

16 return np.linalg.norm(T - T_data)

17

18 T_idle = np.array([[635, 425, 690, 1010, 1330, 1700],

19 [60, 25, 345, 755, 1130, 1525],

20 [-1020, -710, -300, 350, 910, 1360],

21 [-2700, -1900, -1300, -247, 600, 1100],

22 [-3600, -1400, -595, -342, -200, 700]])

23 T_mil = np.array([[12680, 9150, 6313, 4040, 2470, 1400],

24 [12610, 9312, 6610, 4290, 2600, 1560],

25 [12640, 9839, 7090, 4660, 2840, 1660],

26 [12390, 10176, 7750, 5320, 3250, 1930],

27 [11680, 9848, 8050, 6100, 3800, 2310]])

28 T_max = np.array([[21420, 15700, 11225, 7323, 4435, 2600],

29 [22700, 16860, 12250, 8154, 5000, 2835],

30 [24240, 18910, 13760, 9285, 5700, 3215],

31 [26070, 21075, 15975, 11115, 6860, 3950],

32 [28886, 23319, 18300, 13484, 8642, 5057]])

33 M = np.array([0.2, 0.4, 0.6, 0.8, 1.0])

34 H = np.arange(0., 60000., 10000.)

35 rho_0 = stdatm_english(0.)[-2]

36 rho = np.zeros(len(H))

37 a = np.zeros(len(H))

38 V = np.zeros_like(T_idle)

39 for i in range(len(H)):

40 rho[i], a[i] = stdatm_english(H[i])[-2:]

41 for j in range(len(M)):

42 V[j, i] = M[j]*a[i]

43 T0_i = np.zeros_like(H)

44 T1_i = np.zeros_like(H)

45 T2_i = np.zeros_like(H)

46 a_i = np.zeros_like(H)

47 for i in range(len(H)):

48 [a_i[i], T0_i[i], T1_i[i], T2_i[i]] = optimize.minimize(find_coeffs,

49 [1.]*4,

50 args=(T_idle[:, i],

353

51 rho[i],

52 V[:, i])).x

53 T_idle_fit = np.zeros_like(T_idle)

54 for i in range(len(H)):

55 for j in range(len(M)):

56 T_idle_fit[j, i] = (rho[i]/rho_0)**a_i[i]*(T0_i[i] +

57 T1_i[i]*V[j, i] +

58 T2_i[i]*V[j, i]**2)

59

60 T0_mil = np.zeros_like(H)

61 T1_mil = np.zeros_like(H)

62 T2_mil = np.zeros_like(H)

63 a_mil = np.zeros_like(H)

64 for i in range(len(H)):

65 [a_mil[i], T0_mil[i], T1_mil[i], T2_mil[i]] =

66 optimize.minimize(find_coeffs,

67 [1.]*4,

68 args=(T_mil[:, i],

69 rho[i],

70 V[:, i])).x

71 T_mil_fit = np.zeros_like(T_mil)

72 for i in range(len(H)):

73 for j in range(len(M)):

74 T_mil_fit[j, i] = (rho[i]/rho_0)**a_mil[i]*(T0_mil[i] +

75 T1_mil[i]*V[j, i] +

76 T2_mil[i]*V[j, i]**2)

77

78 T0_max = np.zeros_like(H)

79 T1_max = np.zeros_like(H)

80 T2_max = np.zeros_like(H)

81 a_max = np.zeros_like(H)

82 for i in range(len(H)):

83 [a_max[i], T0_max[i], T1_max[i], T2_max[i]] =

84 optimize.minimize(find_coeffs,

85 [1.]*4,

86 args=(T_max[:, i],

87 rho[i],

88 V[:, i])).x

89 T_max_fit = np.zeros_like(T_max)

90 for i in range(len(H)):

91 for j in range(len(M)):

92 T_max_fit[j, i] = (rho[i]/rho_0)**a_max[i]*(T0_max[i] +

93 T1_max[i]*V[j, i] +

94 T2_max[i]*V[j, i]**2)

95

96 T0_i_fit = np.polyfit(H, T0_i, 2)

97 T1_i_fit = np.polyfit(H, T1_i, 2)

98 T2_i_fit = np.polyfit(H, T2_i, 2)

99 a_i_fit = np.polyfit(H, a_i, 2)

100 T0_mil_fit = np.polyfit(H, T0_mil, 2)

101 T1_mil_fit = np.polyfit(H, T1_mil, 2)

102 T2_mil_fit = np.polyfit(H, T2_mil, 2)

103 a_mil_fit = np.polyfit(H, a_mil, 2)

104 T0_max_fit = np.polyfit(H, T0_max, 2)

105 T1_max_fit = np.polyfit(H, T1_max, 2)

106 T2_max_fit = np.polyfit(H, T2_max, 2)

354

107 a_max_fit = np.polyfit(H, a_max, 2)

355

Trim Algorithm

1 import numpy as np

2 from f16_aero import F16Aero

3 from bire_aero import BIREAero

4 from stdatmos import stdatm_english

5 import json

6

7 class AircraftProperties:

8 def __init__(self, V, H, Gamma, path='./', bire=False, **kwargs):

9 if bire:

10 fn = kwargs.get('filename', 'BIRE_props.json')

11 prop_dict = json.load(open(path + fn))

12 else:

13 fn = kwargs.get('filename', 'F16_props.json')

14 prop_dict = json.load(open(path + fn))

15 self.S_w = prop_dict["geometry"]["S_w"]

16 self.b_w = prop_dict["geometry"]["b_w"]

17 self.c_w = prop_dict["geometry"]["c_w"]

18 self.l_h = prop_dict["geometry"]["l_h"]

19 self.RA_w = prop_dict["geometry"]["RA_w"]

20 self.Lam_w = prop_dict["geometry"]["Lam_w"]

21 self.RA_v = prop_dict["geometry"]["RA_v"]

22 self.Lam_v = prop_dict["geometry"]["Lam_v"]

23 self.RA_h = prop_dict["geometry"]["RA_h"]

24 self.Lam_h = prop_dict["geometry"]["Lam_h"]

25 self.W = prop_dict["inertia"]["W"]

26 self.hz = prop_dict["inertia"]["h_z"]

27 self.hy = prop_dict["inertia"]["h_y"]

28 self.hx = prop_dict["inertia"]["h_x"]

29 if bire:

30 I_model = json.load(open('./bire_inertia_model.json'))

31 Ixx = I_model["Ixx"]

32 Iyy = I_model["Iyy"]

33 Izz = I_model["Izz"]

34 Ixz = I_model["Ixz"]

35 Ixy = I_model["Ixy"]

36 Iyz = I_model["Iyz"]

37 self.I_xx = lambda dB : Ixx["A"]*np.sin(Ixx["w"]*dB + Ixx["phi"]) +

38 Ixx["z"]

39 self.I_yy = lambda dB : Iyy["A"]*np.sin(Iyy["w"]*dB + Iyy["phi"]) +

40 Iyy["z"]

41 self.I_zz = lambda dB : Izz["A"]*np.sin(Izz["w"]*dB + Izz["phi"]) +

42 Izz["z"]

43 self.I_yz = lambda dB : Iyz["A"]*np.sin(Iyz["w"]*dB + Iyz["phi"]) +

44 Iyz["z"]

45 self.I_xy = lambda dB : Ixy["A"]*np.sin(Ixy["w"]*dB + Ixy["phi"]) +

46 Ixy["z"]

47 self.I_xz = lambda dB : Ixz["A"]*np.sin(Ixz["w"]*dB + Ixz["phi"]) +

48 Ixz["z"]

49 self.dI_xx = lambda dB : np.array([0., 0., 0.,

50 Ixx["A"]*Ixx["w"]*np.cos(Ixx["w"]*dB +

51 Ixx["phi"])])

52 self.dI_yy = lambda dB : np.array([0., 0., 0.,

53 Iyy["A"]*Iyy["w"]*np.cos(Iyy["w"]*dB +

54 Iyy["phi"])])

356

55 self.dI_zz = lambda dB : np.array([0., 0., 0.,

56 Izz["A"]*Izz["w"]*np.cos(Izz["w"]*dB +

57 Izz["phi"])])

58 self.dI_yz = lambda dB : np.array([0., 0., 0.,

59 Iyz["A"]*Iyz["w"]*np.cos(Iyz["w"]*dB +

60 Iyz["phi"])])

61 self.dI_xy = lambda dB : np.array([0., 0., 0.,

62 Ixy["A"]*Ixy["w"]*np.cos(Ixy["w"]*dB +

63 Ixy["phi"])])

64 self.dI_xz = lambda dB : np.array([0., 0., 0.,

65 Ixz["A"]*Ixz["w"]*np.cos(Ixz["w"]*dB +

66 Ixz["phi"])])

67 else:

68 self.Ixx = prop_dict["inertia"]["I_xx"]

69 self.Ixy = prop_dict["inertia"]["I_xy"]

70 self.Iyx = self.Ixy

71 self.Ixz = prop_dict["inertia"]["I_xz"]

72 self.Izx = self.Ixz

73 self.Iyy = prop_dict["inertia"]["I_yy"]

74 self.Iyz = prop_dict["inertia"]["I_yz"]

75 self.Izy = self.Iyz

76 self.Izz = prop_dict["inertia"]["I_zz"]

77 self.g = 32.2

78 dummyz, dummyT, dummyp, self.rho, self.a = stdatm_english(H)

79 dummyz, dummyT, dummyp, self.rho_0, self.a_0 = stdatm_english(H)

80 self.nondim_const = 0.5*self.rho*V*V*self.S_w

81 self.V = V

82 self.H = H

83 self.Gamma = Gamma

84 self.M = self.V/self.a

85 self.T0_idle = lambda H: 3145 - 0.4185*H + 1.8313e-5*H**2

86 self.T0_mil = lambda H: 11716 + 0.1156*H + 0.3474e-5*H**2

87 self.T0_max = lambda H: 20341 + 0.1454*H + 0.9283e-5*H**2

88 self.T1_idle = lambda H: -4.3491 - 4.9703e-4*H + 1.3557e-8*H**2

89 self.T1_mil = lambda H: 3.5689 + 0.1409e-4*H - 0.3982e-8*H**2

90 self.T1_max = lambda H: 1.9886 + 6.3926e-4*H - 2.4428e-8*H**2

91 self.T2_idle = lambda H: -0.2321e-3 + 5.5629e-7*H - 2.0550e-11*H**2

92 self.T2_mil = lambda H: -3.9793e-3 + 2.6931e-7*H + 0.5281e-11*H**2

93 self.T2_max = lambda H: 3.5201e-3 + 0.7574e-7*H + 2.6665e-11*H**2

94 self.a_idle = lambda H: 1.0104 + 2.9484e-5*H - 3.8270e-10*H**2

95 self.a_mil = lambda H: 1.0148 + 3.1355e-5*H - 4.2106e-10*H**2

96 self.a_max = lambda H: 1.0225 + 3.1984e-5*H - 4.3617e-10*H**2

97

98 def calc_BIRE_inertia(self, dB):

99 self.Ixx = self.I_xx(dB)

100 self.Ixy = self.I_xy(dB)

101 self.Ixz = self.I_xz(dB)

102 self.Iyy = self.I_yy(dB)

103 self.Iyz = self.I_yz(dB)

104 self.Izz = self.I_zz(dB)

105

106 class TrimSolution:

107 def __init__(self):

108 self.FM = np.zeros(6)

109 self.rates = np.zeros(3)

110 self.velocity = np.zeros(3)

357

111 self.load = 0.

112 self.load_s = 0.

113 self.x = np.zeros(6)

114 self.orient = np.zeros(3)

115 self.num_iters = 0.

116 self.vehicle = "Baseline"

117

118 def climb_2_elev(u, v, w, phi, gamma, V):

119 V = np.sqrt(u**2 + v**2 + w**2)

120 n_1 = u*V*np.sin(gamma)

121 n_2 = (v*np.sin(phi) + w*np.cos(phi))

122 n_3 = np.sqrt(u*u + n_2**2 - V**2*np.sin(gamma)**2)

123 d = u**2 + n_2**2

124 th_plus = np.arcsin((n_1 + n_2*n_3)/d)

125 th_minus = np.arcsin((n_1 - n_2*n_3)/d)

126 check_plus = (V*np.sin(gamma) - u*np.sin(th_plus) - n_2*np.cos(th_plus) < 1e-8)

127 check_minus = (V*np.sin(gamma) - u*np.sin(th_minus) - n_2*np.cos(th_minus) <

128 1e-8)

129 if check_plus:

130 return th_plus

131 elif check_minus:

132 return th_minus

133

134 def v_comp(alpha, beta, V):

135 u = V*np.cos(alpha)*np.cos(beta)

136 v = V*np.sin(beta)

137 w = V*np.sin(alpha)*np.cos(beta)

138 return u, v, w

139

140 def load_2_bank(n_a, Fx, W, p, q, u, v, alpha, theta, props):

141 num = n_a - Fx*np.sin(alpha)/W - (q*u - p*v)*np.cos(alpha)/props.g

142 denom = np.cos(theta)*np.cos(alpha)

143 phi = np.arccos(num/denom)

144 return phi

145

146 def load_factor(theta, phi, alpha, p, q, r, u, v, w, props):

147 C1 = np.cos(theta)*np.cos(phi) + (q*u - p*v)/props.g

148 C2 = np.sin(theta) - (r*v - q*w)/props.g

149 n_a = C1*np.cos(alpha) + C2*np.sin(alpha)

150 return n_a

151

152 def rotation_rates(phi, theta, u, w, props):

153 C_num = props.g*np.sin(phi)*np.cos(theta)

154 C_denom = u*np.cos(theta)*np.cos(phi) + w*np.sin(theta)

155 C = C_num/C_denom

156 p = -C*np.sin(theta)

157 q = C*np.sin(phi)*np.cos(theta)

158 r = C*np.cos(phi)*np.cos(theta)

159 return p, q, r

160

161 def tgear(tau):

162 if tau <= 0.77:

163 P1 = 64.94*tau

164 else:

165 P1 = 217.38*tau - 117.38

166 return P1

358

167

168 def thrust(tau, V, props):

169 P1 = tgear(tau)

170 T0_mil = props.T0_mil(props.H)

171 T1_mil = props.T1_mil(props.H)

172 T2_mil = props.T2_mil(props.H)

173 a_mil = props.a_mil(props.H)

174 C1_mil = (props.rho/props.rho_0)**a_mil

175 C2_mil = T0_mil + T1_mil*V + T2_mil*V**2

176 T_mil = C1_mil*C2_mil

177 if P1 >= 50.:

178 T0_max = props.T0_max(props.H)

179 T1_max = props.T1_max(props.H)

180 T2_max = props.T2_max(props.H)

181 a_max = props.a_max(props.H)

182 C1_max = (props.rho/props.rho_0)**a_max

183 C2_max = T0_max + T1_max*V + T2_max*V**2

184 T_max = C1_max*C2_max

185 T = T_mil + (T_max - T_mil)*(P1 - 50.)/50.

186 else:

187 T0_idle = props.T0_idle(props.H)

188 T1_idle = props.T1_idle(props.H)

189 T2_idle = props.T2_idle(props.H)

190 a_idle = props.a_idle(props.H)

191 C1_idle = (props.rho/props.rho_0)**a_idle

192 C2_idle = T0_idle + T1_idle*V + T2_idle*V**2

193 T_idle = C1_idle*C2_idle

194 T = T_idle + (T_mil - T_idle)*P1/50.

195 return T

196

197 def _tau_p1(tau, Fx, theta, q, r, v, w, T, props):

198 num = Fx - props.W*np.sin(theta) + (r*v - q*w)*props.W/props.g

199 denom = T

200 tau_p1 = tau - props.Gamma*num/denom

201 return tau_p1, num

202

203 def _beta_p1(beta, Fy, phi, theta, p, r, u, w, CSb, props):

204 num = Fy + props.W*np.sin(phi)*np.cos(theta) + (p*w - r*u)*props.W/props.g

205 denom = props.nondim_const*CSb*np.cos(beta)

206 beta_p1 = beta - props.Gamma*num/denom

207 return beta_p1, num

208

209 def _alpha_p1(alpha, Fz, phi, theta, p, q, u, v, CLa, props):

210 num = Fz + props.W*np.cos(phi)*np.cos(theta) + (q*u - p*v)*props.W/props.g

211 denom = props.nondim_const*CLa*np.cos(alpha)

212 alpha_p1 = alpha + props.Gamma*num/denom

213 return alpha_p1, num

214

215 def _da_p1(da, Mx, p, q, r, Clda, props):

216 num_1 = Mx - props.hz*q + props.hy*r + (props.Iyy - props.Izz)*q*r

217 num_2 = props.Iyz*(q**2 - r**2) + props.Ixz*p*q - props.Ixy*p*r

218 num = num_1 + num_2

219 denom = props.nondim_const*props.b_w*Clda

220 da_p1 = da - props.Gamma*num/denom

221 return da_p1, num

222

359

223 def _de_p1(de, My, p, q, r, Cmde, props):

224 num_1 = My + props.hz*p - props.hx*r + (props.Izz - props.Ixx)*p*r

225 num_2 = props.Ixz*(r**2 - p**2) + props.Ixy*q*r - props.Iyz*p*q

226 num = num_1 + num_2

227 denom = props.nondim_const*props.c_w*Cmde

228 de_p1 = de - props.Gamma*num/denom

229 return de_p1, num

230

231 def _dr_p1(dr, Mz, p, q, r, Cndr, props):

232 num_1 = Mz - props.hy*p + props.hx*q + (props.Ixx - props.Iyy)*p*q

233 num_2 = props.Ixy*(p**2 - q**2) + props.Iyz*p*r - props.Ixz*q*r

234 num = num_1 + num_2

235 denom = props.nondim_const*props.b_w*Cndr

236 dr_p1 = dr - props.Gamma*num/denom

237 return dr_p1, num

238

239 def _dB_p1(dB, Mz, p, q, r, CndB, props):

240 num_1 = Mz - props.hy*p + props.hx*q + (props.Ixx - props.Iyy)*p*q

241 num_2 = props.Ixy*(p**2 - q**2) + props.Iyz*p*r - props.Ixz*q*r

242 num = num_1 + num_2

243 denom = props.nondim_const*props.b_w*CndB

244 dB_p1 = dB - props.Gamma*num/denom

245 return dB_p1, num

246

247 def _f1(Fx, theta, phi, pqr, uvw, props):

248 [u, v, w] = uvw

249 [p, q, r] = pqr

250 return Fx - props.W*np.sin(theta) + (r*v - q*w)*props.W/props.g

251

252 def _f2(Fy, theta, phi, pqr, uvw, props):

253 [u, v, w] = uvw

254 [p, q, r] = pqr

255 return Fy + props.W*np.sin(phi)*np.cos(theta) + (p*w - r*u)*props.W/props.g

256

257 def _f3(Fz, theta, phi, pqr, uvw, props):

258 [u, v, w] = uvw

259 [p, q, r] = pqr

260 return Fz + props.W*np.cos(phi)*np.cos(theta) + (q*u - p*v)*props.W/props.g

261

262 def _f4(Mx, theta, phi, pqr, uvw, props):

263 [p, q, r] = pqr

264 C1 = Mx - props.hz*q + props.hy*r + (props.Iyy - props.Izz)*q*r

265 C2 = props.Iyz*(q**2 - r**2) + props.Ixz*p*q - props.Ixy*p*r

266 return C1 + C2

267

268 def _f5(My, theta, phi, pqr, uvw, props):

269 [p, q, r] = pqr

270 C1 = My + props.hz*p - props.hx*r + (props.Izz - props.Ixx)*p*r

271 C2 = props.Ixz*(r**2 - p**2) + props.Ixy*q*r - props.Iyz*p*q

272 return C1 + C2

273

274 def _f6(Mz, theta, phi, pqr, uvw, props):

275 [p, q, r] = pqr

276 C1 = Mz - props.hy*p + props.hx*q + (props.Ixx - props.Iyy)*p*q

277 C2 = props.Ixy*(p**2 - q**2) + props.Iyz*p*r - props.Ixz*q*r

278 return C1 + C2

360

279

280 def _recalc_forces(state, phi, gamma, coeffs, props, shss):

281 V = props.V

282 [tau, alpha, beta, da, de, dr] = state

283 u, v, w = v_comp(alpha, beta, V)

284 theta = climb_2_elev(u, v, w, phi, gamma, V)

285 if not shss:

286 p, q, r = rotation_rates(phi, theta, u, w, props)

287 pbar = p*props.b_w/(2.*V)

288 qbar = q*props.c_w/(2.*V)

289 rbar = r*props.b_w/(2.*V)

290 else:

291 p, q, r = [0., 0., 0.]

292 pbar, qbar, rbar = [0., 0., 0.]

293 FM = coeffs.aero_results(alpha, beta, pbar, qbar, rbar, da, de, dr)

294 [CL, CS, CD, Cl, Cm, Cn] = FM

295 CX = -(CD*np.cos(alpha)*np.cos(beta) + CS*np.cos(alpha)*np.sin(beta) -

296 CL*np.sin(alpha))

297 CY = CS*np.cos(beta) - CD*np.sin(beta)

298 CZ = -(CD*np.sin(alpha)*np.cos(beta) + CS*np.sin(alpha)*np.sin(beta) +

299 CL*np.cos(alpha))

300 Fx = CX*props.nondim_const + thrust(tau, V, props)

301 Fy = CY*props.nondim_const

302 Fz = CZ*props.nondim_const

303 Mx = Cl*props.nondim_const*props.b_w - Fz*props.y_shift + Fy*props.z_shift

304 My = Cm*props.nondim_const*props.c_w - Fx*props.z_shift + Fz*props.x_shift

305 Mz = Cn*props.nondim_const*props.b_w - Fy*props.x_shift + Fx*props.y_shift

306 FM = [Fx, Fy, Fz, Mx, My, Mz]

307 return FM, [u, v, w], [p, q, r], theta

308

309

310 def fpi(tau, alpha, beta, rot_rates, de, da, dr, vel_comp,

311 phi, theta, coeffs, FM, props, bire, dm_E=0., dn_E=0.):

312 V = props.V

313 [Fx, Fy, Fz, Mx, My, Mz] = FM

314 [p, q, r] = rot_rates

315 [u, v, w] = vel_comp

316 T = thrust(tau, V, props)

317 if bire:

318 dB = dr

319 CLa = coeffs._CL_alpha(0.)

320 CLde = coeffs._CL_de(0.)

321 CSb = coeffs._CS_beta(0.)

322 Clda = coeffs._Cl_da(0.)

323 Cmde = coeffs._Cm_de(0.)

324 pbar = p*props.b_w/(2.*V)

325 qbar = q*props.c_w/(2.*V)

326 rbar = r*props.b_w/(2.*V)

327 CndB = coeffs.Cn_dB(alpha, beta, pbar, qbar, rbar, da, de, 0.)

328 else:

329 CLa = coeffs.CLa

330 CSb = coeffs.CSb

331 Clda = coeffs.Clda

332 Cmde = coeffs.Cmde

333 Cndr = coeffs.Cndr

334 tau_p1, num_tau = _tau_p1(tau, Fx, theta, q, r, v, w, T, props)

361

335 beta_p1, num_beta = _beta_p1(beta, Fy, phi, theta, p, r, u, w, CSb, props)

336 alpha_p1, num_alpha = _alpha_p1(alpha, Fz, phi, theta, p, q, u, v, CLa, props)

337 da_p1, num_da = _da_p1(da, Mx, p, q, r, Clda, props)

338 if bire:

339 de_p1, num_de = _de_p1(de, My, p, q, r, Cmde, props)

340 dB_p1, num_dB = _dB_p1(dB, Mz, p, q, r, CndB, props)

341 error = np.array([num_tau, num_beta, num_alpha, num_da, num_de, num_dB])

342 return np.array([tau_p1, alpha_p1, beta_p1, da_p1, de_p1, dB_p1]), error

343 else:

344 de_p1, num_de = _de_p1(de, My, p, q, r, Cmde, props)

345 dr_p1, num_dr = _dr_p1(dr, Mz, p, q, r, Cndr, props)

346 error = np.array([num_tau, num_beta, num_alpha, num_da, num_de, num_dr])

347 return np.array([tau_p1, alpha_p1, beta_p1, da_p1, de_p1, dr_p1]), error

348

349 def jacobian(trim_state, phi, theta, gamma, coeffs, props, shss, delta=0.001):

350 [tau, alpha, beta, de, da, dr] = trim_state

351 J = np.zeros((6, 6))

352 f = [_f1, _f2, _f3, _f4, _f5, _f6]

353 for i in range(6):

354 delta_state = np.zeros(6)

355 delta_state[i] = delta

356 for j in range(6):

357 FM_p, vcomp_p, rotrates_p, theta_p = _recalc_forces([t + d for t,d in

358 zip(trim_state,

359 delta_state)],

360 phi, gamma, coeffs,

361 props, shss)

362 FM_m, vcomp_m, rotrates_m, theta_m = _recalc_forces([t - d for t,d in

363 zip(trim_state,

364 delta_state)],

365 phi, gamma, coeffs,

366 props, shss)

367 f_p = f[j](FM_p[j], theta_p, phi, rotrates_p, vcomp_p, props)

368 f_m = f[j](FM_m[j], theta_m, phi, rotrates_m, vcomp_m, props)

369 J[j, i] = (f_p - f_m)/(2.*delta)

370 return J

371

372 def compressible_correction(a0, Lambda, AR, M):

373 num = a0*np.cos(Lambda)

374 denom_1 = np.sqrt(1. - M**2*np.cos(Lambda)**2 +

375 (num/(np.pi*AR))**2)

376 denom_2 = num/(np.pi*AR)

377 denom = denom_1 + denom_2

378 return num/denom

379

380 def trim(V, H, gamma, phi, Gamma, trim_0=np.zeros(6),

381 shss=False, bire=False, cg_shift=[0., 0., 0.], verbose=True,

382 fixed_point=True, aero_dir='./', **kwargs):

383 props_fn = kwargs.get('props_filename', False)

384 model_fn = kwargs.get('model_filename', False)

385 if not props_fn:

386 props = AircraftProperties(V, H, Gamma, path=aero_dir, bire=bire)

387 else:

388 props = AircraftProperties(V, H, Gamma, path=aero_dir, bire=bire,

389 filename=props_fn)

390 trim_state = trim_0

362

391 x_shift, y_shift, z_shift = cg_shift

392 props.x_shift = x_shift

393 props.y_shift = y_shift

394 props.z_shift = z_shift

395 comp_correction = kwargs.get("compressible", False)

396 if bire:

397 [tau, alpha, beta, da, de, dB] = trim_state

398 coeffs = kwargs.get("coeffs", BIREAero(aero_dir))

399 else:

400 [tau, alpha, beta, da, de, dr] = trim_state

401 if not model_fn:

402 coeffs = kwargs.get("coeffs", F16Aero(aero_dir))

403 else:

404 coeffs = kwargs.get('coeffs', F16Aero(aero_dir, fn=model_fn))

405 p, q, r = [0., 0., 0.]

406 pbar, qbar, rbar = p, q, r

407 error = 100.

408 number_of_iterations = 0

409 while (error > 1e-9)*(number_of_iterations <= 800):

410 number_of_iterations += 1

411 u, v, w = v_comp(alpha, beta, V)

412 theta = climb_2_elev(u, v, w, phi, gamma, V)

413 if not shss:

414 p, q, r = rotation_rates(phi, theta, u, w, props)

415 pbar = p*props.b_w/(2.*V)

416 qbar = q*props.c_w/(2.*V)

417 rbar = r*props.b_w/(2.*V)

418 if bire:

419 FM = coeffs.aero_results(alpha, beta, pbar, qbar, rbar, da, de, dB)

420 props.calc_BIRE_inertia(dB)

421 else:

422 FM = coeffs.aero_results(alpha, beta, pbar, qbar, rbar, da, de, dr)

423 [CL, CS, CD, Cl, Cm, Cn] = FM

424 if comp_correction:

425 if props.M < 1.:

426 if bire:

427 CL = compressible_correction(CL, props.Lam_w, props.RA_w, props.M)

428 CS = compressible_correction(CS, props.Lam_h, props.RA_h, props.M)

429 Cl = compressible_correction(Cl, props.Lam_w, props.RA_w, props.M)

430 Cm = compressible_correction(Cm, props.Lam_w, props.RA_w, props.M)

431 Cn = compressible_correction(Cn, props.Lam_h, props.RA_h, props.M)

432 else:

433 CL = compressible_correction(CL, props.Lam_w, props.RA_w, props.M)

434 CS = compressible_correction(CS, props.Lam_v, props.RA_v, props.M)

435 Cl = compressible_correction(Cl, props.Lam_v, props.RA_v, props.M)

436 Cm = compressible_correction(Cm, props.Lam_w, props.RA_w, props.M)

437 Cn = compressible_correction(Cn, props.Lam_v, props.RA_v, props.M)

438 else:

439 CL = CL/np.sqrt(props.M**2 - 1.)

440 CS = CS/np.sqrt(props.M**2 - 1.)

441 Cl = Cl/np.sqrt(props.M**2 - 1.)

442 Cm = Cm/np.sqrt(props.M**2 - 1.)

443 Cn = Cn/np.sqrt(props.M**2 - 1.)

444 CX = -(CD*np.cos(alpha)*np.cos(beta) + CS*np.cos(alpha)*np.sin(beta) -

445 CL*np.sin(alpha))

446 CY = CS*np.cos(beta) - CD*np.sin(beta)

363

447 CZ = -(CD*np.sin(alpha)*np.cos(beta) + CS*np.sin(alpha)*np.sin(beta) +

448 CL*np.cos(alpha))

449 Fx = CX*props.nondim_const + thrust(trim_state[0], V, props)

450 Fy = CY*props.nondim_const

451 Fz = CZ*props.nondim_const

452 Mx = Cl*props.nondim_const*props.b_w - Fz*y_shift + Fy*z_shift

453 My = Cm*props.nondim_const*props.c_w - Fx*z_shift + Fz*x_shift

454 Mz = Cn*props.nondim_const*props.b_w - Fy*x_shift + Fx*y_shift

455 FM = [Fx, Fy, Fz, Mx, My, Mz]

456 if fixed_point:

457 if bire:

458 trimstate_p1, nums = fpi(tau, alpha, beta, [p, q, r], de, da, dB,

459 [u, v, w], phi, theta, coeffs, FM, props,

460 bire)

461 else:

462 trimstate_p1, nums = fpi(tau, alpha, beta, [p, q, r], de, da, dr,

463 [u, v, w], phi, theta, coeffs, FM, props,

464 bire)

465 else:

466 f = [_f1, _f2, _f3, _f4, _f5, _f6]

467 nums = np.array([f(FM[idx], theta, phi,

468 [p, q, r], [u, v, w], props) for idx, f in

469 enumerate(f)])

470 try:

471 J = jacobian(trim_state, phi, theta, gamma, coeffs, props, shss)

472 D_G = np.linalg.solve(-J, nums)

473 except np.linalg.LinAlgError:

474 J = jacobian(trim_state, phi, theta, gamma, coeffs, props, shss,

475 delta=0.1)

476 D_G = np.linalg.solve(-J, nums)

477 trimstate_p1 = trim_state + Gamma*D_G

478 error = np.max(np.abs(nums))

479 trim_state = trimstate_p1

480 if bire:

481 [tau, alpha, beta, da, de, dB] = trim_state

482 else:

483 [tau, alpha, beta, da, de, dr] = trim_state

484 T = thrust(trim_state[0], V, props)

485 n_a = ((np.cos(theta)*np.cos(phi) + (q*u - p*v)/props.g)*np.cos(alpha) +

486 (np.sin(theta) - (r*v - q*w)/props.g)*np.sin(alpha))

487 n_sa = CL/(props.W/(0.5*props.rho*V**2*props.S_w))

488 if bire:

489 while abs(dB) > np.pi:

490 if dB >= 2.*np.pi:

491 while dB >= np.pi:

492 dB -= 2.*np.pi

493 if dB > np.pi:

494 while dB > np.pi:

495 dB -= np.pi

496 de *= -1.

497 if dB <= -2.*np.pi:

498 while dB <= -np.pi:

499 dB += 2.*np.pi

500 if dB < -np.pi:

501 while dB < -np.pi:

502 dB += np.pi

364

503 de *= -1.

504 if verbose:

505 print("------ Trim Solution ------")

506 print(f"Elevation Angle (deg.) : {theta*180./np.pi:1.12g}")

507 print(f"Bank Angle (deg.) : {phi*180./np.pi:1.12g}")

508 print(f"Alpha (deg.) : {alpha*180./np.pi:1.12g}")

509 print(f"Beta (deg.) : {beta*180./np.pi:1.12g}")

510 print(f"p (deg./s) : {p*180./np.pi:1.12g}")

511 print(f"q (deg./s) : {q*180./np.pi:1.12g}")

512 print(f"r (deg./s) : {r*180./np.pi:1.12g}")

513 print(f"Aileron (deg.) : {da*180./np.pi:1.12g}")

514 print(f"Elevator (deg.) : {de*180./np.pi:1.12g}")

515 if bire:

516 print(f"BIRE Rotation (deg.) : {dB*180./np.pi:1.12g}")

517 else:

518 print(f"Rudder (deg.) : {dr*180./np.pi:1.12g}")

519 print(f"Throttle : {tau:1.12g}")

520 print(f"Thrust (lbf.) : {T:1.12f}")

521 print(f"Load Factor : {n_a:1.12f}")

522 print(f"Stability Axis Load Factor : {n_sa:1.12f}")

523 print(f"Number of Iterations : {number_of_iterations:d}")

524 solution = TrimSolution()

525 solution.FM = np.array([CD, CS, CL, Cl, Cm, Cn])

526 solution.FM_dim = np.array([Fx, Fy, Fz, Mx, My, Mz])

527 solution.load = n_a

528 solution.load_s = n_sa

529 solution.x = trim_state

530 solution.num_iters = number_of_iterations

531 solution.orient = np.array([phi, theta, 0.])

532 solution.velocity = np.array([u, v, w])

533 solution.rates = np.array([p, q, r])

534 solution.states = np.array([u, v, w, p, q, r, phi, theta])

535 solution.aero = coeffs

536 solution.error = error

537 solution.nums = nums

538 if bire:

539 solution.vehicle = "BIRE"

540 solution.inputs = np.array([tau, da, de, dB])

541 else:

542 solution.vehicle = "Baseline"

543 solution.inputs = np.array([tau, da, de, dr])

544 return solution

365

Steady, Coordinated Turn Analysis

1 import numpy as np

2 import aero_trim as trim

3 import scipy.optimize as optimize

4

5 H = 30000.

6 gamma = 0.

7 Gamma = 0.8

8 Gamma_B = 0.8

9 N = 50

10 M = np.load('./Crosswind Data/SHSS_Mach.npy')

11 V = M*a

12 n = np.linspace(1., 9., N)

13 cg_shift = [1., 0., 0.]

14

15 def find_loadfactor(phi, n, V, bire):

16 if bire:

17 try:

18 solution_bire = trim.trim(V, H, gamma, phi[0], Gamma_B, shss=False,

19 bire=bire, cg_shift=cg_shift, verbose=False,

20 fixed_point=False, compressible=True)

21 n_a = solution_bire.load

22 except np.linalg.LinAlgError:

23 solution_bire = trim.trim(V, H, gamma, phi[0], 0.1, shss=False,

24 bire=bire, cg_shift=cg_shift, verbose=False,

25 fixed_point=False, compressible=True)

26 n_a = solution_bire.load

27 return (n - n_a)**2

28 else:

29 try:

30 solution_base = trim.trim(V, H, gamma, phi[0], Gamma, shss=False,

31 bire=bire, cg_shift=cg_shift, verbose=False,

32 fixed_point=False, compressible=True)

33 n_a = solution_base.load

34 except np.linalg.LinAlgError:

35 solution_base = trim.trim(V, H, gamma, phi[0], 0.1, shss=False,

36 bire=bire, cg_shift=cg_shift, verbose=False,

37 fixed_point=False, compressible=True)

38 n_a = solution_base.load

39 return (n - n_a)**2

40

41 dr = np.zeros((N, N))

42 de = np.zeros((N, N))

43 deB = np.zeros((N, N))

44 dB = np.zeros((N, N))

45 CL_base = np.zeros((N, N))

46 CL_BIRE = np.zeros((N, N))

47 CD_base = np.zeros((N, N))

48 CD_BIRE = np.zeros((N, N))

49 Cn_base = np.zeros((N, N))

50 Cn_BIRE = np.zeros((N, N))

51 phi_base = np.zeros((N, N))

52 phi_0 = 0.1

53 for i in range(len(V)):

54 print(V[i])

366

55 CW = W/(0.5*rho*V[i]**2*S_w)

56 n_stall = CLmax/CW

57 for j in range(len(n)):

58 print(n[j])

59 if n[j] > n_stall:

60 dr[i, j] = np.nan

61 de[i, j] = np.nan

62 deB[i, j] = np.nan

63 dB[i, j] = np.nan

64 CL_base[i, j] = np.nan

65 CL_BIRE[i, j] = np.nan

66 CD_base[i, j] = np.nan

67 CD_BIRE[i, j] = np.nan

68 Cn_base[i, j] = np.nan

69 Cn_BIRE[i, j] = np.nan

70 phi_base[i, j] = np.nan

71 print('stalled')

72 else:

73 if j == 0:

74 phi_0 = np.arccos(1./n[j])

75 else:

76 phi_0 = phi_base[i, j-1]

77 phi_base[i, j] = optimize.minimize(find_loadfactor, phi_0,

78 args=(n[j], V[i], False),

79 method='Nelder-Mead',

80 options={'fatol': 1e-12}).x[0]

81 solution_base = trim.trim(V[i], H, gamma, phi_base[i, j], Gamma,

82 shss=False, bire=False, cg_shift=cg_shift,

83 verbose=False, fixed_point=False,

84 compressible=True)

85 trim_base = solution_base.x

86 CL_base[i, j] = solution_base.FM[2]

87 CD_base[i, j] = solution_base.FM[0]

88 Cn_base[i, j] = solution_base.FM[5]

89 na_base = solution_base.load

90 try:

91 solution_BIRE = trim.trim(V[i], H, gamma, phi_base[i, j], Gamma,

92 shss=False, bire=True, cg_shift=cg_shift,

93 verbose=False, fixed_point=False,

94 compressible=True)

95 trim_BIRE = solution_BIRE.x

96 CL_BIRE[i, j] = solution_BIRE.FM[2]

97 CD_BIRE[i, j] = solution_BIRE.FM[0]

98 Cn_BIRE[i, j] = solution_BIRE.FM[5]

99 na_BIRE = solution_BIRE.load

100 except np.linalg.LinAlgError:

101 trim_BIRE = [np.nan]*6

102 CL_BIRE[i, j] = np.nan

103 CD_BIRE[i, j] = np.nan

104 Cn_BIRE[i, j] = np.nan

105 na_BIRE = np.nan

106 dr[i, j] = np.rad2deg(trim_base[5])

107 de[i, j] = np.rad2deg(trim_base[4])

108 deB[i, j] = np.rad2deg(trim_BIRE[4])

109 dB[i, j] = np.rad2deg(trim_BIRE[5])

110 print(na_base - n[j], na_BIRE - n[j])

367

111 phi_0 = phi_base[i, j]

368

Steady, Coordinated Turn CG Analysis

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import aero_trim

4 from matplotlib import colors

5 from stdatmos import stdatm_english

6 import scipy.optimize as optimize

7 from bire_aero import BIREAero

8

9 H = 30000.

10 CLmax = 1.9

11 rho = stdatm_english(H)[3]

12 W = 20500.

13 S_w = 300.

14 V_stall = np.sqrt(2.*W/S_w/CLmax/rho)

15

16 aft_cg_limit = 11.32*(0.35 - 0.4)

17 x_shifts = np.linspace(1.5, aft_cg_limit)

18 deB = np.zeros(len(x_shifts))

19 de = np.zeros(len(x_shifts))

20 dB = np.zeros(len(x_shifts))

21 dr = np.zeros(len(x_shifts))

22 phi = np.zeros(len(x_shifts))

23 FM = np.zeros((len(x_shifts), 6))

24

25 gamma = 0.

26 Gamma = 0.1

27 Gamma_B = 0.1

28 case = BIREAero()

29 n_target = 5.

30

31 def find_target_g(phi, x_shift):

32 solution = aero_trim.trim(V_stall, H, gamma, phi[0], Gamma, shss=False,

33 cg_shift=[x_shift, 0., 0.], verbose=False,

34 fixed_point=True)

35 n_a = solution.load

36 return abs(n_a - n_target)**2

37

38 trim_0 = np.zeros(6)

39 phi_0 = 0.

40 for i in range(len(x_shifts)):

41 res = optimize.minimize(find_target_g, 0., args=(x_shifts[i]),

42 method='Nelder-Mead',

43 options={'gtol': 1e-6, 'return_all': True})

44 phi[i] = res.x[0]

45 try:

46 solution_base = aero_trim.trim(V_stall, H, gamma, phi[i], Gamma, shss=False,

47 cg_shift=[x_shifts[i], 0., 0.], verbose=False)

48 state_na = solution_base.x

49 except TypeError:

50 state_na = np.array([np.nan]*6)

51 de[i] = state_na[4]*180./np.pi

52 dr[i] = state_na[5]*180./np.pi

53

54 solution_bire = aero_trim.trim(V_stall, H, gamma, phi[i], Gamma, shss=False,

369

55 cg_shift=[x_shifts[i], 0., 0.], verbose=False,

56 bire=True, fixed_point=False,

57 trim_0=trim_0)

58 state_na_bire = solution_bire.x

59 deB[i] = state_na_bire[4]*180./np.pi

60 dB[i] = state_na_bire[5]*180./np.pi

61 trim_0 = state_na_bire

62 print(dB[i])

63 phi_0 = phi[i]

370

Steady-Heading Sideslip Analysis

1 import numpy as np

2 import aero_trim

3

4 Gamma = 0.8

5 Gamma_B = 0.5

6 H = 1000.

7 N = 50

8 phi = np.linspace(0., 45., N)

9 M = np.linspace(0.2, 0.8, N)

10 V = M*a

11 gamma = np.deg2rad(0.)

12 cg_shift = [0., 0., 0.]

13

14 rudder_deg = np.zeros((len(V), len(phi)))

15 V_cross = np.zeros((len(V), len(phi)))

16 elevator_deg = np.zeros((len(V), len(phi)))

17 trim_state = np.zeros(6)

18 CL_base = np.zeros((len(V), len(phi)))

19 CD_base = np.zeros_like(CL_base)

20 Cn_base = np.zeros_like(CL_base)

21 phi_deg = np.zeros((len(V), len(phi)))

22 theta_deg = np.zeros((len(V), len(phi)))

23 BIRE_rotation_deg = np.zeros((len(V), len(phi)))

24 BIRE_V_cross = np.zeros((len(V), len(phi)))

25 BIRE_elevator_deg = np.zeros((len(V), len(phi)))

26 BIRE_phi_deg = np.zeros((len(V), len(phi)))

27 BIRE_theta_deg = np.zeros((len(V), len(phi)))

28 CL_BIRE = np.zeros((len(V), len(phi)))

29 CD_BIRE = np.zeros((len(V), len(phi)))

30 Cn_BIRE = np.zeros_like(CL_BIRE)

31 trim_state_bire = np.zeros(6)

32 for i in range(len(V)):

33 trim_0 = np.zeros(6)

34 trim_state_bire = np.zeros(6)

35 trim_state = np.zeros(6)

36 for j in range(len(phi)):

37 if trim_state[5]*180./np.pi > 35.:

38 rudder_deg[i, j] = np.nan

39 elevator_deg[i, j] = np.nan

40 phi_deg[i, j] = np.nan

41 theta_deg[i, j] = np.nan

42 V_cross[i, j] = np.nan

43 BIRE_rotation_deg[i, j] = np.nan

44 BIRE_elevator_deg[i, j] = np.nan

45 BIRE_phi_deg[i, j] = np.nan

46 BIRE_theta_deg[i, j] = np.nan

47 BIRE_V_cross[i, j] = np.nan

48 else:

49 try:

50 solution_base = aero_trim.trim(V[i], H, gamma, np.deg2rad(phi[j]),

51 Gamma, shss=True, cg_shift=cg_shift,

52 verbose=True)

53 trim_state = solution_base.x

54 CL_base[i, j] = solution_base.FM[2]

371

55 CD_base[i, j] = solution_base.FM[0]

56 Cn_base[i, j] = solution_base.FM[5]

57 phi_ij = solution_base.orient[0]

58 theta_ij = solution_base.orient[1]

59 [u, v, w] = solution_base.velocity

60 rudder_deg[i, j] = trim_state[5]*180./np.pi

61 elevator_deg[i, j] = trim_state[4]*180./np.pi

62 phi_deg[i, j] = phi_ij*180./np.pi

63 theta_deg[i, j] = theta_ij*180./np.pi

64 c_a = np.cos(trim_state[1])

65 s_a = np.sin(trim_state[1])

66 c_b = np.cos(trim_state[2])

67 s_b = np.sin(trim_state[2])

68 V_cross[i, j] = -c_a*s_b*u + c_b*v - s_a*s_b*w

69 except TypeError:

70 trim_state = np.array([np.nan]*6)

71 CL_base[i, j] = np.nan

72 CD_base[i, j] = np.nan

73 Cn_base[i, j] = np.nan

74 phi_deg[i, j] = np.nan

75 theta_deg[i, j] = np.nan

76 V_cross[i, j] = np.nan

77 try:

78 solution_bire = aero_trim.trim(V[i], H, gamma, np.deg2rad(phi[j]),

79 Gamma_B, shss=True, cg_shift=cg_shift,

80 verbose=True, bire=True,

81 fixed_point=False, trim_0=trim_0)

82 trim_state_bire = solution_bire.x

83 CL_BIRE[i, j] = solution_bire.FM[2]

84 CD_BIRE[i, j] = solution_bire.FM[0]

85 Cn_BIRE[i, j] = solution_bire.FM[5]

86 phi_ij = solution_bire.orient[0]

87 theta_ij = solution_bire.orient[1]

88 [u, v, w] = solution_bire.velocity

89 BIRE_rotation_deg[i, j] = trim_state_bire[5]*180./np.pi

90 BIRE_elevator_deg[i, j] = trim_state_bire[4]*180./np.pi

91 BIRE_phi_deg[i, j] = phi_ij*180./np.pi

92 BIRE_theta_deg[i, j] = theta_ij*180./np.pi

93 c_a = np.cos(trim_state_bire[1])

94 s_a = np.sin(trim_state_bire[1])

95 c_b = np.cos(trim_state_bire[2])

96 s_b = np.sin(trim_state_bire[2])

97 BIRE_V_cross[i, j] = -c_a*s_b*u + c_b*v - s_a*s_b*w

98 trim_0 = trim_state_bire

99 except TypeError:

100 trim_state_bire = np.array([np.nan]*6)

101 CL_BIRE[i, j] = np.nan

102 phi_deg[i, j] = np.nan

103 theta_deg[i, j] = np.nan

104 BIRE_V_cross[i, j] = np.nan

372

Steady-Heading Sideslip CG Analysis

1 import numpy as np

2 import aero_trim

3

4 Gamma = 0.8

5 Gamma_B = 0.5

6 H = 1000.

7 N = 50

8 phi = np.linspace(0., 45., N)

9 M = np.linspace(0.2, 0.8, N)

10 V = M*a

11 gamma = np.deg2rad(0.)

12 cg_shift = [0., 0., 0.]

13

14 rudder_deg = np.zeros((len(V), len(phi)))

15 V_cross = np.zeros((len(V), len(phi)))

16 elevator_deg = np.zeros((len(V), len(phi)))

17 trim_state = np.zeros(6)

18 CL_base = np.zeros((len(V), len(phi)))

19 CD_base = np.zeros_like(CL_base)

20 Cn_base = np.zeros_like(CL_base)

21 phi_deg = np.zeros((len(V), len(phi)))

22 theta_deg = np.zeros((len(V), len(phi)))

23 BIRE_rotation_deg = np.zeros((len(V), len(phi)))

24 BIRE_V_cross = np.zeros((len(V), len(phi)))

25 BIRE_elevator_deg = np.zeros((len(V), len(phi)))

26 BIRE_phi_deg = np.zeros((len(V), len(phi)))

27 BIRE_theta_deg = np.zeros((len(V), len(phi)))

28 CL_BIRE = np.zeros((len(V), len(phi)))

29 CD_BIRE = np.zeros((len(V), len(phi)))

30 Cn_BIRE = np.zeros_like(CL_BIRE)

31 trim_state_bire = np.zeros(6)

32 for i in range(len(V)):

33 trim_0 = np.zeros(6)

34 trim_state_bire = np.zeros(6)

35 trim_state = np.zeros(6)

36 for j in range(len(phi)):

37 if trim_state[5]*180./np.pi > 35.:

38 rudder_deg[i, j] = np.nan

39 elevator_deg[i, j] = np.nan

40 phi_deg[i, j] = np.nan

41 theta_deg[i, j] = np.nan

42 V_cross[i, j] = np.nan

43 BIRE_rotation_deg[i, j] = np.nan

44 BIRE_elevator_deg[i, j] = np.nan

45 BIRE_phi_deg[i, j] = np.nan

46 BIRE_theta_deg[i, j] = np.nan

47 BIRE_V_cross[i, j] = np.nan

48 else:

49 try:

50 solution_base = aero_trim.trim(V[i], H, gamma, np.deg2rad(phi[j]),

51 Gamma, shss=True, cg_shift=cg_shift,

52 verbose=True)

53 trim_state = solution_base.x

54 CL_base[i, j] = solution_base.FM[2]

373

55 CD_base[i, j] = solution_base.FM[0]

56 Cn_base[i, j] = solution_base.FM[5]

57 phi_ij = solution_base.orient[0]

58 theta_ij = solution_base.orient[1]

59 [u, v, w] = solution_base.velocity

60 rudder_deg[i, j] = trim_state[5]*180./np.pi

61 elevator_deg[i, j] = trim_state[4]*180./np.pi

62 phi_deg[i, j] = phi_ij*180./np.pi

63 theta_deg[i, j] = theta_ij*180./np.pi

64 c_a = np.cos(trim_state[1])

65 s_a = np.sin(trim_state[1])

66 c_b = np.cos(trim_state[2])

67 s_b = np.sin(trim_state[2])

68 V_cross[i, j] = -c_a*s_b*u + c_b*v - s_a*s_b*w

69 except TypeError:

70 trim_state = np.array([np.nan]*6)

71 CL_base[i, j] = np.nan

72 CD_base[i, j] = np.nan

73 Cn_base[i, j] = np.nan

74 phi_deg[i, j] = np.nan

75 theta_deg[i, j] = np.nan

76 V_cross[i, j] = np.nan

77 try:

78 solution_bire = aero_trim.trim(V[i], H, gamma, np.deg2rad(phi[j]),

79 Gamma_B, shss=True, cg_shift=cg_shift,

80 verbose=True, bire=True,

81 fixed_point=False, trim_0=trim_0)

82 trim_state_bire = solution_bire.x

83 CL_BIRE[i, j] = solution_bire.FM[2]

84 CD_BIRE[i, j] = solution_bire.FM[0]

85 Cn_BIRE[i, j] = solution_bire.FM[5]

86 phi_ij = solution_bire.orient[0]

87 theta_ij = solution_bire.orient[1]

88 [u, v, w] = solution_bire.velocity

89 BIRE_rotation_deg[i, j] = trim_state_bire[5]*180./np.pi

90 BIRE_elevator_deg[i, j] = trim_state_bire[4]*180./np.pi

91 BIRE_phi_deg[i, j] = phi_ij*180./np.pi

92 BIRE_theta_deg[i, j] = theta_ij*180./np.pi

93 c_a = np.cos(trim_state_bire[1])

94 s_a = np.sin(trim_state_bire[1])

95 c_b = np.cos(trim_state_bire[2])

96 s_b = np.sin(trim_state_bire[2])

97 BIRE_V_cross[i, j] = -c_a*s_b*u + c_b*v - s_a*s_b*w

98 trim_0 = trim_state_bire

99 except TypeError:

100 trim_state_bire = np.array([np.nan]*6)

101 CL_BIRE[i, j] = np.nan

102 phi_deg[i, j] = np.nan

103 theta_deg[i, j] = np.nan

104 BIRE_V_cross[i, j] = np.nan

374

Tail Strike Analysis

1 import numpy as np

2 import aero_trim

3 from stdatmos import stdatm_english

4 import scipy.optimize as optimize

5

6 H = 15000.

7 M = np.load('./Crosswind Data/SHSS_Mach.npy')

8 a = stdatm_english(H)[-1]

9 V = M*a

10 phi = np.load('./Crosswind Data/SHSS_Bank_Angle.npy')

11 CLmax = 1.9

12 gamma = 0.

13 cg_shift = [1., 0., 0.]

14 BIRE_rotation_deg = np.load(f"./Crosswind Data/SHSS_BIRE_rotation{int(H):2d}" +

15 f"CG{int(cg_shift[0] - 1):2d}.npy")

16 BIRE_elevator_deg = np.load(f"./Crosswind Data/SHSS_BIRE_elevator{int(H):2d}" +

17 f"CG{int(cg_shift[0] - 1):2d}.npy")

18 phi_rad = np.load(f"./Crosswind Data/Tail_Strike_BIRE_phi{int(H):2d}" +

19 f"CG{int(cg_shift[0] - 1):2d}.npy")*np.pi/180.

20 theta = np.load(f"./Crosswind Data/Tail_Strike_BIRE_theta{int(H):2d}" +

21 f"CG{int(cg_shift[0] - 1):2d}.npy")*np.pi/180.

22 base_elevator_deg = np.load(f"./Crosswind Data/SHSS_base_elevator{int(H):2d}" +

23 f"CG{int(cg_shift[0] - 1):2d}.npy")

24 base_phi_rad = np.load(f"./Crosswind Data/SHSS_base_phi{int(H):2d}" +

25 f"CG{int(cg_shift[0] - 1):2d}.npy")*np.pi/180.

26 base_theta = np.load(f"./Crosswind Data/SHSS_base_theta{int(H):2d}" +

27 f"CG{int(cg_shift[0] - 1):2d}.npy")*np.pi/180.

28 rudder_deg = np.load(f"./Crosswind Data/SHSS_base_rudder{int(H):2d}" +

29 f"CG{int(cg_shift[0] - 1):2d}.npy")

30 CL_base = np.load(f"./Crosswind Data/SHSS_base_CL{int(H):2d}" +

31 f"CG{int(cg_shift[0] - 1):2d}.npy")

32 V_cross = np.load(f"./Crosswind Data/SHSS_base_Vcross{int(H):2d}" +

33 f"CG{int(cg_shift[0] - 1):2d}.npy")

34 BIRE_V_cross = np.load(f"./Crosswind Data/Tail_Strike_BIRE_Vcross{int(H):2d}" +

35 f"CG{int(cg_shift[0] - 1):2d}.npy")

36 z_LG_E_base = np.zeros_like(rudder_deg)

37 z_LG_TEL_base = np.zeros_like(rudder_deg)

38 z_LG_TER_base = np.zeros_like(rudder_deg)

39 z_LG_E_bire = np.zeros_like(rudder_deg)

40 z_LG_TEL_bire = np.zeros_like(rudder_deg)

41 z_LG_TER_bire = np.zeros_like(rudder_deg)

42

43 h_intake = 2.906 # From Nguyen Drawing Scaled from Centerline

44 h_landing = h_intake*2. # From centerline to ground is ~ two intakes

45 b_h = 9.2

46 c_rh = 7.9833 # stab root chord

47 s_fh = 3.4 # semispan of fuselage portion of h-stab

48 l_h = 13.13 + c_rh*3./4. # from CG to TE of h-stab

49 G_h = -10.*np.pi/180. # Anhedral of baseline tail

50 z_LG = 5.812

51 y_LG = 1.557

52 x_LG = -0.3063

53 x_E = -18.71

54 y_E = 0.

375

55 z_E = 1.679

56 x_TE = -l_h

57 y_TE = b_h # based on BIRE

58 z_TE = 0. # based on BIRE

59 x_SP = -l_h + 0.6*c_rh

60 y_SP = s_fh

61 z_SP = 0.

62 p_LG = np.array([-x_LG, y_LG, -z_LG]) # LG to CG

63 p_E = np.array([x_E, y_E, z_E]) # CG to engine

64 # Base

65 base_P_L = np.array([x_SP, -y_SP, z_SP]) # CG to left stab pivot

66 base_P_R = np.array([x_SP, y_SP, z_SP]) # CG to right stab pivot

67 base_TE_L = np.array([-0.6*c_rh,

68 -(y_TE - y_SP)*np.cos(G_h),

69 z_TE - b_h*np.sin(G_h)]) # left stab pivot to left TE

70 base_TE_R = np.array([-0.6*c_rh,

71 (y_TE - y_SP)*np.cos(G_h),

72 z_TE - b_h*np.sin(G_h)]) # right stab pivot to right TE

73 # BIRE

74 bire_EMP = np.array([x_SP, 0., z_SP]) # CG to center of empennage rotation

75 bire_E_P_R = np.array([0., y_SP, 0.]) # center of empennage to right stab pivot

76 bire_E_P_L = np.array([0., -y_SP, 0.]) # center of empennage to left stab pivot

77 bire_P_TE_R = np.array([-0.6*c_rh, (y_TE - y_SP), z_TE]) # right pivot to tip corner

78 bire_P_TE_L = np.array([-0.6*c_rh, -(y_TE - y_SP), z_TE]) # left pivot to tip corner

79

80 for i in range(len(V)):

81 for j in range(len(phi)):

82 dB = BIRE_rotation_deg[i, j]*np.pi/180.

83 de_BIRE = BIRE_elevator_deg[i, j]*np.pi/180.

84 de_base = base_elevator_deg[i, j]*np.pi/180.

85 R_theta = np.array([[np.cos(theta[i, j]), 0., np.sin(theta[i, j])],

86 [0., 1., 0.],

87 [-np.sin(theta[i, j]), 0., np.cos(theta[i, j])]])

88 R_phi = np.array([[1., 0., 0.],

89 [0., np.cos(phi_rad[i, j]), -np.sin(phi_rad[i, j])],

90 [0., np.sin(phi_rad[i, j]), np.cos(phi_rad[i, j])]])

91 R_dB = np.array([[1., 0., 0.],

92 [0., np.cos(dB), -np.sin(dB)],

93 [0., np.sin(dB), np.cos(dB)]])

94 R_de = np.array([[np.cos(de_BIRE), 0., np.sin(de_BIRE)],

95 [0., 1., 0.],

96 [-np.sin(de_BIRE), 0., np.cos(de_BIRE)]])

97 P_LG_E = np.matmul(R_theta, np.matmul(R_phi, p_LG + p_E))

98 P_LG_EMP = np.matmul(R_theta, np.matmul(R_phi, p_LG + bire_EMP))

99 P_LG_PL = P_LG_EMP + np.matmul(R_dB, bire_E_P_L)

100 P_LG_PR = P_LG_EMP + np.matmul(R_dB, bire_E_P_R)

101 P_LG_TEL = np.matmul(R_de, P_LG_PL + bire_P_TE_L)

102 P_LG_TER = np.matmul(R_de, P_LG_PR + bire_P_TE_R)

103 z_LG_E_bire[i, j] = P_LG_E[2]

104 z_LG_TEL_bire[i, j] = P_LG_TEL[2]

105 z_LG_TER_bire[i, j] = P_LG_TER[2]

106

107

108 R_phi = np.array([[1., 0., 0.],

109 [0., np.cos(base_phi_rad[i, j]),

110 -np.sin(base_phi_rad[i, j])],

376

111 [0., np.sin(base_phi_rad[i, j]),

112 np.cos(base_phi_rad[i, j])]])

113 R_theta = np.array([[np.cos(base_theta[i, j]), 0., np.sin(base_theta[i, j])],

114 [0., 1., 0.],

115 [-np.sin(base_theta[i, j]), 0.,

116 np.cos(base_theta[i, j])]])

117 R_de = np.array([[np.cos(de_base), 0., np.sin(de_base)],

118 [0., 1., 0.],

119 [-np.sin(de_base), 0., np.cos(de_base)]])

120 P_LG_E = np.matmul(R_theta, np.matmul(R_phi, p_LG + p_E))

121 P_LG_PL = p_LG + base_P_L

122 P_LG_TEL = np.matmul(R_de, P_LG_PL) + base_TE_L

123 P_LG_PR = p_LG + base_P_R

124 P_LG_TER = np.matmul(R_de, P_LG_PR) + base_TE_R

125 z_LG_E_base[i, j] = P_LG_E[2]

126 z_LG_TEL_base[i, j] = P_LG_TEL[2]

127 z_LG_TER_base[i, j] = P_LG_TER[2]

377

C.5 Attainable Moment Set Analysis

Moment Set Generation

1 import aero_trim as trim

2 import numpy as np

3 import machupX as mx

4 import matplotlib.pyplot as plt

5 import matplotlib as mpl

6 from stdatmos import stdatm_english

7 import json

8 from bire_aero import BIREAero

9 from f16_aero import F16Aero

10 import alphashape

11 from descartes import PolygonPatch

12 import scipy.optimize as optimize

13 from scipy.interpolate import RegularGridInterpolator

14

15 mpl.rcParams['axes.linewidth'] = 1.75 #set the value globally

16 mpl.rcParams["font.family"] = "serif"

17 plt.rc('font', weight='bold')

18

19 major_dict = {"width" : 1.25, "size" : 7., "labelsize" : 16.,

20 "direction" : 'in', "which" : 'major'}

21 minor_dict = {"width" : 1.25, "size" : 4.,

22 "direction" : 'in', "which" : 'minor'}

23

24 forces_options = {'body_frame': True,

25 'stab_frame': False,

26 'wind_frame': True,

27 'dimensional': False,

28 'verbose': False}

29

30 def pretty_plot(ax, xlims, ylims, dx, dy):

31 ax.set_xlim(xlims)

32 ax.set_ylim(ylims)

33 ax.xaxis.set_major_locator(MultipleLocator(dx["major"]))

34 ax.xaxis.set_minor_locator(MultipleLocator(dx["minor"]))

35 ax.yaxis.set_major_locator(MultipleLocator(dy["major"]))

36 ax.yaxis.set_minor_locator(MultipleLocator(dy["minor"]))

37 ax.xaxis.set_ticks_position('both')

38 ax.yaxis.set_ticks_position('both')

39 ax.tick_params(**major_dict)

40 ax.tick_params(**minor_dict)

41 return ax

42

43 def find_moment(deltas, C_moment, function):

44 try:

45 est_moment = function(deltas)[0]

46 except ValueError:

47 est_moment = 100.

48 return (est_moment - C_moment)**2

49

50

378

51 def generate_AMS_data(H, M, generate_trim=True, generate_data=True, plot=True):

52 a = stdatm_english(H)[-1]

53 V = M*a

54 gamma = 0.

55 phi = 0.

56 Gamma = 0.5

57 if generate_trim:

58 solution_base = trim.trim(V, H, gamma, phi, Gamma, bire=False,

59 shss=False, fixed_point=False)

60 solution_bire = trim.trim(V, H, gamma, phi, Gamma, bire=True,

61 shss=False, fixed_point=False)

62 np.save(f'./AMS/Trim States/base_{int(H):2d}_M{M:.1f}.npy', solution_base.x)

63 np.save(f'./AMS/Trim States/BIRE_{int(H):2d}_M{M:.1f}.npy', solution_bire.x)

64 else:

65 solution_base = np.load(f'./AMS/Trim States/base_{int(H):2d}_M{M:.1f}.npy')

66 solution_bire = np.load(f'./AMS/Trim States/BIRE_{int(H):2d}_M{M:.1f}.npy')

67 [alpha_base, beta_base] = solution_base[1:3]

68 da_base = solution_base[3]

69 [alpha_bire, beta_bire] = solution_bire[1:3]

70 da_bire = solution_bire[3]

71 pbar = 0.

72 qbar = 0.

73 rbar = 0.

74

75 N = 11

76 da_range = np.deg2rad(np.linspace(-21.5, 21.5, N))

77 de_range = np.deg2rad(np.linspace(-25., 25., N))

78 dr_range = np.deg2rad(np.linspace(-30., 30., N))

79 dB_range = np.deg2rad(np.linspace(-90., 90., N))

80 moments_base = np.zeros((N, N, N, 3))

81 moments_bire = np.zeros((N, N, N, 3))

82 base_aero = F16Aero()

83 bire_aero = BIREAero()

84 if generate_data:

85 for i in range(N):

86 for j in range(N):

87 for k in range(N):

88 moments_base[i, j, k, :] = base_aero.aero_results(alpha_base,

89 beta_base,

90 pbar, qbar,

91 rbar,

92 da_range[i],

93 de_range[j],

94 dr_range[k])[-3:]

95 moments_bire[i, j, k, :] = bire_aero.aero_results(alpha_bire,

96 beta_bire,

97 pbar, qbar,

98 rbar,

99 da_range[i],

100 de_range[j],

101 dB_range[k])[-3:]

102 np.save(f'./AMS/Data/base_{int(H):2d}_M{M:.1f}.npy', moments_base)

103 np.save(f'./AMS/Data/bire_{int(H):2d}_M{M:.1f}.npy', moments_bire)

104 else:

105 moments_base = np.load(f'./AMS/Data/base_{int(H):2d}_M{M:.1f}.npy')

106 moments_bire = np.load(f'./AMS/Data/bire_{int(H):2d}_M{M:.1f}.npy')

379

107

108 Cl_base = moments_base[:, :, :, 0]

109 Cm_base = moments_base[:, :, :, 1]

110 Cn_base = moments_base[:, :, :, 2]

111 Cl_bire = moments_bire[:, :, :, 0]

112 Cm_bire = moments_bire[:, :, :, 1]

113 Cn_bire = moments_bire[:, :, :, 2]

114

115 if plot:

116 f_Clbase = RegularGridInterpolator((da_range, de_range, dr_range), Cl_base)

117 f_Cmbase = RegularGridInterpolator((da_range, de_range, dr_range), Cm_base)

118 f_Cnbase = RegularGridInterpolator((da_range, de_range, dr_range), Cn_base)

119 f_Clbire = RegularGridInterpolator((da_range, de_range, dB_range), Cl_bire)

120 f_Cmbire = RegularGridInterpolator((da_range, de_range, dB_range), Cm_bire)

121 f_Cnbire = RegularGridInterpolator((da_range, de_range, dB_range), Cn_bire)

122

123 fig_3d = plt.figure()

124 ax_3d = fig_3d.add_subplot(projection='3d')

125 ax_3d.scatter(Cl_base, Cm_base, Cn_base)

126 ax_3d.scatter(Cl_bire, Cm_bire, Cn_bire)

127

128 fig_ClCn, ax_ClCn = plt.subplots()

129 linestyles = ['-', '--', ':', '-.', (5, (10, 3))]

130 markers = ['o', '^', 'd', 's', '>']

131 alphas = [3.5, 10., 2., 10., 3.5]

132 Cm_legend = []

133 dummy_lines = []

134 for i in range(N//2):

135 Cm_legend.append('$C_m = $' + f'{Cm_base[0, 2*i + 1, 0]:1.3f}')

136 ClCn_tuple = [(Cl, Cn) for Cl, Cn in

137 zip(Cl_base[:, 2*i + 1, :].flatten(),

138 Cn_base[:, 2*i + 1, :].flatten())]

139 alpha_Cm = alphashape.alphashape(ClCn_tuple, 1.5)

140 ax_ClCn.add_patch(PolygonPatch(alpha_Cm, fc='None',

141 ec='k', ls=linestyles[i]))

142 bire_eq = optimize.minimize(find_moment, [0., 0., 0.],

143 args=(Cm_base[0, 2*i + 1, 0],

144 f_Cmbire)).x

145 print(Cm_base[0, 2*i + 1, 0] - f_Cmbire(bire_eq))

146 Cl_pts = np.array([[f_Clbire([a, bire_eq[1], b])[0] for a in

147 da_range] for b in dB_range]).flatten()

148 Cn_pts = np.array([[f_Cnbire([a, bire_eq[1], b])[0] for a in

149 da_range] for b in dB_range]).flatten()

150 ClCn_tuple = [(Cl, Cn) for Cl, Cn in zip(Cl_pts, Cn_pts)]

151 alpha_Cm = alphashape.alphashape(ClCn_tuple, alphas[i])

152 ax_ClCn.add_patch(PolygonPatch(alpha_Cm, fc='None',

153 ec='0.5', ls=linestyles[i]))

154 dummy_lines.append(ax_ClCn.plot([], [], c='k', ls=linestyles[i])[0])

155 fig_ClCn.legend([dummy_lines[i] for i in range(N//2)],

156 Cm_legend, loc='upper right', fontsize=16)

157 ax_ClCn.set_xlabel(r'\textbf{Rolling Moment Coefficient, }\boldmathC_ℓ',

158 fontsize=16)

159 ax_ClCn.set_ylabel(r'\textbf{Yawing Moment Coefficient, }\boldmathC_n',

160 fontsize=16)

161 xlims = (-0.06, 0.06)

162 dx = {'major': 0.05, 'minor': 0.05/4}

380

163 ylims = (-0.175, 0.175)

164 dy = {'major': 0.05, 'minor': 0.05/4}

165 ax_ClCn = pretty_plot(ax_ClCn, xlims, ylims, dx, dy)

166 ax_ClCn.grid()

167 ax_ClCn.set_aspect('equal')

168 plt.tight_layout()

169 plt.savefig(f'./AMS/Cl_Cn_{int(H):2d}_M{M:.1f}.pdf', dpi=1000)

170

171 fig_ClCm, ax_ClCm = plt.subplots()

172 alphas = [2.]*5

173 Cn_legend = []

174 dummy_lines = []

175 for i in range(N//2):

176 Cn_legend.append('$C_n = $' + f'{Cn_base[0, 0, 2*i + 1]:1.3f}')

177 ClCm_tuple = [(Cm, Cl) for Cl, Cm in

178 zip(Cl_base[:, :, 2*i + 1].flatten(),

179 Cm_base[:, :, 2*i + 1].flatten())]

180 alpha_Cn = alphashape.alphashape(ClCm_tuple, 1.5)

181 ax_ClCm.add_patch(PolygonPatch(alpha_Cn, fc='None',

182 ec='k', ls=linestyles[i]))

183 bire_eq = optimize.minimize(find_moment, [0., 0., 0.],

184 args=(Cn_base[0, 0, 2*i + 1], f_Cnbire),

185 method='Nelder-Mead').x

186 print(Cn_base[0, 0, 2*i + 1] - f_Cnbire(bire_eq))

187 Cl_pts = np.array([[f_Clbire([a, b, bire_eq[2]])[0] for a in

188 da_range] for b in de_range]).flatten()

189 Cm_pts = np.array([[f_Cmbire([a, b, bire_eq[2]])[0] for a in

190 da_range] for b in de_range]).flatten()

191 ClCm_tuple = [(Cm, Cl) for Cl, Cm in zip(Cl_pts, Cm_pts)]

192 alpha_Cn = alphashape.alphashape(ClCm_tuple, alphas[i])

193 ax_ClCm.add_patch(PolygonPatch(alpha_Cn, fc='None',

194 ec='0.5', ls=linestyles[i]))

195 dummy_lines.append(ax_ClCm.plot([], [], c='k',

196 ls=linestyles[i])[0])

197 fig_ClCm.legend([dummy_lines[i] for i in range(N//2)],

198 Cn_legend, loc='upper right', fontsize=16)

199 ax_ClCm.set_ylabel(r'\textbf{Rolling Moment Coefficient, }\boldmathC_ℓ',

200 fontsize=16)

201 ax_ClCm.set_xlabel(r'\textbf{Pitching Moment Coefficient, }\boldmathC_m',

202 fontsize=16)

203 ylims = (-0.06, 0.06)

204 dy = {'major': 0.04, 'minor': 0.04/4}

205 xlims = (-0.5, 0.5)

206 dx = {'major': 0.2, 'minor': 0.2/4}

207 ax_ClCm = pretty_plot(ax_ClCm, xlims, ylims, dx, dy)

208 ax_ClCm.grid()

209 ax_ClCm.set_aspect('equal')

210 plt.tight_layout()

211 plt.savefig(f'./AMS/Cl_Cm_{int(H):2d}_M{M:.1f}.pdf', dpi=1000)

212

213 fig_CmCn, ax_CmCn = plt.subplots()

214 alphas = [2.]*5

215 Cl_legend = []

216 dummy_lines = []

217 for i in range(N//2):

218 Cl_legend.append('$C_\ell = $' + f'{Cl_base[2*i + 1, 0, 0]:1.3f}')

381

219 CmCn_tuple = [(Cm, Cn) for Cm, Cn in

220 zip(Cm_base[2*i + 1, :, :].flatten(),

221 Cn_base[2*i + 1, :, :].flatten())]

222 alpha_Cl = alphashape.alphashape(CmCn_tuple, 1.5)

223 ax_CmCn.add_patch(PolygonPatch(alpha_Cl, fc='None',

224 ec='k', ls=linestyles[i]))

225 bire_eq = optimize.minimize(find_moment, [0., 0., 0.],

226 args=(Cl_base[2*i + 1, 0, 0],

227 f_Clbire)).x

228 print(Cl_base[2*i + 1, 0, 0] - f_Clbire(bire_eq))

229 Cm_pts = np.array([[f_Cmbire([bire_eq[2], a, b])[0] for a in

230 de_range] for b in dB_range]).flatten()

231 Cn_pts = np.array([[f_Cnbire([bire_eq[2], a, b])[0] for a in

232 de_range] for b in dB_range]).flatten()

233 CmCn_tuple = [(Cm, Cn) for Cm, Cn in zip(Cm_pts, Cn_pts)]

234 alpha_Cl = alphashape.alphashape(CmCn_tuple, alphas[i])

235 ax_CmCn.add_patch(PolygonPatch(alpha_Cl, fc='None',

236 ec='0.5', ls=linestyles[i]))

237 dummy_lines.append(ax_CmCn.plot([], [], c='k', ls=linestyles[i])[0])

238 fig_CmCn.legend([dummy_lines[i] for i in range(N//2)],

239 Cl_legend, loc='upper right', fontsize=16)

240 ax_CmCn.set_ylabel(r'\textbf{Pitching Moment Coefficient, }\boldmathC_m',

241 fontsize=16)

242 ax_CmCn.set_xlabel(r'\textbf{Yawing Moment Coefficient, }\boldmathC_n',

243 fontsize=16)

244 ylims = (-0.175, 0.175)

245 dy = {'major': 0.05, 'minor': 0.05/4}

246 xlims = (-0.5, 0.5)

247 dx = {'major': 0.2, 'minor': 0.2/4}

248 ax_CmCn = pretty_plot(ax_CmCn, xlims, ylims, dx, dy)

249 ax_CmCn.grid()

250 ax_CmCn.set_aspect('equal')

251 plt.tight_layout()

252 plt.savefig(f'./AMS/Cm_Cn_{int(H):2d}_M{M:.1f}.pdf', dpi=1000)

253 else:

254 max_Clbase = np.max(Cl_base)

255 max_Cmbase = np.max(Cm_base)

256 max_Cnbase = np.max(Cn_base)

257 max_Clbire = np.max(Cl_bire)

258 max_Cmbire = np.max(Cm_bire)

259 max_Cnbire = np.max(Cn_bire)

260 min_Clbase = np.min(Cl_base)

261 min_Cmbase = np.min(Cm_base)

262 min_Cnbase = np.min(Cn_base)

263 min_Clbire = np.min(Cl_bire)

264 min_Cmbire = np.min(Cm_bire)

265 min_Cnbire = np.min(Cn_bire)

266 max_moments = [max_Clbase, max_Cmbase, max_Cnbase,

267 max_Clbire, max_Cmbire, max_Cnbire]

268 min_moments = [min_Clbase, min_Cmbase, min_Cnbase,

269 min_Clbire, min_Cmbire, min_Cnbire]

270 return max_moments, min_moments

271

272 if __name__ == "__main__":

273 plt.close('all')

274 H = 30000.

382

275 M = 0.8

276 generate_trim = False

277 generate_data = False

278 # generate_AMS_data(H, M, generate_trim=generate_trim,

279 generate_data=generate_data)

280

281 cases = [(1000., 0.2), (1000., 0.8), (15000., 0.2),

282 (15000., 0.6), (30000., 0.8)]

283 max_moments = np.zeros((len(cases), 6))

284 min_moments = np.zeros((len(cases), 6))

285 for i in range(len(cases)):

286 max_moments[i, :], min_moments[i, :] = generate_AMS_data(cases[i][0],

287 cases[i][1],

288 generate_trim,

289 generate_data,

290 False)

291 np.save('./AMS/Data/max_moments.npy', max_moments)

292 np.save('./AMS/Data/min_moments.npy', min_moments)

383

Yawing Moment Versus Drag Study

1 import numpy as np

2 from bire_aero import BIREAero

3 from f16_aero import F16Aero

4 import scipy.optimize as optimize

5 import machupX as mx

6

7

8 def find_moment(deltas, C_moment, function):

9 [delta_e, delta_B] = deltas

10 results = function.aero_results(alpha, beta, pbar, qbar, rbar,

11 da, delta_e, delta_B)

12 est_moment = results[5]

13 return (est_moment - C_moment)**2

14

15 def generate_data(params):

16 alpha = params[0]

17 beta = params[1]

18 d_e = params[2]

19 d_a = params[3]

20 d_r = params[4]

21 p = params[5]

22 q = params[6]

23 r = params[7]

24 rates = [p, q, r]

25 my_scene.set_aircraft_state(state={"alpha": alpha,

26 "beta": beta,

27 "angular_rates": rates,

28 "velocity": 222.5211})

29 my_scene.set_aircraft_control_state(control_state={"elevator": d_e,

30 "aileron": d_a,

31 "rudder": d_r})

32 x = my_scene.solve_forces(**forces_options)["F16"]["total"]

33 fm = [x['CD'], x['CS'], x['CL'], x['Cl'], x['Cm'], x['Cn']]

34 return (*params, *fm)

35

36

37 b_aero = BIREAero()

38 f_aero = F16Aero()

39 my_scene = mx.Scene('./F16_input.json')

40

41 forces_options = {'body_frame': True,

42 'stab_frame': False,

43 'wind_frame': True,

44 'dimensional': False,

45 'verbose': False}

46

47 N = 50

48 max_dr = 30.*np.pi/180.

49 dr_range = np.linspace(-max_dr, max_dr, N)

50 Cn_base = np.zeros(N)

51 CD_base = np.zeros(N)

52 CD_twist = np.zeros(N)

53 CD_bire = np.zeros(N)

54

384

55 alpha = 0.

56 beta = 0.

57 pbar = 0.

58 qbar = 0.

59 rbar = 0.

60 da = 0.

61 de = 0.

62

63 for i in range(N):

64 base_results = generate_data([alpha, beta, de, da, dr_range[i]*180/np.pi,

65 pbar, qbar, rbar])

66 CD_base[i] = base_results[8]

67 Cn_base[i] = base_results[-1]

68 res = optimize.minimize(find_moment, [0., 0.], args=(Cn_base[i], b_aero),

69 method='Nelder-Mead').x

70 bire_results = b_aero.aero_results(alpha, beta, pbar, qbar, rbar, da,

71 res[0], res[1])

72 CD_bire[i] = bire_results[2]

73 Cn_bire = bire_results[5]

74 print('de', res[0]*180/np.pi)

75 print('dB', res[1]*180/np.pi)

385

C.6 Linearized Controller Analysis

Linearization of the Baseline Aircraft

1 import numpy as np

2 from f16_aero import F16Aero

3 import aero_trim as trim

4 from stdatmos import stdatm_english

5 from control import ctrb, lqr, place

6 import matplotlib.pyplot as plt

7 from os.path import exists

8

9 class Lin_Results:

10 def __init__(self, N, M):

11 self.A = np.zeros((N, N))

12 self.B = np.zeros((N, M))

13 self.C = np.zeros((N, N))

14 self.K = np.zeros((M, N))

15 self.eigs = np.zeros(N)

16 self.aircraft = "F16"

17

18 class LinearizationBaseline:

19 def __init__(self, props, aero_dir='./', N=8, M=4):

20 self.N = N

21 self.M = M

22 self.x_hat = np.zeros(N + M)

23 self.u_hat = np.zeros(M)

24 self.alpha_hat = 0.

25 self.beta_hat = 0.

26 self.V_hat = 0.

27 self.props = props

28 self.rho = props.rho

29 self.rho_0 = props.rho_0

30 self.S_w = props.S_w

31 self.b_w = props.b_w

32 self.c_w = props.c_w

33 self.W = props.W

34 self.g = props.g

35 self.aero_dir = aero_dir

36 self.tc_tau = 0.05

37 self.tc_da = 0.05

38 self.tc_de = 0.05

39 self.tc_dr = 0.05

40 self.rate_da = 80.*np.pi/180.

41 self.rate_de = 60*np.pi/180.

42 self.rate_dr = 120*np.pi/180.

43

44 def set_linearization_point(self, x_hat, u_hat, alpha_hat, beta_hat, FM_hat,

45 cg_shift):

46 self.x_hat = x_hat

47 self.u_hat = u_hat

48 self.alpha_hat = alpha_hat

49 self.beta_hat = beta_hat

50 self.V_hat = np.sqrt(np.sum(np.square(self.x_hat[:3])))

386

51 [self.CD_hat, self.CS_hat, self.CL_hat,

52 self.Cl_hat, self.Cm_hat, self.Cn_hat] = FM_hat

53 self.I_inv = self._I_inv()

54 self._W_matrix()

55 self.dVinv_dz = self._dVinv_dz()

56 self.dV_dz = self._dV_dz()

57 self.da_dz = self._dalpha_dz()

58 self.db_dz = self._dbeta_dz()

59 self.Dx = cg_shift[0]

60 self.Dy = cg_shift[1]

61 self.Dz = cg_shift[2]

62 self.dp_dz = np.array([0., 0., 0., 1., 0., 0., 0., 0.])

63 self.dq_dz = np.array([0., 0., 0., 0., 1., 0., 0., 0.])

64 self.dr_dz = np.array([0., 0., 0., 0., 0., 1., 0., 0.])

65 self.dde_du = np.array([0., 0., 1., 0.])

66 self.dda_du = np.array([0., 1., 0., 0.])

67 self.dtau_du = np.array([1., 0., 0., 0.])

68 self.ddr_du = np.array([0., 0., 0., 1.])

69 self.dde2_du = 2.*self.u_hat[2]*self.dde_du

70 aero = F16Aero(self.aero_dir)

71 self.CL_0 = aero.CL0

72 self.CL_a = aero.CLa

73 self.CL_q = aero.CLq

74 self.CL_de = aero.CLde

75 self.CL1_hat = self.CL_0 + self.CL_a*self.alpha_hat

76 self.CS_b = aero.CSb

77 self.CS_Lp = aero.CSLp

78 self.CS_p = aero.CSp

79 self.CS_r = aero.CSr

80 self.CS_da = aero.CSda

81 self.CS_dr = aero.CSdr

82 self.CD_L = aero.CDL

83 self.CD_L2 = aero.CDL2

84 self.CD_S2 = aero.CDS2

85 self.CS1_hat = self.CS_b*self.beta_hat

86 self.CD_Sp = aero.CDSp

87 self.CD_L2q = aero.CDL2q

88 self.CD_Lq = aero.CDLq

89 self.CD_q = aero.CDq

90 self.CD_Sr = aero.CDSr

91 self.CD_Sda = aero.CDSda

92 self.CD_Lde = aero.CDLde

93 self.CD_de = aero.CDde

94 self.CD_Sdr = aero.CDSdr

95 self.CD_de2 = aero.CDde2

96 self.Cl_b = aero.Clb

97 self.Cl_p = aero.Clp

98 self.Cl_Lr = aero.ClLr

99 self.Cl_r = aero.Clr

100 self.Cl_da = aero.Clda

101 self.Cl_dr = aero.Cldr

102 self.Cm_a = aero.Cma

103 self.Cm_q = aero.Cmq

104 self.Cm_de = aero.Cmde

105 self.Cn_b = aero.Cnb

106 self.Cn_Lp = aero.CnLp

387

107 self.Cn_p = aero.Cnp

108 self.Cn_r = aero.Cnr

109 self.Cn_Lda = aero.CnLda

110 self.Cn_da = aero.Cnda

111 self.Cn_dr = aero.Cndr

112

113 def _det_I(self):

114 props = self.props

115 C1 = props.Ixx*(props.Iyy*props.Izz - props.Iyz*props.Izy)

116 C2 = props.Ixy*(props.Iyx*props.Izz + props.Iyz*props.Izx)

117 C3 = props.Ixz*(props.Iyx*props.Izy + props.Iyy*props.Izx)

118 return C1 - C2 - C3

119

120 def _I_inv(self):

121 props = self.props

122 det_I = self._det_I()

123 I_inv = np.zeros((3, 3))

124 I_inv[0, 0] = props.Iyy*props.Izz - props.Iyz*props.Izy

125 I_inv[0, 1] = props.Ixy*props.Izz + props.Ixz*props.Izy

126 I_inv[0, 2] = props.Ixy*props.Iyz + props.Ixz*props.Iyy

127 I_inv[1, 0] = props.Iyx*props.Izz + props.Iyz*props.Izx

128 I_inv[1, 1] = props.Ixx*props.Izz - props.Ixz*props.Izx

129 I_inv[1, 2] = props.Ixx*props.Iyz + props.Ixz*props.Iyz

130 I_inv[2, 0] = props.Iyz*props.Izy + props.Iyy*props.Izx

131 I_inv[2, 1] = props.Ixx*props.Izy + props.Ixy*props.Izx

132 I_inv[2, 2] = props.Ixx*props.Iyy - props.Ixy*props.Iyx

133 I_inv = I_inv/det_I

134 return I_inv

135

136 def _dz1_dz(self):

137 dz1_dz = np.zeros(self.N)

138 dFxdz = self._dFx_dz()

139 dz1_dz = self.props.g/self.props.W*dFxdz

140 dz1_dz[1] += self.x_hat[5]

141 dz1_dz[2] -= self.x_hat[4]

142 dz1_dz[4] -= self.x_hat[2]

143 dz1_dz[5] += self.x_hat[1]

144 dz1_dz[7] -= self.props.g*np.cos(self.x_hat[7])

145 return dz1_dz

146

147 def _dz2_dz(self):

148 dz2_dz = np.zeros(self.N)

149 dFydz = self._dFy_dz()

150 dz2_dz = self.props.g/self.props.W*dFydz

151 dz2_dz[0] -= self.x_hat[5]

152 dz2_dz[2] += self.x_hat[3]

153 dz2_dz[3] += self.x_hat[2]

154 dz2_dz[5] -= self.x_hat[0]

155 dz2_dz[6] += self.props.g*np.cos(self.x_hat[6])*np.cos(self.x_hat[7])

156 dz2_dz[7] -= self.props.g*np.sin(self.x_hat[6])*np.sin(self.x_hat[7])

157 return dz2_dz

158

159 def _dz3_dz(self):

160 dz3_dz = np.zeros(self.N)

161 dFzdz = self._dFz_dz()

162 dz3_dz = self.props.g/self.props.W*dFzdz

388

163 dz3_dz[0] += self.x_hat[4]

164 dz3_dz[1] -= self.x_hat[3]

165 dz3_dz[3] -= self.x_hat[1]

166 dz3_dz[4] += self.x_hat[0]

167 dz3_dz[6] -= self.props.g*np.sin(self.x_hat[6])*np.cos(self.x_hat[7])

168 dz3_dz[7] -= self.props.g*np.cos(self.x_hat[6])*np.sin(self.x_hat[7])

169 return dz3_dz

170

171 def _dz4_dz(self):

172 dz4_dz = np.zeros(self.N)

173 dMxdz = self._dMx_dz()

174 dMydz = self._dMy_dz()

175 dMzdz = self._dMz_dz()

176 dM = np.array([dMxdz, dMydz, dMzdz])

177 R = np.zeros((3, self.N + self.M))

178 R = dM + self.W_mat

179 dz4_dz = np.matmul(self.I_inv, R)[0, :]

180 return dz4_dz

181

182 def _dz5_dz(self):

183 dz5_dz = np.zeros(self.N)

184 dMxdz = self._dMx_dz()

185 dMydz = self._dMy_dz()

186 dMzdz = self._dMz_dz()

187 dM = np.array([dMxdz, dMydz, dMzdz])

188 R = np.zeros((3, self.N + self.M))

189 R = dM + self.W_mat

190 dz5_dz = np.matmul(self.I_inv, R)[1, :]

191 return dz5_dz

192

193 def _dz6_dz(self):

194 dz6_dz = np.zeros(self.N)

195 dMxdz = self._dMx_dz()

196 dMydz = self._dMy_dz()

197 dMzdz = self._dMz_dz()

198 dM = np.array([dMxdz, dMydz, dMzdz])

199 R = np.zeros((3, self.N + self.M))

200 R = dM + self.W_mat

201 dz6_dz = np.matmul(self.I_inv, R)[2, :]

202 return dz6_dz

203

204 def _dz7_dz(self):

205 dz7_dz = np.zeros(self.N)

206 s_7 = np.sin(self.x_hat[6])

207 c_7 = np.cos(self.x_hat[6])

208 s_8 = np.sin(self.x_hat[7])

209 c_8 = np.cos(self.x_hat[7])

210 t_8 = s_8/c_8

211 dz7_dz[3] = 1.

212 dz7_dz[4] = s_7*t_8

213 dz7_dz[5] = c_7*t_8

214 dz7_dz[6] = t_8*(c_7*self.x_hat[4] - s_7*self.x_hat[5])

215 dz7_dz[7] = s_7/(c_8**2)*self.x_hat[4] + c_7/(c_8**2)*self.x_hat[5]

216 return dz7_dz

217

218 def _dz8_dz(self):

389

219 dz8_dz = np.zeros(self.N)

220 s_7 = np.sin(self.x_hat[6])

221 c_7 = np.cos(self.x_hat[6])

222 dz8_dz[4] = c_7

223 dz8_dz[5] = -s_7

224 dz8_dz[6] = -s_7*self.x_hat[4] - c_7*self.x_hat[5]

225 return dz8_dz

226

227 def _dFx_dz(self):

228 dFxdz = np.zeros(self.N)

229 dCXdz = self._dCX_dz()

230 dVdz = self.dV_dz

231 dTxdz = self._dTX_dz()

232 c_a = np.cos(self.alpha_hat)

233 s_a = np.sin(self.alpha_hat)

234 c_b = np.cos(self.beta_hat)

235 s_b = np.sin(self.beta_hat)

236 CX = -(self.CD_hat*c_a*c_b + self.CS_hat*c_a*s_b -

237 self.CL_hat*s_a)

238 dFxdz = (0.5*self.rho*self.V_hat**2*self.S_w*dCXdz +

239 self.rho*self.V_hat*self.S_w*CX*dVdz + dTxdz)

240 return dFxdz

241

242 def _dFy_dz(self):

243 dFydz = np.zeros(self.N)

244 dCYdz = self._dCY_dz()

245 dVdz = self.dV_dz

246 c_b = np.cos(self.beta_hat)

247 s_b = np.sin(self.beta_hat)

248 CY = self.CS_hat*c_b - self.CD_hat*s_b

249 dFydz = (0.5*self.rho*self.V_hat**2*self.S_w*dCYdz +

250 self.rho*self.V_hat*self.S_w*CY*dVdz)

251 return dFydz

252

253 def _dFz_dz(self):

254 dFzdz = np.zeros(self.N)

255 dCZdz = self._dCZ_dz()

256 dVdz = self.dV_dz

257 c_a = np.cos(self.alpha_hat)

258 s_a = np.sin(self.alpha_hat)

259 c_b = np.cos(self.beta_hat)

260 s_b = np.sin(self.beta_hat)

261 CZ = -(self.CD_hat*s_a*c_b + self.CS_hat*s_a*s_b +

262 self.CL_hat*c_a)

263 dFzdz = (0.5*self.rho*self.V_hat**2*self.S_w*dCZdz +

264 self.rho*self.V_hat*self.S_w*CZ*dVdz)

265 return dFzdz

266

267 def _dMx_dz(self):

268 dMxdz = np.zeros(self.N)

269 dCldz = self._dCl_dz()

270 dFzdz = self._dFz_dz()

271 dFydz = self._dFy_dz()

272 dVdz = self.dV_dz

273 dy = self.Dy

274 dz = self.Dz

390

275 dMxdz = (0.5*self.rho*self.V_hat**2*self.S_w*self.b_w*dCldz +

276 self.rho*self.V_hat*self.S_w*self.b_w*self.Cl_hat*dVdz -

277 dFzdz*dy +

278 dFydz*dz)

279 return dMxdz

280

281 def _dMy_dz(self):

282 dMydz = np.zeros(self.N)

283 dCmdz = self._dCm_dz()

284 dFzdz = self._dFz_dz()

285 dFxdz = self._dFx_dz()

286 dVdz = self.dV_dz

287 dx = self.Dx

288 dz = self.Dz

289 dMydz = (0.5*self.rho*self.V_hat**2*self.S_w*self.c_w*dCmdz +

290 self.rho*self.V_hat*self.S_w*self.c_w*self.Cm_hat*dVdz -

291 dFzdz*dx +

292 dFxdz*dz)

293 return dMydz

294

295 def _dMz_dz(self):

296 dMzdz = np.zeros(self.N)

297 dCndz = self._dCn_dz()

298 dFxdz = self._dFx_dz()

299 dFydz = self._dFy_dz()

300 dVdz = self.dV_dz

301 dx = self.Dx

302 dy = self.Dy

303 dMzdz = (0.5*self.rho*self.V_hat**2*self.S_w*self.b_w*dCndz +

304 self.rho*self.V_hat*self.S_w*self.b_w*self.Cn_hat*dVdz -

305 dFydz*dx +

306 dFxdz*dy)

307 return dMzdz

308

309 def _dV_dz(self):

310 dVdz = np.zeros(self.N)

311 dVdz[0] = self.x_hat[0]/self.V_hat

312 dVdz[1] = self.x_hat[1]/self.V_hat

313 dVdz[2] = self.x_hat[2]/self.V_hat

314 return dVdz

315

316 def _dVinv_dz(self):

317 dVinvdz = np.zeros(self.N)

318 dVinvdz[0] = -self.x_hat[0]/self.V_hat**3

319 dVinvdz[1] = -self.x_hat[1]/self.V_hat**3

320 dVinvdz[2] = -self.x_hat[2]/self.V_hat**3

321 return dVinvdz

322

323 def _dTX_dz(self):

324 dVdz = self._dV_dz()

325 H = self.props.H

326 a_mil = self.props.a_mil(H)

327 T1_mil = self.props.T1_mil(H)

328 T2_mil = self.props.T2_mil(H)

329 rho_ratio = (self.rho/self.rho_0)

330 dTmil_dz = rho_ratio**a_mil*(T1_mil*dVdz + 2.*T2_mil*self.V_hat*dVdz)

391

331 if self.u_hat[0] < 0.77:

332 a_idle = self.props.a_idle(H)

333 T1_idle = self.props.T1_idle(H)

334 T2_idle = self.props.T2_idle(H)

335 dTidle_dz = rho_ratio**a_idle*(T1_idle*dVdz + 2.*T2_idle*self.V_hat*dVdz)

336 P1 = 64.94*self.u_hat[0]/50.

337 dTX_dz = P1*(dTmil_dz - dTidle_dz) + dTidle_dz

338 else:

339 a_max = self.props.a_max(H)

340 T1_max = self.props.T1_max(H)

341 T2_max = self.props.T2_max(H)

342 dTmax_dz = rho_ratio**a_max*(T1_max*dVdz + 2.*T2_max*self.V_hat*dVdz)

343 P1 = (217.38*self.u_hat[0] - 117.38 - 50.)/50.

344 dTX_dz = P1*(dTmax_dz - dTmil_dz) + dTmil_dz

345 return dTX_dz

346

347

348 def _dCX_dz(self):

349 dCXdz = np.zeros(self.N)

350 dCDdz = self._dCD_dz()

351 dCSdz = self._dCS_dz()

352 dCLdz = self._dCL_dz()

353 dadz = self.da_dz

354 dbdz = self.db_dz

355 c_a = np.cos(self.alpha_hat)

356 s_a = np.sin(self.alpha_hat)

357 c_b = np.cos(self.beta_hat)

358 s_b = np.sin(self.beta_hat)

359 CD = self.CD_hat

360 CS = self.CS_hat

361 CL = self.CL_hat

362 dCXdz = (-dCDdz*c_a*c_b + CD*s_a*c_b*dadz + CD*c_a*s_b*dbdz -

363 dCSdz*c_a*s_b + CS*s_a*s_b*dadz - CS*c_a*c_b*dbdz +

364 dCLdz*s_a + CL*c_a*dadz)

365 return dCXdz

366

367 def _dCY_dz(self):

368 dCYdz = np.zeros(self.N)

369 dCDdz = self._dCD_dz()

370 dCSdz = self._dCS_dz()

371 dbdz = self.db_dz

372 c_b = np.cos(self.beta_hat)

373 s_b = np.sin(self.beta_hat)

374 CD = self.CD_hat

375 CS = self.CS_hat

376 dCYdz = dCSdz*c_b - CS*s_b*dbdz - dCDdz*s_b - CD*c_b*dbdz

377 return dCYdz

378

379 def _dCZ_dz(self):

380 dCZdz = np.zeros(self.N)

381 dCDdz = self._dCD_dz()

382 dCSdz = self._dCS_dz()

383 dCLdz = self._dCL_dz()

384 dadz = self.da_dz

385 dbdz = self.db_dz

386 c_a = np.cos(self.alpha_hat)

392

387 s_a = np.sin(self.alpha_hat)

388 c_b = np.cos(self.beta_hat)

389 s_b = np.sin(self.beta_hat)

390 CD = self.CD_hat

391 CS = self.CS_hat

392 CL = self.CL_hat

393 dCZdz = (-dCDdz*s_a*c_b - CD*c_a*c_b*dadz + CD*s_a*s_b*dbdz -

394 dCSdz*s_a*s_b - CS*c_a*s_b*dadz - CS*s_a*c_b*dbdz -

395 dCLdz*c_a + CL*s_a*dadz)

396 return dCZdz

397

398 def _dalpha_dz(self):

399 dadz = np.zeros(self.N)

400 C1 = self.x_hat[0]**2 + self.x_hat[2]**2

401 dadz[0] = -self.x_hat[2]/C1

402 dadz[2] = self.x_hat[0]/C1

403 return dadz

404

405 def _dbeta_dz(self):

406 dbdz = np.zeros(self.N)

407 C1 = np.sqrt(self.x_hat[0]**2 + self.x_hat[2]**2)

408 C2 = (self.V_hat**2)*C1

409 dbdz[0] = -self.x_hat[1]*self.x_hat[0]/C2

410 dbdz[1] = C1/(self.V_hat**2)

411 dbdz[2] = -self.x_hat[1]*self.x_hat[2]/C2

412 return dbdz

413

414 def _dCL_dz(self):

415 dCLdz = np.zeros(self.N)

416 dCL1dz = self._dCL1_dz()

417 dqbardz = self._dqbar_dz()

418 dCLdz = dCL1dz + self.CL_q*dqbardz

419 return dCLdz

420

421 def _dCL1_dz(self):

422 dCL1dz = self.CL_a*self.da_dz

423 return dCL1dz

424

425 def _dqbar_dz(self):

426 dqdz = self.dq_dz

427 dVidz = self.dVinv_dz

428 dqbardz = dqdz*self.c_w/(2.*self.V_hat) + dVidz*self.c_w*self.x_hat[4]/2.

429 return dqbardz

430

431 def _dCS_dz(self):

432 dCSdz = np.zeros(self.N)

433 dCS1dz = self._dCS1_dz()

434 dCL1dz = self._dCL1_dz()

435 xb_4 = self.b_w*self.x_hat[3]/(2.*self.V_hat)

436 dpbardz = self._dpbar_dz()

437 drbardz = self._drbar_dz()

438 dCSdz = (dCS1dz +

439 self.CS_Lp*dCL1dz*xb_4 +

440 (self.CS_Lp*self.CL1_hat + self.CS_p)*dpbardz +

441 self.CS_r*drbardz)

442 return dCSdz

393

443

444 def _dCS1_dz(self):

445 dCS1dz = self.CS_b*self.db_dz

446 return dCS1dz

447

448 def _dpbar_dz(self):

449 dpdz = self.dp_dz

450 dVidz = self.dVinv_dz

451 dpbardz = dpdz*self.b_w/(2.*self.V_hat) + dVidz*self.b_w*self.x_hat[3]/2.

452 return dpbardz

453

454 def _drbar_dz(self):

455 drdz = self.dr_dz

456 dVidz = self.dVinv_dz

457 drbardz = drdz*self.b_w/(2.*self.V_hat) + dVidz*self.b_w*self.x_hat[5]/2.

458 return drbardz

459

460 def _dCD_dz(self):

461 dCDdz = np.zeros(self.N)

462 dCL1dz = self._dCL1_dz()

463 dCS1dz = self._dCS1_dz()

464 dCL12dz = 2.*self.CL1_hat*dCL1dz

465 dCS12dz = 2.*self.CS1_hat*dCS1dz

466 xb_4 = self.b_w*self.x_hat[3]/(2.*self.V_hat)

467 xb_5 = self.c_w*self.x_hat[4]/(2.*self.V_hat)

468 xb_6 = self.b_w*self.x_hat[5]/(2.*self.V_hat)

469 dpbardz = self._dpbar_dz()

470 dqbardz = self._dqbar_dz()

471 drbardz = self._drbar_dz()

472 CL1 = self.CL1_hat

473 CS1 = self.CS1_hat

474 dCDdz = (self.CD_L*dCL1dz + self.CD_L2*dCL12dz + self.CD_S2*dCS12dz +

475 self.CD_Sp*dCS1dz*xb_4 + self.CD_Sp*CS1*dpbardz +

476 (self.CD_L2q*dCL12dz + self.CD_Lq*dCL1dz)*xb_5 +

477 (self.CD_L2q*CL1**2 + self.CD_Lq*CL1 + self.CD_q)*dqbardz +

478 self.CD_Sr*dCS1dz*xb_6 + self.CD_Sr*CS1*drbardz +

479 self.CD_Sda*dCS1dz*self.u_hat[1] +

480 self.CD_Lde*dCL1dz*self.u_hat[2] +

481 self.CD_Sdr*dCS1dz*self.u_hat[3])

482 return dCDdz

483

484 def _dCl_dz(self):

485 dCldz = np.zeros(self.N)

486 dbdz = self.db_dz

487 dpbardz = self._dpbar_dz()

488 drbardz = self._drbar_dz()

489 dCL1dz = self._dCL1_dz()

490 xb_6 = self.b_w*self.x_hat[5]/(2.*self.V_hat)

491 CL1 = self.CL1_hat

492 dCldz = (self.Cl_b*dbdz + self.Cl_p*dpbardz + self.Cl_Lr*dCL1dz*xb_6 +

493 (self.Cl_Lr*CL1 + self.Cl_r)*drbardz)

494 return dCldz

495

496 def _dCm_dz(self):

497 dCmdz = np.zeros(self.N)

498 dadz = self.da_dz

394

499 dqbardz = self._dqbar_dz()

500 dCmdz = self.Cm_a*dadz + self.Cm_q*dqbardz

501 return dCmdz

502

503 def _dCn_dz(self):

504 dCndz = np.zeros(self.N)

505 dbdz = self.db_dz

506 dpbardz = self._dpbar_dz()

507 drbardz = self._drbar_dz()

508 dCL1dz = self._dCL1_dz()

509 xb_4 = self.b_w*self.x_hat[3]/(2.*self.V_hat)

510 CL1 = self.CL1_hat

511 dCndz = (self.Cn_b*dbdz + self.Cn_Lp*dCL1dz*xb_4 +

512 (self.Cn_Lp*CL1 + self.Cn_p)*dpbardz + self.Cn_r*drbardz +

513 self.Cn_Lda*dCL1dz*self.u_hat[1])

514 return dCndz

515

516 def _dz1_du(self):

517 dFxdu = self._dFx_du()

518 dz1du = self.g/self.W*dFxdu

519 return dz1du

520

521 def _dz2_du(self):

522 dFydu = self._dFy_du()

523 dz2du = self.g/self.W*dFydu

524 return dz2du

525

526 def _dz3_du(self):

527 dFzdu = self._dFz_du()

528 dz3du = self.g/self.W*dFzdu

529 return dz3du

530

531 def _dz4_du(self):

532 dMxdu = self._dMx_du()

533 dMydu = self._dMy_du()

534 dMzdu = self._dMz_du()

535 dM = np.array([dMxdu, dMydu, dMzdu])

536 dz4du = np.matmul(self.I_inv, dM)[0, :]

537 return dz4du

538

539 def _dz5_du(self):

540 dMxdu = self._dMx_du()

541 dMydu = self._dMy_du()

542 dMzdu = self._dMz_du()

543 dM = np.array([dMxdu, dMydu, dMzdu])

544 dz5du = np.matmul(self.I_inv, dM)[1, :]

545 return dz5du

546

547 def _dz6_du(self):

548 dMxdu = self._dMx_du()

549 dMydu = self._dMy_du()

550 dMzdu = self._dMz_du()

551 dM = np.array([dMxdu, dMydu, dMzdu])

552 dz6du = np.matmul(self.I_inv, dM)[2, :]

553 return dz6du

554

395

555 def _dCL_du(self):

556 dCLdu = self.CL_de*self.dde_du

557 return dCLdu

558

559 def _dCS_du(self):

560 dCSdu = self.CS_da*self.dda_du + self.CS_dr*self.ddr_du

561 return dCSdu

562

563 def _dCD_du(self):

564 dCDdu = (self.CD_Sda*self.CS1_hat*self.dda_du +

565 (self.CD_Lde*self.CL1_hat + self.CD_de)*self.dde_du +

566 self.CD_de2*self.dde2_du +

567 self.CD_Sdr*self.CS1_hat*self.ddr_du)

568 return dCDdu

569

570 def _dCl_du(self):

571 dCldu = self.Cl_da*self.dda_du + self.Cl_dr*self.ddr_du

572 return dCldu

573

574 def _dCm_du(self):

575 dCmdu = self.Cm_de*self.dde_du

576 return dCmdu

577

578 def _dCn_du(self):

579 dCndu = ((self.Cn_Lda*self.CL1_hat + self.Cn_da)*self.dda_du +

580 self.Cn_dr*self.ddr_du)

581 return dCndu

582

583 def _dTx_du(self):

584 a_mil = self.props.a_mil(self.props.H)

585 T0_mil = self.props.T0_mil(self.props.H)

586 T1_mil = self.props.T1_mil(self.props.H)

587 T2_mil = self.props.T2_mil(self.props.H)

588 V = self.props.V

589 T_mil = (self.rho/self.rho_0)**a_mil*(T0_mil + T1_mil*V + T2_mil*V**2)

590 if self.u_hat[0] < 0.77:

591 a_idle = self.props.a_idle(self.props.H)

592 T0_idle = self.props.T0_idle(self.props.H)

593 T1_idle = self.props.T1_idle(self.props.H)

594 T2_idle = self.props.T2_idle(self.props.H)

595 T_idle = (self.rho/self.rho_0)**a_idle*(T0_idle + T1_idle*V +

596 T2_idle*V**2)

597 dTxdu = 64.94/50.*(T_mil - T_idle)

598 else:

599 a_max = self.props.a_max(self.props.H)

600 T0_max = self.props.T0_max(self.props.H)

601 T1_max = self.props.T1_max(self.props.H)

602 T2_max = self.props.T2_max(self.props.H)

603 T_max = (self.rho/self.rho_0)**a_max*(T0_max + T1_max*V + T2_max*V**2)

604 dTxdu = 217.38/50.*(T_max - T_mil)

605 return dTxdu

606

607 def _dCX_du(self):

608 dCDdu = self._dCD_du()

609 dCSdu = self._dCS_du()

610 dCLdu = self._dCL_du()

396

611 c_a = np.cos(self.alpha_hat)

612 s_a = np.sin(self.alpha_hat)

613 c_b = np.cos(self.beta_hat)

614 s_b = np.sin(self.beta_hat)

615 dCXdu = -(dCDdu*c_a*c_b + dCSdu*c_a*s_b - dCLdu*s_a)

616 return dCXdu

617

618 def _dCY_du(self):

619 dCDdu = self._dCD_du()

620 dCSdu = self._dCS_du()

621 c_b = np.cos(self.beta_hat)

622 s_b = np.sin(self.beta_hat)

623 dCYdu = dCSdu*c_b - dCDdu*s_b

624 return dCYdu

625

626 def _dCZ_du(self):

627 dCDdu = self._dCD_du()

628 dCSdu = self._dCS_du()

629 dCLdu = self._dCL_du()

630 c_a = np.cos(self.alpha_hat)

631 s_a = np.sin(self.alpha_hat)

632 c_b = np.cos(self.beta_hat)

633 s_b = np.sin(self.beta_hat)

634 dCZdu = -(dCDdu*s_a*c_b + dCSdu*s_a*s_b + dCLdu*c_a)

635 return dCZdu

636

637 def _dFx_du(self):

638 dCXdu = self._dCX_du()

639 dTxdu = self._dTx_du()

640 dFxdu = 0.5*self.rho*self.V_hat**2*self.S_w*dCXdu + dTxdu

641 return dFxdu

642

643 def _dFy_du(self):

644 dCYdu = self._dCY_du()

645 dFydu = 0.5*self.rho*self.V_hat**2*self.S_w*dCYdu

646 return dFydu

647

648 def _dFz_du(self):

649 dCZdu = self._dCZ_du()

650 dFzdu = 0.5*self.rho*self.V_hat**2*self.S_w*dCZdu

651 return dFzdu

652

653 def _dMx_du(self):

654 dCldu = self._dCl_du()

655 dFzdu = self._dFz_du()

656 dFydu = self._dFy_du()

657 dMxdu = (0.5*self.rho*self.V_hat**2*self.S_w*self.b_w*dCldu -

658 dFzdu*self.Dy +

659 dFydu*self.Dz)

660 return dMxdu

661

662 def _dMy_du(self):

663 dCmdu = self._dCm_du()

664 dFzdu = self._dFz_du()

665 dFxdu = self._dFx_du()

666 dMydu = (0.5*self.rho*self.V_hat**2*self.S_w*self.c_w*dCmdu -

397

667 dFzdu*self.Dx +

668 dFxdu*self.Dz)

669 return dMydu

670

671 def _dMz_du(self):

672 dCndu = self._dCn_du()

673 dFydu = self._dFy_du()

674 dFxdu = self._dFx_du()

675 dMzdu = (0.5*self.rho*self.V_hat**2*self.S_w*self.b_w*dCndu -

676 dFydu*self.Dx +

677 dFxdu*self.Dy)

678 return dMzdu

679

680 def _W_matrix(self):

681 self.W_mat = np.zeros((3, self.N))

682 self.W_mat[:, 3] = np.array([self.props.Ixz*self.x_hat[4] -

683 self.props.Ixy*self.x_hat[5],

684 (self.props.Izz - self.props.Ixx)*self.x_hat[5] -

685 2.*self.props.Ixz*self.x_hat[3] -

686 self.props.Iyz*self.x_hat[4],

687 (self.props.Ixx - self.props.Iyy)*self.x_hat[4] +

688 2.*self.props.Ixy*self.x_hat[3] +

689 self.props.Iyz*self.x_hat[5]])

690 self.W_mat[:, 4] = np.array([(self.props.Iyy - self.props.Izz)*self.x_hat[5] -

691 2.*self.props.Iyz*self.x_hat[4] +

692 self.props.Ixz*self.x_hat[3],

693 self.props.Ixy*self.x_hat[5] -

694 self.props.Iyz*self.x_hat[3],

695 (self.props.Ixx - self.props.Iyy)*self.x_hat[3] -

696 2.*self.props.Ixy*self.x_hat[4] -

697 self.props.Ixz*self.x_hat[5]])

698 self.W_mat[:, 5] = np.array([(self.props.Iyy - self.props.Izz)*self.x_hat[4] +

699 2.*self.props.Iyz*self.x_hat[5] -

700 self.props.Ixy*self.x_hat[3],

701 (self.props.Izz - self.props.Ixx)*self.x_hat[3] +

702 2.*self.props.Ixz*self.x_hat[5] +

703 self.props.Ixy*self.x_hat[4],

704 self.props.Iyz*self.x_hat[3] -

705 self.props.Ixz*self.x_hat[4]])

706

707

708 def create_A_matrix(self):

709 A = np.zeros((self.N, self.N))

710 A[0, :] = self._dz1_dz()

711 A[1, :] = self._dz2_dz()

712 A[2, :] = self._dz3_dz()

713 A[3, :] = self._dz4_dz()

714 A[4, :] = self._dz5_dz()

715 A[5, :] = self._dz6_dz()

716 A[6, :] = self._dz7_dz()

717 A[7, :] = self._dz8_dz()

718 return A

719

720 def create_B_matrix(self):

721 B = np.zeros((self.N, self.M))

722 B[0, :] = self._dz1_du()

398

723 B[1, :] = self._dz2_du()

724 B[2, :] = self._dz3_du()

725 B[3, :] = self._dz4_du()

726 B[4, :] = self._dz5_du()

727 B[5, :] = self._dz6_du()

728 return B

729

730 def create_C_matrix(self):

731 C = np.eye(self.N)

732 return C

733

734 def create_E_matrix(self):

735 E = np.zeros((self.N, 3))

736 E[0, 0] = 1.

737 E[1, 1] = 1.

738 E[2, 2] = 1.

739 return E

740

741 def create_feedback_control(trim_solution, V, H, Gamma, cg_shift,

742 p=-np.arange(1., 9.), lqr_flag=True,

743 Q=np.eye(8), R=np.eye(4),

744 N=np.zeros((8, 4))):

745 aero_dir = '/home/christian/Python Projects/AFRL BIRE/Static Analysis/main/'

746 x_hat = trim_solution.states

747 alpha_hat = trim_solution.x[1]

748 beta_hat = trim_solution.x[2]

749 u_hat = trim_solution.inputs

750 FM_hat = trim_solution.FM

751 props = trim.AircraftProperties(V, H, Gamma, aero_dir)

752 # system =

753 linearization = LinearizationBaseline(props, aero_dir)

754 linearization.set_linearization_point(x_hat, u_hat, alpha_hat, beta_hat, FM_hat,

755 cg_shift)

756 A = linearization.create_A_matrix()

757 B = linearization.create_B_matrix()

758 C = linearization.create_C_matrix()

759 D = np.zeros((linearization.N, linearization.M))

760 E = linearization.create_E_matrix()

761 G = ctrb(A, B)

762 print(np.linalg.matrix_rank(G))

763 if lqr_flag:

764 K, S, E = lqr(A, B, Q, R, N)

765 else:

766 K = place(A, B, p)

767 eig_check, v_check = np.linalg.eig(A - np.matmul(B, K))

768 assert all(np.real(eig_check) < 0.)

769 lin_res = Lin_Results(linearization.N, linearization.M)

770 lin_res.A = A

771 lin_res.B = B

772 lin_res.C = C

773 lin_res.D = D

774 lin_res.K = K

775 lin_res.E = E

776 lin_res.eigs = eig_check

777 return lin_res

778

399

779 if __name__ == "__main__":

780 H = 15000.

781 a = stdatm_english(H)[-1]

782 M = 0.6

783 V = M*a

784 b_w = 30.

785 c_w = 11.32

786 gamma = np.deg2rad(0.)

787 phi = np.deg2rad(0.)

788 Gamma = 0.1

789 cg_shift = [0., 0., 0.]

790 aero_dir = '/home/christian/Python Projects/AFRL BIRE/Static Analysis/main/'

791 trim_solution = trim.trim(V, H, gamma, phi, Gamma, fixed_point=False,

792 aero_dir=aero_dir)

793 x_hat = trim_solution.states

794 alpha_hat = trim_solution.x[1]

795 beta_hat = trim_solution.x[2]

796 u_hat = trim_solution.inputs

797 FM_hat = trim_solution.FM

798 props = trim.AircraftProperties(V, H, Gamma, aero_dir)

799 linearization = LinearizationBaseline(props, aero_dir)

800 linearization.set_linearization_point(x_hat, u_hat, alpha_hat, beta_hat,

801 FM_hat, cg_shift)

802 A = linearization.create_A_matrix()

803 B = linearization.create_B_matrix()

804 C = linearization.create_C_matrix()

400

Linearization of the BIRE Aircraft

1 import numpy as np

2 from bire_aero import BIREAero

3 import aero_trim as trim

4 from stdatmos import stdatm_english

5 from control import ctrb, lqr

6 import matplotlib.pyplot as plt

7 import json

8 from os.path import exists

9 import pickle

10

11 class Lin_Results:

12 def __init__(self, N, M):

13 self.A = np.zeros((N, N))

14 self.B = np.zeros((N, M))

15 self.C = np.zeros((N, N))

16 self.K = np.zeros((M, N))

17 self.eigs = np.zeros(N)

18 self.aircraft = "BIRE"

19

20 class LinearizationBIRE:

21 def __init__(self, props, aero_dir='./', N=8, M=4):

22 self.N = N

23 self.M = M

24 self.x_hat = np.zeros(N)

25 self.u_hat = np.zeros(M)

26 self.alpha_hat = 0.

27 self.beta_hat = 0.

28 self.V_hat = 0.

29 self.props = props

30 self.rho = props.rho

31 self.rho_0 = props.rho_0

32 self.S_w = props.S_w

33 self.b_w = props.b_w

34 self.c_w = props.c_w

35 self.W = props.W

36 self.g = props.g

37 self.aero_dir = aero_dir

38 I_model = json.load(open('./bire_inertia_model.json'))

39 Ixx = I_model["Ixx"]

40 Iyy = I_model["Iyy"]

41 Izz = I_model["Izz"]

42 Ixz = I_model["Ixz"]

43 Ixy = I_model["Ixy"]

44 Iyz = I_model["Iyz"]

45 self.I_xx = lambda dB : Ixx["A"]*np.sin(Ixx["w"]*dB + Ixx["phi"]) + Ixx["z"]

46 self.I_yy = lambda dB : Iyy["A"]*np.sin(Iyy["w"]*dB + Iyy["phi"]) + Iyy["z"]

47 self.I_zz = lambda dB : Izz["A"]*np.sin(Izz["w"]*dB + Izz["phi"]) + Izz["z"]

48 self.I_yz = lambda dB : Iyz["A"]*np.abs(np.sin(Iyz["w"]*dB + Iyz["phi"])) +

49 Iyz["z"]

50 self.I_xy = lambda dB : Ixy["A"]*np.sin(Ixy["w"]*dB + Ixy["phi"]) + Ixy["z"]

51 self.I_xz = lambda dB : Ixz["A"]*np.sin(Ixz["w"]*dB + Ixz["phi"]) + Ixz["z"]

52 self.dI_xx = lambda dB : np.array([0., 0., 0.,

53 Ixx["A"]*Ixx["w"]*np.cos(Ixx["w"]*dB +

54 Ixx["phi"])])

401

55 self.dI_yy = lambda dB : np.array([0., 0., 0.,

56 Iyy["A"]*Iyy["w"]*np.cos(Iyy["w"]*dB +

57 Iyy["phi"])])

58 self.dI_zz = lambda dB : np.array([0., 0., 0.,

59 Izz["A"]*Izz["w"]*np.cos(Izz["w"]*dB +

60 Izz["phi"])])

61 self.dI_xy = lambda dB : np.array([0., 0., 0.,

62 Ixy["A"]*Ixy["w"]*np.cos(Ixy["w"]*dB +

63 Ixy["phi"])])

64 self.dI_xz = lambda dB : np.array([0., 0., 0.,

65 Ixz["A"]*Ixz["w"]*np.cos(Ixz["w"]*dB +

66 Ixz["phi"])])

67 self.tc_tau = 0.05

68 self.tc_da = 0.05

69 self.tc_de = 0.05

70 self.tc_dr = 0.05

71 self.rate_da = 80.*np.pi/180.

72 self.rate_de = 60*np.pi/180.

73 self.rate_dB = 120*np.pi/180.

74

75 def dI_yz(self, dB):

76 I_model = json.load(open('./bire_inertia_model.json'))

77 Iyz = I_model["Iyz"]

78 if dB == 0.:

79 dI_yz = np.array([0., 0., 0., 0.])

80 elif abs(dB) == np.pi:

81 dI_yz = np.array([0., 0., 0., 0.])

82 else:

83 dI_yz = np.array([0., 0., 0.,

84 Iyz["A"]*Iyz["w"]*np.sin(2.*Iyz["w"]*dB +

85 Iyz["phi"])/

86 np.abs(np.sin(Iyz["w"]*dB))])

87 return dI_yz

88

89

90 def set_linearization_point(self, x_hat, u_hat, alpha_hat, beta_hat, FM_hat,

91 cg_shift):

92 self.x_hat = x_hat

93 self.u_hat = u_hat

94 self.dB_hat = self.u_hat[3]

95 self.alpha_hat = alpha_hat

96 self.beta_hat = beta_hat

97 self.V_hat = np.sqrt(np.sum(np.square(self.x_hat[:3])))

98 [self.CD_hat, self.CS_hat, self.CL_hat,

99 self.Cl_hat, self.Cm_hat, self.Cn_hat] = FM_hat

100 self.I_inv = self._I_inv(self.dB_hat)

101 self._W_matrix()

102 self.dVinv_dz = self._dVinv_dz()

103 self.dV_dz = self._dV_dz()

104 self.da_dz = self._dalpha_dz()

105 self.db_dz = self._dbeta_dz()

106 self.Dx = cg_shift[0]

107 self.Dy = cg_shift[1]

108 self.Dz = cg_shift[2]

109 dim_const = 0.5*self.rho*self.V_hat**2*self.S_w

110 CZ = -(self.CD_hat*np.sin(self.alpha_hat)*np.cos(self.beta_hat) +

402

111 self.CS_hat*np.sin(self.alpha_hat)*np.sin(self.beta_hat) +

112 self.CL_hat*np.cos(self.alpha_hat))

113 CY = self.CS_hat*np.cos(self.beta_hat) - self.CD_hat*np.sin(self.beta_hat)

114 CX = -(self.CD_hat*np.cos(self.alpha_hat)*np.cos(self.beta_hat) +

115 self.CS_hat*np.cos(self.alpha_hat)*np.sin(self.beta_hat) -

116 self.CL_hat*np.sin(self.alpha_hat))

117 Tx = trim.thrust(self.u_hat[0], self.V_hat, self.props)

118 FX = dim_const*CX + self.u_hat[0]*Tx

119 FY = dim_const*CY

120 FZ = dim_const*CZ

121 self.Mx_hat = dim_const*self.b_w*self.Cl_hat - FZ*self.Dy + FY*self.Dz

122 self.My_hat = dim_const*self.c_w*self.Cm_hat - FZ*self.Dx + FX*self.Dz

123 self.Mz_hat = dim_const*self.b_w*self.Cn_hat - FY*self.Dx + FX*self.Dy

124 self.dp_dz = np.array([0., 0., 0., 1., 0., 0., 0., 0.])

125 self.dq_dz = np.array([0., 0., 0., 0., 1., 0., 0., 0.])

126 self.dr_dz = np.array([0., 0., 0., 0., 0., 1., 0., 0.])

127 self.dde_du = np.array([0., 0., 1., 0.])

128 self.dda_du = np.array([0., 1., 0., 0.])

129 self.dtau_du = np.array([1., 0., 0., 0.])

130 self.ddB_du = np.array([0., 0., 0., 1.])

131 self.dde2_du = 2.*self.u_hat[2]*self.dde_du

132 aero = BIREAero(self.aero_dir)

133 aero.evaluate_coeffs(self.dB_hat)

134 aero.evaluate_derivatives(self.dB_hat)

135

136 self.CL_0 = aero.CL0

137 self.CL_a = aero.CLa

138 self.CL_b = aero.CLb

139 self.CL_p = aero.CLp

140 self.CL_q = aero.CLq

141 self.CL_r = aero.CLr

142 self.CL_da = aero.CLda

143 self.CL_de = aero.CLde

144 self.CL1_hat = self.CL_0 + self.CL_a*self.alpha_hat

145

146 self.CS_0 = aero.CS0

147 self.CS_a = aero.CSa

148 self.CS_b = aero.CSb

149 self.CS1_hat = self.CS_0 + self.CS_b*self.beta_hat

150 self.CS_Lp = aero.CSLp

151 self.CS_p = aero.CSp

152 self.CS_q = aero.CSq

153 self.CS_r = aero.CSr

154 self.CS_da = aero.CSda

155 self.CS_de = aero.CSde

156

157 self.CD_0 = aero.CD0

158 self.CD_L = aero.CDL

159 self.CD_L2 = aero.CDL2

160 self.CD_S = aero.CDS

161 self.CD_S2 = aero.CDS2

162 self.CD_Sp = aero.CDSp

163 self.CD_p = aero.CDp

164 self.CD_L2q = aero.CDL2q

165 self.CD_Lq = aero.CDLq

166 self.CD_q = aero.CDq

403

167 self.CD_Sr = aero.CDSr

168 self.CD_r = aero.CDr

169 self.CD_Sda = aero.CDSda

170 self.CD_da = aero.CDda

171 self.CD_Lde = aero.CDLde

172 self.CD_de = aero.CDde

173 self.CD_de2 = aero.CDde2

174

175 self.Cl_0 = aero.Cl0

176 self.Cl_a = aero.Cla

177 self.Cl_b = aero.Clb

178 self.Cl_p = aero.Clp

179 self.Cl_q = aero.Clq

180 self.Cl_Lr = aero.ClLr

181 self.Cl_r = aero.Clr

182 self.Cl_da = aero.Clda

183 self.Cl_de = aero.Clde

184

185 self.Cm_0 = aero.Cm0

186 self.Cm_a = aero.Cma

187 self.Cm_b = aero.Cmb

188 self.Cm_p = aero.Cmp

189 self.Cm_q = aero.Cmq

190 self.Cm_r = aero.Cmr

191 self.Cm_da = aero.Cmda

192 self.Cm_de = aero.Cmde

193

194 self.Cn_0 = aero.Cn0

195 self.Cn_a = aero.Cna

196 self.Cn_b = aero.Cnb

197 self.Cn_Lp = aero.CnLp

198 self.Cn_p = aero.Cnp

199 self.Cn_q = aero.Cnq

200 self.Cn_r = aero.Cnr

201 self.Cn_Lda = aero.CnLda

202 self.Cn_da = aero.Cnda

203 self.Cn_de = aero.Cnde

204

205 self.dCL_0 = aero.dCL0*self.ddB_du

206 self.dCL_a = aero.dCLa*self.ddB_du

207 self.dCL_b = aero.dCLb*self.ddB_du

208 self.dCL_p = aero.dCLp*self.ddB_du

209 self.dCL_q = aero.dCLq*self.ddB_du

210 self.dCL_r = aero.dCLr*self.ddB_du

211 self.dCL_da = aero.dCLda*self.ddB_du

212 self.dCL_de = aero.dCLde*self.ddB_du

213 self.dCL1_hat = self.dCL_0 + self.dCL_a*self.alpha_hat

214

215 self.dCS_0 = aero.dCS0*self.ddB_du

216 self.dCS_a = aero.dCSa*self.ddB_du

217 self.dCS_b = aero.dCSb*self.ddB_du

218 self.dCS1_hat = self.dCS_0 + self.dCS_b*self.beta_hat

219 self.dCS_Lp = aero.dCSLp*self.ddB_du

220 self.dCS_p = aero.dCSp*self.ddB_du

221 self.dCS_q = aero.dCSq*self.ddB_du

222 self.dCS_r = aero.dCSr*self.ddB_du

404

223 self.dCS_da = aero.dCSda*self.ddB_du

224 self.dCS_de = aero.dCSde*self.ddB_du

225

226 self.dCD_0 = aero.dCD0*self.ddB_du

227 self.dCD_L = aero.dCDL*self.ddB_du

228 self.dCD_L2 = aero.dCDL2*self.ddB_du

229 self.dCD_S = aero.dCDS*self.ddB_du

230 self.dCD_S2 = aero.dCDS2*self.ddB_du

231 self.dCD_Sp = aero.dCDSp*self.ddB_du

232 self.dCD_p = aero.dCDp*self.ddB_du

233 self.dCD_L2q = aero.dCDL2q*self.ddB_du

234 self.dCD_Lq = aero.dCDLq*self.ddB_du

235 self.dCD_q = aero.dCDq*self.ddB_du

236 self.dCD_Sr = aero.dCDSr*self.ddB_du

237 self.dCD_r = aero.dCDr*self.ddB_du

238 self.dCD_Sda = aero.dCDSda*self.ddB_du

239 self.dCD_da = aero.dCDda*self.ddB_du

240 self.dCD_Lde = aero.dCDLde*self.ddB_du

241 self.dCD_de = aero.dCDde*self.ddB_du

242 self.dCD_de2 = aero.dCDde2*self.ddB_du

243

244 self.dCl_0 = aero.dCl0*self.ddB_du

245 self.dCl_a = aero.dCla*self.ddB_du

246 self.dCl_b = aero.dClb*self.ddB_du

247 self.dCl_p = aero.dClp*self.ddB_du

248 self.dCl_q = aero.dClq*self.ddB_du

249 self.dCl_Lr = aero.dClLr*self.ddB_du

250 self.dCl_r = aero.dClr*self.ddB_du

251 self.dCl_da = aero.dClda*self.ddB_du

252 self.dCl_de = aero.dClde*self.ddB_du

253

254 self.dCm_0 = aero.dCm0*self.ddB_du

255 self.dCm_a = aero.dCma*self.ddB_du

256 self.dCm_b = aero.dCmb*self.ddB_du

257 self.dCm_p = aero.dCmp*self.ddB_du

258 self.dCm_q = aero.dCmq*self.ddB_du

259 self.dCm_r = aero.dCmr*self.ddB_du

260 self.dCm_da = aero.dCmda*self.ddB_du

261 self.dCm_de = aero.dCmde*self.ddB_du

262

263 self.dCn_0 = aero.dCn0*self.ddB_du

264 self.dCn_a = aero.dCna*self.ddB_du

265 self.dCn_b = aero.dCnb*self.ddB_du

266 self.dCn_Lp = aero.dCnLp*self.ddB_du

267 self.dCn_p = aero.dCnp*self.ddB_du

268 self.dCn_q = aero.dCnq*self.ddB_du

269 self.dCn_r = aero.dCnr*self.ddB_du

270 self.dCn_Lda = aero.dCnLda*self.ddB_du

271 self.dCn_da = aero.dCnda*self.ddB_du

272 self.dCn_de = aero.dCnde*self.ddB_du

273

274 def _det_I(self, dB):

275 Ixx = self.I_xx(dB)

276 Iyy = self.I_yy(dB)

277 Izz = self.I_zz(dB)

278 Iyz = self.I_yz(dB)

405

279 Ixz = self.I_xz(dB)

280 Ixy = self.I_xy(dB)

281 Izy = Iyz

282 Izx = Ixz

283 Iyx = Ixy

284 C1 = Ixx*(Iyy*Izz - Iyz*Izy)

285 C2 = Ixy*(Iyx*Izz + Iyz*Izx)

286 C3 = Ixz*(Iyx*Izy + Iyy*Izx)

287 return C1 - C2 - C3

288

289 def _ddetI_du(self):

290 Ixx = self.I_xx(self.dB_hat)

291 Iyy = self.I_yy(self.dB_hat)

292 Izz = self.I_zz(self.dB_hat)

293 Iyz = self.I_yz(self.dB_hat)

294 Ixz = self.I_xz(self.dB_hat)

295 Ixy = self.I_xy(self.dB_hat)

296 dIxx = self.dI_xx(self.dB_hat)

297 dIyy = self.dI_yy(self.dB_hat)

298 dIzz = self.dI_zz(self.dB_hat)

299 dIyz = self.dI_yz(self.dB_hat)

300 dIxz = self.dI_xz(self.dB_hat)

301 dIxy = self.dI_xy(self.dB_hat)

302 ddetIdu = (dIxx*(Iyy*Izz - Iyz**2) +

303 Ixx*(dIyy*Izz + Iyy*dIzz - 2.*Iyz*dIyz) -

304 dIxy*(Ixy*Izz + Iyz*Ixz) -

305 Ixy*(dIxy*Izz + Ixy*dIzz + dIyz*Ixz + Iyz*dIxz) -

306 dIxz*(Ixy*Iyz + Iyy*Ixz) -

307 Ixz*(dIxy*Iyz + Ixy*dIyz + dIyy*Ixz + Iyy*dIxz))

308 return ddetIdu

309

310 def _Istar(self):

311 Ixx = self.I_xx(self.dB_hat)

312 Iyy = self.I_yy(self.dB_hat)

313 Izz = self.I_zz(self.dB_hat)

314 Iyz = self.I_yz(self.dB_hat)

315 Ixz = self.I_xz(self.dB_hat)

316 Ixy = self.I_xy(self.dB_hat)

317 Istar = np.zeros((3, 3))

318 Istar[0, 0] = Iyy*Izz - Iyz**2

319 Istar[0, 1] = Ixy*Izz + Ixz*Iyz

320 Istar[0, 2] = Ixy*Iyz + Ixz*Iyy

321 Istar[1, 0] = Istar[0, 1]

322 Istar[1, 1] = Ixx*Izz - Ixz**2

323 Istar[1, 2] = Ixx*Iyz + Ixy*Ixz

324 Istar[2, 0] = Istar[0, 2]

325 Istar[2, 1] = Istar[1, 2]

326 Istar[2, 2] = Ixx*Iyy - Ixy**2

327 return Istar

328

329 def _dIstar_du(self):

330 Ixx = self.I_xx(self.dB_hat)

331 Iyy = self.I_yy(self.dB_hat)

332 Izz = self.I_zz(self.dB_hat)

333 Iyz = self.I_yz(self.dB_hat)

334 Ixz = self.I_xz(self.dB_hat)

406

335 Ixy = self.I_xy(self.dB_hat)

336 dIxx = self.dI_xx(self.dB_hat)

337 dIyy = self.dI_yy(self.dB_hat)

338 dIzz = self.dI_zz(self.dB_hat)

339 dIyz = self.dI_yz(self.dB_hat)

340 dIxz = self.dI_xz(self.dB_hat)

341 dIxy = self.dI_xy(self.dB_hat)

342 dIstardu = np.zeros((3, 3, self.M))

343 dIstardu[0, 0, :] = dIyy*Izz + Iyy*dIzz - 2.*Iyz*dIyz

344 dIstardu[0, 1, :] = dIxy*Izz + Ixy*dIzz + dIxz*Iyz + Ixz*dIyz

345 dIstardu[0, 2, :] = dIxy*Iyz + Ixy*dIyz + dIxz*Iyy + Ixz*dIyy

346 dIstardu[1, 0, :] = dIxy*Izz + Ixy*dIzz + dIyz*Ixz + Iyz*dIxz

347 dIstardu[1, 1, :] = dIxx*Izz + Ixx*dIzz - 2.*Ixz*dIxz

348 dIstardu[1, 2, :] = dIxx*Iyz + Ixx*dIyz + dIxy*Ixz + Ixy*dIxz

349 dIstardu[2, 0, :] = dIxy*Iyz + Ixy*dIyz + dIyy*Ixz + Iyy*dIxz

350 dIstardu[2, 1, :] = dIxx*Iyz + Ixx*dIyz + dIxy*Ixz + Ixy*dIxz

351 dIstardu[2, 2, :] = dIxx*Iyy + Ixx*dIyy - 2.*Ixy*dIxy

352 return dIstardu

353

354 def _I_inv(self, dB):

355 Ixx = self.I_xx(dB)

356 Iyy = self.I_yy(dB)

357 Izz = self.I_zz(dB)

358 Iyz = self.I_yz(dB)

359 Ixz = self.I_xz(dB)

360 Ixy = self.I_xy(dB)

361 Izy = Iyz

362 Izx = Ixz

363 Iyx = Ixy

364 det_I = self._det_I(dB)

365 I_inv = np.zeros((3, 3))

366 I_inv[0, 0] = Iyy*Izz - Iyz*Izy

367 I_inv[0, 1] = Ixy*Izz + Ixz*Izy

368 I_inv[0, 2] = Ixy*Iyz + Ixz*Iyy

369 I_inv[1, 0] = Iyx*Izz + Iyz*Izx

370 I_inv[1, 1] = Ixx*Izz - Ixz*Izx

371 I_inv[1, 2] = Ixx*Iyz + Ixz*Iyz

372 I_inv[2, 0] = Iyz*Izy + Iyy*Izx

373 I_inv[2, 1] = Ixx*Izy + Ixy*Izx

374 I_inv[2, 2] = Ixx*Iyy - Ixy*Iyx

375 I_inv = I_inv/det_I

376 return I_inv

377

378 def _dIinv_du(self):

379 dIinvdu = np.zeros((3, 3, self.M))

380 dIstardu = self._dIstar_du()

381 ddetI = self._ddetI_du()

382 detI = self._det_I(self.dB_hat)

383 Istar = self._Istar()

384 dIinvdu = (detI*dIstardu - Istar[:, :, None]*ddetI[None, :])/(detI**2)

385 return dIinvdu

386

387 def _dz1_dz(self):

388 dz1_dz = np.zeros(self.N)

389 dFxdz = self._dFx_dz()

390 dz1_dz = self.props.g/self.props.W*dFxdz

407

391 dz1_dz[1] += self.x_hat[5]

392 dz1_dz[2] -= self.x_hat[4]

393 dz1_dz[4] -= self.x_hat[2]

394 dz1_dz[5] += self.x_hat[1]

395 dz1_dz[7] -= self.props.g*np.cos(self.x_hat[7])

396 return dz1_dz

397

398 def _dz2_dz(self):

399 dz2_dz = np.zeros(self.N)

400 dFydz = self._dFy_dz()

401 dz2_dz = self.props.g/self.props.W*dFydz

402 dz2_dz[0] -= self.x_hat[5]

403 dz2_dz[2] += self.x_hat[3]

404 dz2_dz[3] += self.x_hat[2]

405 dz2_dz[5] -= self.x_hat[0]

406 dz2_dz[6] += self.props.g*np.cos(self.x_hat[6])*np.cos(self.x_hat[7])

407 dz2_dz[7] -= self.props.g*np.sin(self.x_hat[6])*np.sin(self.x_hat[7])

408 return dz2_dz

409

410 def _dz3_dz(self):

411 dz3_dz = np.zeros(self.N)

412 dFzdz = self._dFz_dz()

413 dz3_dz = self.props.g/self.props.W*dFzdz

414 dz3_dz[0] += self.x_hat[4]

415 dz3_dz[1] -= self.x_hat[3]

416 dz3_dz[3] -= self.x_hat[1]

417 dz3_dz[4] += self.x_hat[0]

418 dz3_dz[6] -= self.props.g*np.sin(self.x_hat[6])*np.cos(self.x_hat[7])

419 dz3_dz[7] -= self.props.g*np.cos(self.x_hat[6])*np.sin(self.x_hat[7])

420 return dz3_dz

421

422 def _dz4_dz(self):

423 dz4_dz = np.zeros(self.N)

424 dMxdz = self._dMx_dz()

425 dMydz = self._dMy_dz()

426 dMzdz = self._dMz_dz()

427 dM = np.array([dMxdz, dMydz, dMzdz])

428 R = np.zeros((3, self.N + self.M))

429 R = dM + self.W_mat

430 dz4_dz = np.matmul(self.I_inv, R)[0, :]

431 return dz4_dz

432

433 def _dz5_dz(self):

434 dz5_dz = np.zeros(self.N)

435 dMxdz = self._dMx_dz()

436 dMydz = self._dMy_dz()

437 dMzdz = self._dMz_dz()

438 dM = np.array([dMxdz, dMydz, dMzdz])

439 R = np.zeros((3, self.N + self.M))

440 R = dM + self.W_mat

441 dz5_dz = np.matmul(self.I_inv, R)[1, :]

442 return dz5_dz

443

444 def _dz6_dz(self):

445 dz6_dz = np.zeros(self.N)

446 dMxdz = self._dMx_dz()

408

447 dMydz = self._dMy_dz()

448 dMzdz = self._dMz_dz()

449 dM = np.array([dMxdz, dMydz, dMzdz])

450 R = np.zeros((3, self.N + self.M))

451 R = dM + self.W_mat

452 dz6_dz = np.matmul(self.I_inv, R)[2, :]

453 return dz6_dz

454

455 def _dz7_dz(self):

456 dz7_dz = np.zeros(self.N)

457 s_7 = np.sin(self.x_hat[6])

458 c_7 = np.cos(self.x_hat[6])

459 s_8 = np.sin(self.x_hat[7])

460 c_8 = np.cos(self.x_hat[7])

461 t_8 = s_8/c_8

462 dz7_dz[3] = 1.

463 dz7_dz[4] = s_7*t_8

464 dz7_dz[5] = c_7*t_8

465 dz7_dz[6] = t_8*(c_7*self.x_hat[4] - s_7*self.x_hat[5])

466 dz7_dz[7] = s_7/(c_8**2)*self.x_hat[4] + c_7/(c_8**2)*self.x_hat[5]

467 return dz7_dz

468

469 def _dz8_dz(self):

470 dz8_dz = np.zeros(self.N)

471 s_7 = np.sin(self.x_hat[6])

472 c_7 = np.cos(self.x_hat[6])

473 dz8_dz[4] = c_7

474 dz8_dz[5] = -s_7

475 dz8_dz[6] = -s_7*self.x_hat[4] - c_7*self.x_hat[5]

476 return dz8_dz

477

478 def _dFx_dz(self):

479 dFxdz = np.zeros(self.N)

480 dCXdz = self._dCX_dz()

481 dVdz = self.dV_dz

482 dTXdz = self._dTX_dz()

483 c_a = np.cos(self.alpha_hat)

484 s_a = np.sin(self.alpha_hat)

485 c_b = np.cos(self.beta_hat)

486 s_b = np.sin(self.beta_hat)

487 CX = -(self.CD_hat*c_a*c_b + self.CS_hat*c_a*s_b -

488 self.CL_hat*s_a)

489 dFxdz = (0.5*self.rho*self.V_hat**2*self.S_w*dCXdz +

490 self.rho*self.V_hat*self.S_w*CX*dVdz + dTXdz)

491 return dFxdz

492

493 def _dFy_dz(self):

494 dFydz = np.zeros(self.N)

495 dCYdz = self._dCY_dz()

496 dVdz = self.dV_dz

497 c_b = np.cos(self.beta_hat)

498 s_b = np.sin(self.beta_hat)

499 CY = self.CS_hat*c_b - self.CD_hat*s_b

500 dFydz = (0.5*self.rho*self.V_hat**2*self.S_w*dCYdz +

501 self.rho*self.V_hat*self.S_w*CY*dVdz)

502 return dFydz

409

503

504 def _dFz_dz(self):

505 dFzdz = np.zeros(self.N)

506 dCZdz = self._dCZ_dz()

507 dVdz = self.dV_dz

508 c_a = np.cos(self.alpha_hat)

509 s_a = np.sin(self.alpha_hat)

510 c_b = np.cos(self.beta_hat)

511 s_b = np.sin(self.beta_hat)

512 CZ = -(self.CD_hat*s_a*c_b + self.CS_hat*s_a*s_b +

513 self.CL_hat*c_a)

514 dFzdz = (0.5*self.rho*self.V_hat**2*self.S_w*dCZdz +

515 self.rho*self.V_hat*self.S_w*CZ*dVdz)

516 return dFzdz

517

518 def _dMx_dz(self):

519 dMxdz = np.zeros(self.N)

520 dCldz = self._dCl_dz()

521 dFzdz = self._dFz_dz()

522 dFydz = self._dFy_dz()

523 dVdz = self.dV_dz

524 dy = self.Dy

525 dz = self.Dz

526 dMxdz = (0.5*self.rho*self.V_hat**2*self.S_w*self.b_w*dCldz +

527 self.rho*self.V_hat*self.S_w*self.b_w*self.Cl_hat*dVdz -

528 dFzdz*dy +

529 dFydz*dz)

530 return dMxdz

531

532 def _dMy_dz(self):

533 dMydz = np.zeros(self.N)

534 dCmdz = self._dCm_dz()

535 dFzdz = self._dFz_dz()

536 dFxdz = self._dFx_dz()

537 dVdz = self.dV_dz

538 dx = self.Dx

539 dz = self.Dz

540 dMydz = (0.5*self.rho*self.V_hat**2*self.S_w*self.c_w*dCmdz +

541 self.rho*self.V_hat*self.S_w*self.c_w*self.Cm_hat*dVdz -

542 dFzdz*dx +

543 dFxdz*dz)

544 return dMydz

545

546 def _dMz_dz(self):

547 dMzdz = np.zeros(self.N)

548 dCndz = self._dCn_dz()

549 dFxdz = self._dFx_dz()

550 dFydz = self._dFy_dz()

551 dVdz = self.dV_dz

552 dx = self.Dx

553 dy = self.Dy

554 dMzdz = (0.5*self.rho*self.V_hat**2*self.S_w*self.b_w*dCndz +

555 self.rho*self.V_hat*self.S_w*self.b_w*self.Cn_hat*dVdz -

556 dFydz*dx +

557 dFxdz*dy)

558 return dMzdz

410

559

560 def _dV_dz(self):

561 dVdz = np.zeros(self.N)

562 dVdz[0] = self.x_hat[0]/self.V_hat

563 dVdz[1] = self.x_hat[1]/self.V_hat

564 dVdz[2] = self.x_hat[2]/self.V_hat

565 return dVdz

566

567 def _dVinv_dz(self):

568 dVinvdz = np.zeros(self.N)

569 dVinvdz[0] = -self.x_hat[0]/self.V_hat**3

570 dVinvdz[1] = -self.x_hat[1]/self.V_hat**3

571 dVinvdz[2] = -self.x_hat[2]/self.V_hat**3

572 return dVinvdz

573

574 def _dTX_dz(self):

575 dVdz = self._dV_dz()

576 H = self.props.H

577 a_mil = self.props.a_mil(H)

578 T1_mil = self.props.T1_mil(H)

579 T2_mil = self.props.T2_mil(H)

580 rho_ratio = (self.rho/self.rho_0)

581 dTmil_dz = rho_ratio**a_mil*(T1_mil*dVdz + 2.*T2_mil*self.V_hat*dVdz)

582 if self.u_hat[0] < 0.77:

583 a_idle = self.props.a_idle(H)

584 T1_idle = self.props.T1_idle(H)

585 T2_idle = self.props.T2_idle(H)

586 dTidle_dz = rho_ratio**a_idle*(T1_idle*dVdz + 2.*T2_idle*self.V_hat*dVdz)

587 P1 = 64.94*self.u_hat[0]/50.

588 dTX_dz = P1*(dTmil_dz - dTidle_dz) + dTidle_dz

589 else:

590 a_max = self.props.a_max(H)

591 T1_max = self.props.T1_max(H)

592 T2_max = self.props.T2_max(H)

593 dTmax_dz = rho_ratio**a_max*(T1_max*dVdz + 2.*T2_max*self.V_hat*dVdz)

594 P1 = (217.38*self.u_hat[0] - 117.38 - 50.)/50.

595 dTX_dz = P1*(dTmax_dz - dTmil_dz) + dTmil_dz

596 return dTX_dz

597

598 def _dCX_dz(self):

599 dCXdz = np.zeros(self.N)

600 dCDdz = self._dCD_dz()

601 dCSdz = self._dCS_dz()

602 dCLdz = self._dCL_dz()

603 dadz = self.da_dz

604 dbdz = self.db_dz

605 c_a = np.cos(self.alpha_hat)

606 s_a = np.sin(self.alpha_hat)

607 c_b = np.cos(self.beta_hat)

608 s_b = np.sin(self.beta_hat)

609 CD = self.CD_hat

610 CS = self.CS_hat

611 CL = self.CL_hat

612 dCXdz = (-dCDdz*c_a*c_b + CD*s_a*c_b*dadz + CD*c_a*s_b*dbdz -

613 dCSdz*c_a*s_b + CS*s_a*s_b*dadz - CS*c_a*c_b*dbdz +

614 dCLdz*s_a + CL*c_a*dadz)

411

615 return dCXdz

616

617 def _dCY_dz(self):

618 dCYdz = np.zeros(self.N)

619 dCDdz = self._dCD_dz()

620 dCSdz = self._dCS_dz()

621 dbdz = self.db_dz

622 c_b = np.cos(self.beta_hat)

623 s_b = np.sin(self.beta_hat)

624 CD = self.CD_hat

625 CS = self.CS_hat

626 dCYdz = dCSdz*c_b - CS*s_b*dbdz - dCDdz*s_b - CD*c_b*dbdz

627 return dCYdz

628

629 def _dCZ_dz(self):

630 dCZdz = np.zeros(self.N)

631 dCDdz = self._dCD_dz()

632 dCSdz = self._dCS_dz()

633 dCLdz = self._dCL_dz()

634 dadz = self.da_dz

635 dbdz = self.db_dz

636 c_a = np.cos(self.alpha_hat)

637 s_a = np.sin(self.alpha_hat)

638 c_b = np.cos(self.beta_hat)

639 s_b = np.sin(self.beta_hat)

640 CD = self.CD_hat

641 CS = self.CS_hat

642 CL = self.CL_hat

643 dCZdz = (-dCDdz*s_a*c_b - CD*c_a*c_b*dadz + CD*s_a*s_b*dbdz -

644 dCSdz*s_a*s_b - CS*c_a*s_b*dadz - CS*s_a*c_b*dbdz -

645 dCLdz*c_a + CL*s_a*dadz)

646 return dCZdz

647

648 def _dalpha_dz(self):

649 dadz = np.zeros(self.N)

650 C1 = self.x_hat[0]**2 + self.x_hat[2]**2

651 dadz[0] = -self.x_hat[2]/C1

652 dadz[2] = self.x_hat[0]/C1

653 return dadz

654

655 def _dbeta_dz(self):

656 dbdz = np.zeros(self.N)

657 C1 = np.sqrt(self.x_hat[0]**2 + self.x_hat[2]**2)

658 C2 = (self.V_hat**2)*C1

659 dbdz[0] = -self.x_hat[1]*self.x_hat[0]/C2

660 dbdz[1] = C1/(self.V_hat**2)

661 dbdz[2] = -self.x_hat[1]*self.x_hat[2]/C2

662 return dbdz

663

664 def _dCL_dz(self):

665 dCLdz = np.zeros(self.N)

666 dCL1dz = self._dCL1_dz()

667 dpbardz = self._dpbar_dz()

668 dqbardz = self._dqbar_dz()

669 drbardz = self._drbar_dz()

670 dCLdz = (dCL1dz + self.CL_b*self.db_dz +

412

671 self.CL_p*dpbardz + self.CL_q*dqbardz + self.CL_r*drbardz)

672 return dCLdz

673

674 def _dCL1_dz(self):

675 dCL1dz = self.CL_a*self.da_dz

676 return dCL1dz

677

678 def _dqbar_dz(self):

679 dqdz = self.dq_dz

680 dVidz = self.dVinv_dz

681 dqbardz = dqdz*self.c_w/(2.*self.V_hat) + dVidz*self.c_w*self.x_hat[4]/2.

682 return dqbardz

683

684 def _dCS_dz(self):

685 dCSdz = np.zeros(self.N)

686 dCS1dz = self._dCS1_dz()

687 dCL1dz = self._dCL1_dz()

688 xb_4 = self.b_w*self.x_hat[3]/(2.*self.V_hat)

689 dpbardz = self._dpbar_dz()

690 dqbardz = self._dqbar_dz()

691 drbardz = self._drbar_dz()

692 dCSdz = (self.CS_a*self.da_dz + dCS1dz +

693 self.CS_Lp*dCL1dz*xb_4 +

694 (self.CS_Lp*self.CL1_hat + self.CS_p)*dpbardz +

695 self.CS_q*dqbardz +

696 self.CS_r*drbardz)

697 return dCSdz

698

699 def _dCS1_dz(self):

700 dCS1dz = self.CS_b*self.db_dz

701 return dCS1dz

702

703 def _dpbar_dz(self):

704 dpdz = self.dp_dz

705 dVidz = self.dVinv_dz

706 dpbardz = dpdz*self.b_w/(2.*self.V_hat) + dVidz*self.b_w*self.x_hat[3]/2.

707 return dpbardz

708

709 def _drbar_dz(self):

710 drdz = self.dr_dz

711 dVidz = self.dVinv_dz

712 drbardz = drdz*self.b_w/(2.*self.V_hat) + dVidz*self.b_w*self.x_hat[5]/2.

713 return drbardz

714

715 def _dCD_dz(self):

716 dCDdz = np.zeros(self.N)

717 dCL1dz = self._dCL1_dz()

718 dCS1dz = self._dCS1_dz()

719 dCL12dz = 2.*self.CL1_hat*dCL1dz

720 dCS12dz = 2.*self.CS1_hat*dCS1dz

721 xb_4 = self.b_w*self.x_hat[3]/(2.*self.V_hat)

722 xb_5 = self.c_w*self.x_hat[4]/(2.*self.V_hat)

723 xb_6 = self.b_w*self.x_hat[5]/(2.*self.V_hat)

724 dpbardz = self._dpbar_dz()

725 dqbardz = self._dqbar_dz()

726 drbardz = self._drbar_dz()

413

727 CL1 = self.CL1_hat

728 CS1 = self.CS1_hat

729 dCDdz = (self.CD_L*dCL1dz + self.CD_L2*dCL12dz +

730 self.CD_S*dCS1dz + self.CD_S2*dCS12dz +

731 self.CD_Sp*dCS1dz*xb_4 +

732 (self.CD_Sp*CS1 + self.CD_p)*dpbardz +

733 (self.CD_L2q*dCL12dz + self.CD_Lq*dCL1dz)*xb_5 +

734 (self.CD_L2q*CL1**2 + self.CD_Lq*CL1 + self.CD_q)*dqbardz +

735 self.CD_Sr*dCS1dz*xb_6 +

736 (self.CD_Sr*CS1 + self.CD_r)*drbardz +

737 self.CD_Sda*dCS1dz*self.u_hat[1] +

738 self.CD_Lde*dCL1dz*self.u_hat[2])

739 return dCDdz

740

741 def _dCl_dz(self):

742 dCldz = np.zeros(self.N)

743 dadz = self.da_dz

744 dbdz = self.db_dz

745 dpbardz = self._dpbar_dz()

746 dqbardz = self._dqbar_dz()

747 drbardz = self._drbar_dz()

748 dCL1dz = self._dCL1_dz()

749 xb_6 = self.b_w*self.x_hat[5]/(2.*self.V_hat)

750 CL1 = self.CL1_hat

751 dCldz = (self.Cl_a*dadz + self.Cl_b*dbdz + self.Cl_p*dpbardz +

752 self.Cl_q*dqbardz + self.Cl_Lr*dCL1dz*xb_6 +

753 (self.Cl_Lr*CL1 + self.Cl_r)*drbardz)

754 return dCldz

755

756 def _dCm_dz(self):

757 dCmdz = np.zeros

758 dadz = self.da_dz

759 dbdz = self.db_dz

760 dpbardz = self._dpbar_dz()

761 dqbardz = self._dqbar_dz()

762 drbardz = self._drbar_dz()

763 dCmdz = (self.Cm_a*dadz + self.Cm_b*dbdz + self.Cm_p*dpbardz +

764 self.Cm_q*dqbardz + self.Cm_r*drbardz)

765 return dCmdz

766

767 def _dCn_dz(self):

768 dCndz = np.zeros(self.N)

769 dadz = self.da_dz

770 dbdz = self.db_dz

771 dpbardz = self._dpbar_dz()

772 dqbardz = self._dqbar_dz()

773 drbardz = self._drbar_dz()

774 dCL1dz = self._dCL1_dz()

775 xb_4 = self.b_w*self.x_hat[3]/(2.*self.V_hat)

776 CL1 = self.CL1_hat

777 dCndz = (self.Cn_a*dadz + self.Cn_b*dbdz + self.Cn_Lp*dCL1dz*xb_4 +

778 (self.Cn_Lp*CL1 + self.Cn_p)*dpbardz + self.Cn_q*dqbardz +

779 self.Cn_r*drbardz + self.Cn_Lda*dCL1dz*self.u_hat[1])

780 return dCndz

781

782 def _dz1_du(self):

414

783 dFxdu = self._dFx_du()

784 dz1du = self.g/self.W*dFxdu

785 return dz1du

786

787 def _dz2_du(self):

788 dFydu = self._dFy_du()

789 dz2du = self.g/self.W*dFydu

790 return dz2du

791

792 def _dz3_du(self):

793 dFzdu = self._dFz_du()

794 dz3du = self.g/self.W*dFzdu

795 return dz3du

796

797 def _M1(self):

798 Iyy = self.I_yy(self.dB_hat)

799 Izz = self.I_zz(self.dB_hat)

800 Iyz = self.I_yz(self.dB_hat)

801 Ixz = self.I_xz(self.dB_hat)

802 Ixy = self.I_xy(self.dB_hat)

803 M1 = (self.Mx_hat +

804 (Iyy - Izz)*self.x_hat[4]*self.x_hat[5] +

805 Iyz*(self.x_hat[4]**2 - self.x_hat[5]**2) +

806 Ixz*self.x_hat[3]*self.x_hat[4] -

807 Ixy*self.x_hat[3]*self.x_hat[5])

808 return M1

809

810 def _dM1_du(self):

811 dIyy = self.dI_yy(self.dB_hat)

812 dIzz = self.dI_zz(self.dB_hat)

813 dIyz = self.dI_yz(self.dB_hat)

814 dIxz = self.dI_xz(self.dB_hat)

815 dIxy = self.dI_xy(self.dB_hat)

816 dMxdu = self._dMx_du()

817 dM1du = (dMxdu +

818 (dIyy - dIzz)*self.x_hat[4]*self.x_hat[5] +

819 dIyz*(self.x_hat[4]**2 - self.x_hat[5]**2) +

820 dIxz*self.x_hat[3]*self.x_hat[4] -

821 dIxy*self.x_hat[3]*self.x_hat[5])

822 return dM1du

823

824 def _M2(self):

825 Ixx = self.I_xx(self.dB_hat)

826 Izz = self.I_zz(self.dB_hat)

827 Iyz = self.I_yz(self.dB_hat)

828 Ixz = self.I_xz(self.dB_hat)

829 Ixy = self.I_xy(self.dB_hat)

830 M2 = (self.My_hat +

831 (Izz - Ixx)*self.x_hat[3]*self.x_hat[5] +

832 Ixz*(self.x_hat[5]**2 - self.x_hat[3]**2) +

833 Ixy*self.x_hat[4]*self.x_hat[5] -

834 Iyz*self.x_hat[3]*self.x_hat[4])

835 return M2

836

837 def _dM2_du(self):

838 dIxx = self.dI_xx(self.dB_hat)

415

839 dIzz = self.dI_zz(self.dB_hat)

840 dIyz = self.dI_yz(self.dB_hat)

841 dIxz = self.dI_xz(self.dB_hat)

842 dIxy = self.dI_xy(self.dB_hat)

843 dMydu = self._dMy_du()

844 dM2du = (dMydu +

845 (dIzz - dIxx)*self.x_hat[3]*self.x_hat[5] +

846 dIxz*(self.x_hat[5]**2 - self.x_hat[3]**2) +

847 dIxy*self.x_hat[4]*self.x_hat[5] -

848 dIyz*self.x_hat[3]*self.x_hat[4])

849 return dM2du

850

851 def _M3(self):

852 Ixx = self.I_xx(self.dB_hat)

853 Iyy = self.I_yy(self.dB_hat)

854 Iyz = self.I_yz(self.dB_hat)

855 Ixz = self.I_xz(self.dB_hat)

856 Ixy = self.I_xy(self.dB_hat)

857 M3 = (self.Mz_hat +

858 (Ixx - Iyy)*self.x_hat[3]*self.x_hat[4] +

859 Ixy*(self.x_hat[3]**2 - self.x_hat[4]**2) +

860 Iyz*self.x_hat[3]*self.x_hat[5] -

861 Ixz*self.x_hat[4]*self.x_hat[5])

862 return M3

863

864 def _dM3_du(self):

865 dIxx = self.dI_xx(self.dB_hat)

866 dIyy = self.dI_yy(self.dB_hat)

867 dIyz = self.dI_yz(self.dB_hat)

868 dIxz = self.dI_xz(self.dB_hat)

869 dIxy = self.dI_xy(self.dB_hat)

870 dMzdu = self._dMz_du()

871 dM3du = (dMzdu +

872 (dIxx - dIyy)*self.x_hat[3]*self.x_hat[4] +

873 dIxy*(self.x_hat[3]**2 - self.x_hat[4]**2) +

874 dIyz*self.x_hat[3]*self.x_hat[5] -

875 dIxz*self.x_hat[4]*self.x_hat[5])

876 return dM3du

877

878 def _dz4_du(self):

879 dIinv = self._dIinv_du()

880 M1 = self._M1()

881 M2 = self._M2()

882 M3 = self._M3()

883 dM1du = self._dM1_du()

884 dM2du = self._dM2_du()

885 dM3du = self._dM3_du()

886 M = np.array([M1, M2, M3])

887 dM = np.array([dM1du, dM2du, dM3du])

888 dz4du = np.zeros(self.M)

889 for i in range(self.M):

890 dz4du[i] = np.matmul(dIinv[:, :, i], M)[0]

891 dz4du = dz4du + np.matmul(self.I_inv, dM)[0, :]

892 return dz4du

893

894 def _dz5_du(self):

416

895 dIinv = self._dIinv_du()

896 M1 = self._M1()

897 M2 = self._M2()

898 M3 = self._M3()

899 dM1du = self._dM1_du()

900 dM2du = self._dM2_du()

901 dM3du = self._dM3_du()

902 M = np.array([M1, M2, M3])

903 dM = np.array([dM1du, dM2du, dM3du])

904 dz5du = np.zeros(self.M)

905 for i in range(self.M):

906 dz5du[i] = np.matmul(dIinv[:, :, i], M)[1]

907 dz5du = dz5du + np.matmul(self.I_inv, dM)[1, :]

908 return dz5du

909

910 def _dz6_du(self):

911 dIinv = self._dIinv_du()

912 M1 = self._M1()

913 M2 = self._M2()

914 M3 = self._M3()

915 dM1du = self._dM1_du()

916 dM2du = self._dM2_du()

917 dM3du = self._dM3_du()

918 M = np.array([M1, M2, M3])

919 dM = np.array([dM1du, dM2du, dM3du])

920 dz6du = np.zeros(self.M)

921 for i in range(self.M):

922 dz6du[i] = np.matmul(dIinv[:, :, i], M)[2]

923 dz6du = dz6du + np.matmul(self.I_inv, dM)[2, :]

924 return dz6du

925

926 def _dCL_du(self):

927 xb_4 = self.b_w*self.x_hat[3]/(2.*self.V_hat)

928 xb_5 = self.c_w*self.x_hat[4]/(2.*self.V_hat)

929 xb_6 = self.b_w*self.x_hat[5]/(2.*self.V_hat)

930 dCLdu = (self.dCL1_hat +

931 self.dCL_b*self.beta_hat +

932 self.dCL_p*xb_4 +

933 self.dCL_q*xb_5 +

934 self.dCL_r*xb_6 +

935 self.dCL_da*self.u_hat[1] +

936 self.CL_da*self.dda_du +

937 self.dCL_de*self.u_hat[2] +

938 self.CL_de*self.dde_du)

939 return dCLdu

940

941 def _dCS_du(self):

942 xb_4 = self.b_w*self.x_hat[3]/(2.*self.V_hat)

943 xb_5 = self.c_w*self.x_hat[4]/(2.*self.V_hat)

944 xb_6 = self.b_w*self.x_hat[5]/(2.*self.V_hat)

945 dCSdu = (self.dCS1_hat +

946 self.dCS_a*self.alpha_hat +

947 (self.dCS_Lp*self.CL1_hat +

948 self.CS_Lp*self.dCL1_hat +

949 self.dCS_p)*xb_4 +

950 self.dCS_q*xb_5 +

417

951 self.dCS_r*xb_6 +

952 self.dCS_da*self.u_hat[1] +

953 self.CS_da*self.dda_du +

954 self.dCS_de*self.u_hat[2] +

955 self.CS_de*self.dde_du)

956 return dCSdu

957

958 def _dCD_du(self):

959 xb_4 = self.b_w*self.x_hat[3]/(2.*self.V_hat)

960 xb_5 = self.c_w*self.x_hat[4]/(2.*self.V_hat)

961 xb_6 = self.b_w*self.x_hat[5]/(2.*self.V_hat)

962 dCL12du = 2.*self.CL1_hat*self.dCL1_hat

963 dCS12du = 2.*self.CS1_hat*self.dCS1_hat

964 dCDdu = (self.dCD_0 +

965 self.dCD_L*self.CL1_hat +

966 self.CD_L*self.dCL1_hat +

967 self.dCD_L2*self.CL1_hat**2 +

968 self.CD_L2*dCL12du +

969 self.dCD_S*self.CS1_hat +

970 self.CD_S*self.dCS1_hat +

971 self.dCD_S2*self.CS1_hat**2 +

972 self.CD_S2*dCS12du +

973 (self.dCD_Sp*self.CS1_hat +

974 self.CD_Sp*self.dCS1_hat +

975 self.dCD_p)*xb_4 +

976 (self.dCD_L2q*self.CL1_hat**2 +

977 self.CD_L2q*dCL12du +

978 self.dCD_Lq*self.CL1_hat +

979 self.CD_Lq*self.dCL1_hat +

980 self.dCD_q)*xb_5 +

981 (self.dCD_Sr*self.CS1_hat +

982 self.CD_Sr*self.dCS1_hat +

983 self.dCD_r)*xb_6 +

984 (self.dCD_Sda*self.CS1_hat +

985 self.CD_Sda*self.dCS1_hat +

986 self.dCD_da)*self.u_hat[1] +

987 (self.CD_Sda*self.CS1_hat + self.CD_da)*self.dda_du +

988 (self.dCD_Lde*self.CL1_hat +

989 self.CD_Lde*self.dCL1_hat +

990 self.dCD_de)*self.u_hat[2] +

991 (self.CD_Lde*self.CL1_hat + self.CD_de)*self.dde_du +

992 self.dCD_de2*self.u_hat[2]**2 +

993 self.CD_de2*self.dde2_du)

994 return dCDdu

995

996 def _dCl_du(self):

997 xb_4 = self.b_w*self.x_hat[3]/(2.*self.V_hat)

998 xb_5 = self.c_w*self.x_hat[4]/(2.*self.V_hat)

999 xb_6 = self.b_w*self.x_hat[5]/(2.*self.V_hat)

1000 dCldu = (self.dCl_0 +

1001 self.dCl_a*self.alpha_hat +

1002 self.dCl_b*self.beta_hat +

1003 self.dCl_p*xb_4 +

1004 self.dCl_q*xb_5 +

1005 (self.dCl_Lr*self.CL1_hat +

1006 self.Cl_Lr*self.dCL1_hat +

418

1007 self.dCl_r)*xb_6 +

1008 self.dCl_da*self.u_hat[1] +

1009 self.Cl_da*self.dda_du +

1010 self.dCl_de*self.u_hat[2] +

1011 self.Cl_de*self.dde_du)

1012 return dCldu

1013

1014 def _dCm_du(self):

1015 xb_4 = self.b_w*self.x_hat[3]/(2.*self.V_hat)

1016 xb_5 = self.c_w*self.x_hat[4]/(2.*self.V_hat)

1017 xb_6 = self.b_w*self.x_hat[5]/(2.*self.V_hat)

1018 dCmdu = (self.dCm_0 +

1019 self.dCm_a*self.alpha_hat +

1020 self.dCm_b*self.beta_hat +

1021 self.dCm_p*xb_4 +

1022 self.dCm_q*xb_5 +

1023 self.dCm_r*xb_6 +

1024 self.dCm_da*self.u_hat[1] +

1025 self.Cm_da*self.dda_du +

1026 self.dCm_de*self.u_hat[2] +

1027 self.Cm_de*self.dde_du)

1028 return dCmdu

1029

1030 def _dCn_du(self):

1031 xb_4 = self.b_w*self.x_hat[3]/(2.*self.V_hat)

1032 xb_5 = self.c_w*self.x_hat[4]/(2.*self.V_hat)

1033 xb_6 = self.b_w*self.x_hat[5]/(2.*self.V_hat)

1034 dCndu = (self.dCn_0 +

1035 self.dCn_a*self.alpha_hat +

1036 self.dCn_b*self.beta_hat +

1037 (self.dCn_Lp*self.CL1_hat +

1038 self.Cn_Lp*self.dCL1_hat +

1039 self.dCn_p)*xb_4 +

1040 self.dCn_q*xb_5 +

1041 self.dCn_r*xb_6 +

1042 (self.dCn_Lda*self.CL1_hat +

1043 self.Cn_Lda*self.dCL1_hat +

1044 self.dCn_da)*self.u_hat[1] +

1045 (self.Cn_Lda*self.CL1_hat +

1046 self.Cn_da)*self.dda_du +

1047 self.dCn_de*self.u_hat[2] +

1048 self.Cn_de*self.dde_du)

1049 return dCndu

1050

1051 def _dTx_du(self):

1052 a_mil = self.props.a_mil(self.props.H)

1053 T0_mil = self.props.T0_mil(self.props.H)

1054 T1_mil = self.props.T1_mil(self.props.H)

1055 T2_mil = self.props.T2_mil(self.props.H)

1056 V = self.props.V

1057 T_mil = (self.rho/self.rho_0)**a_mil*(T0_mil + T1_mil*V + T2_mil*V**2)

1058 if self.u_hat[0] < 0.77:

1059 a_idle = self.props.a_idle(self.props.H)

1060 T0_idle = self.props.T0_idle(self.props.H)

1061 T1_idle = self.props.T1_idle(self.props.H)

1062 T2_idle = self.props.T2_idle(self.props.H)

419

1063 T_idle = (self.rho/self.rho_0)**a_idle*(T0_idle + T1_idle*V +

1064 T2_idle*V**2)

1065 dTxdu = 64.94/50.*(T_mil - T_idle)

1066 else:

1067 a_max = self.props.a_max(self.props.H)

1068 T0_max = self.props.T0_max(self.props.H)

1069 T1_max = self.props.T1_max(self.props.H)

1070 T2_max = self.props.T2_max(self.props.H)

1071 T_max = (self.rho/self.rho_0)**a_max*(T0_max + T1_max*V + T2_max*V**2)

1072 dTxdu = 217.38/50.*(T_max - T_mil)

1073 return dTxdu

1074

1075 def _dCX_du(self):

1076 dCDdu = self._dCD_du()

1077 dCSdu = self._dCS_du()

1078 dCLdu = self._dCL_du()

1079 c_a = np.cos(self.alpha_hat)

1080 s_a = np.sin(self.alpha_hat)

1081 c_b = np.cos(self.beta_hat)

1082 s_b = np.sin(self.beta_hat)

1083 dCXdu = -(dCDdu*c_a*c_b + dCSdu*c_a*s_b - dCLdu*s_a)

1084 return dCXdu

1085

1086 def _dCY_du(self):

1087 dCDdu = self._dCD_du()

1088 dCSdu = self._dCS_du()

1089 c_b = np.cos(self.beta_hat)

1090 s_b = np.sin(self.beta_hat)

1091 dCYdu = dCSdu*c_b - dCDdu*s_b

1092 return dCYdu

1093

1094 def _dCZ_du(self):

1095 dCDdu = self._dCD_du()

1096 dCSdu = self._dCS_du()

1097 dCLdu = self._dCL_du()

1098 c_a = np.cos(self.alpha_hat)

1099 s_a = np.sin(self.alpha_hat)

1100 c_b = np.cos(self.beta_hat)

1101 s_b = np.sin(self.beta_hat)

1102 dCZdu = -(dCDdu*s_a*c_b + dCSdu*s_a*s_b + dCLdu*c_a)

1103 return dCZdu

1104

1105 def _dFx_du(self):

1106 dCXdu = self._dCX_du()

1107 dTxdu = self._dTx_du()

1108 dFxdu = 0.5*self.rho*self.V_hat**2*self.S_w*dCXdu + dTxdu

1109 return dFxdu

1110

1111 def _dFy_du(self):

1112 dCYdu = self._dCY_du()

1113 dFydu = 0.5*self.rho*self.V_hat**2*self.S_w*dCYdu

1114 return dFydu

1115

1116 def _dFz_du(self):

1117 dCZdu = self._dCZ_du()

1118 dFzdu = 0.5*self.rho*self.V_hat**2*self.S_w*dCZdu

420

1119 return dFzdu

1120

1121 def _dMx_du(self):

1122 dCldu = self._dCl_du()

1123 dFzdu = self._dFz_du()

1124 dFydu = self._dFy_du()

1125 dMxdu = (0.5*self.rho*self.V_hat**2*self.S_w*self.b_w*dCldu -

1126 dFzdu*self.Dy +

1127 dFydu*self.Dz)

1128 return dMxdu

1129

1130 def _dMy_du(self):

1131 dCmdu = self._dCm_du()

1132 dFzdu = self._dFz_du()

1133 dFxdu = self._dFx_du()

1134 dMydu = (0.5*self.rho*self.V_hat**2*self.S_w*self.c_w*dCmdu -

1135 dFzdu*self.Dx +

1136 dFxdu*self.Dz)

1137 return dMydu

1138

1139 def _dMz_du(self):

1140 dCndu = self._dCn_du()

1141 dFydu = self._dFy_du()

1142 dFxdu = self._dFx_du()

1143 dMzdu = (0.5*self.rho*self.V_hat**2*self.S_w*self.b_w*dCndu -

1144 dFydu*self.Dx +

1145 dFxdu*self.Dy)

1146 return dMzdu

1147

1148 def _W_matrix(self):

1149 self.W_mat = np.zeros((3, self.N))

1150 Ixx = self.I_xx(self.dB_hat)

1151 Ixy = self.I_xy(self.dB_hat)

1152 Ixz = self.I_xz(self.dB_hat)

1153 Iyy = self.I_yy(self.dB_hat)

1154 Izz = self.I_zz(self.dB_hat)

1155 Iyz = self.I_yz(self.dB_hat)

1156 self.W_mat[:, 3] = np.array([Ixz*self.x_hat[4] - Ixy*self.x_hat[5],

1157 (Izz - Ixx)*self.x_hat[5] -

1158 2.*Ixz*self.x_hat[3] - Iyz*self.x_hat[4],

1159 (Ixx - Iyy)*self.x_hat[4] +

1160 2.*Ixy*self.x_hat[3] + Iyz*self.x_hat[5]])

1161 self.W_mat[:, 4] = np.array([(Iyy - Izz)*self.x_hat[5] -

1162 2.*Iyz*self.x_hat[4] + Ixz*self.x_hat[3],

1163 Ixy*self.x_hat[5] - Iyz*self.x_hat[3],

1164 (Ixx - Iyy)*self.x_hat[3] -

1165 2.*Ixy*self.x_hat[4] - Ixz*self.x_hat[5]])

1166 self.W_mat[:, 5] = np.array([(Iyy - Izz)*self.x_hat[4] +

1167 2.*Iyz*self.x_hat[5] - Ixy*self.x_hat[3],

1168 (Izz - Ixx)*self.x_hat[3] +

1169 2.*Ixz*self.x_hat[5] + Ixy*self.x_hat[4],

1170 Iyz*self.x_hat[3] - Ixz*self.x_hat[4]])

1171

1172

1173 def create_A_matrix(self):

1174 A = np.zeros((self.N, self.N))

421

1175 A[0, :] = self._dz1_dz()

1176 A[1, :] = self._dz2_dz()

1177 A[2, :] = self._dz3_dz()

1178 A[3, :] = self._dz4_dz()

1179 A[4, :] = self._dz5_dz()

1180 A[5, :] = self._dz6_dz()

1181 A[6, :] = self._dz7_dz()

1182 A[7, :] = self._dz8_dz()

1183 return A

1184

1185 def create_B_matrix(self):

1186 B = np.zeros((self.N, self.M))

1187 B[0, :] = self._dz1_du()

1188 B[1, :] = self._dz2_du()

1189 B[2, :] = self._dz3_du()

1190 B[3, :] = self._dz4_du()

1191 B[4, :] = self._dz5_du()

1192 B[5, :] = self._dz6_du()

1193 return B

1194

1195 def create_C_matrix(self):

1196 C = np.eye(self.N)

1197 return C

1198

1199 def create_feedback_control(trim_solution, V, H, Gamma, cg_shift, Q, R):

1200 aero_dir = '/home/christian/Python Projects/AFRL BIRE/Static Analysis/main/'

1201 x_hat = trim_solution.states

1202 alpha_hat = trim_solution.x[1]

1203 beta_hat = trim_solution.x[2]

1204 u_hat = trim_solution.inputs

1205 FM_hat = trim_solution.FM

1206 props = trim.AircraftProperties(V, H, Gamma, aero_dir, bire=True)

1207 linearization = LinearizationBIRE(props, aero_dir)

1208 linearization.set_linearization_point(x_hat, u_hat, alpha_hat, beta_hat, FM_hat,

1209 cg_shift)

1210 A = linearization.create_A_matrix()

1211 B = linearization.create_B_matrix()

1212 C = linearization.create_C_matrix()

1213 G = ctrb(A, B)

1214 print(np.rad2deg(x_hat[-1]), np.linalg.matrix_rank(G))

1215 K, S, E = lqr(A, B, Q, R)

1216 eig_check, v_check = np.linalg.eig(A - np.matmul(B, K))

1217 try:

1218 assert all(np.real(eig_check) < 0.)

1219 except AssertionError:

1220 print("Not able to stabilize.")

1221

1222 results = Lin_Results(linearization.N, linearization.M)

1223 results.A = A

1224 results.B = B

1225 results.C = C

1226 results.K = K

1227 results.eigs = eig_check

1228 return results

1229

1230 if __name__ == "__main__":

422

1231 plt.close('all')

1232 H = 15000.

1233 a = stdatm_english(H)[-1]

1234 M = 0.6

1235 V = M*a

1236 b_w = 30.

1237 c_w = 11.32

1238 gamma = np.deg2rad(0.)

1239 phi = np.deg2rad(0.)

1240 Gamma = 0.1

1241 cg_shift = [0., 0., 0.]

1242 aero_dir = '/home/christian/Python Projects/AFRL BIRE/Static Analysis/main/'

1243 trim_solution = trim.trim(V, H, gamma, phi, Gamma, fixed_point=False,

1244 aero_dir=aero_dir, bire=True)

1245 x_hat = trim_solution.states

1246 alpha_hat = trim_solution.x[1]

1247 beta_hat = trim_solution.x[2]

1248 u_hat = trim_solution.inputs

1249 FM_hat = trim_solution.FM

1250 props = trim.AircraftProperties(V, H, Gamma, aero_dir)

1251 linearization = LinearizationBIRE(props, aero_dir)

1252 linearization.set_linearization_point(x_hat, u_hat, alpha_hat, beta_hat, FM_hat,

1253 cg_shift)

1254 A = linearization.create_A_matrix()

1255 B = linearization.create_B_matrix()

1256 C = linearization.create_C_matrix()

423

Controllability Study

1 import bire_linearization as bire

2 from control import ctrb

3 import aero_trim as trim

4 import numpy as np

5 from stdatmos import stdatm_english

6

7 def controllability_study(dB, linearization):

8 u_hat[-1] = dB

9 linearization.set_linearization_point(x_hat, u_hat, alpha_hat, beta_hat, FM_hat,

10 cg_shift)

11 A = linearization.create_A_matrix()

12 B = linearization.create_B_matrix()

13 G = ctrb(A, B)

14 return np.linalg.matrix_rank(G)

15

16 if __name__ == "__main__":

17 plt.close('all')

18 H = 30000.

19 a = stdatm_english(H)[-1]

20 M = 0.8

21 V = M*a

22 gamma = np.deg2rad(0.)

23 phi = np.deg2rad(0.)

24 Gamma = 0.5

25 cg_shift = [0., 0., 0.]

26 aero_dir = '/home/christian/Python Projects/AFRL BIRE/Static Analysis/main/'

27 trim_solution = trim.trim(V, H, gamma, phi, Gamma,

28 shss=False, bire=True,

29 cg_shift=cg_shift,

30 fixed_point=False,

31 compressible=False,

32 aero_dir=aero_dir)

33 x_hat = trim_solution.states

34 alpha_hat = trim_solution.x[1]

35 beta_hat = trim_solution.x[2]

36 u_hat = trim_solution.inputs

37 FM_hat = trim_solution.FM

38 props = trim.AircraftProperties(V, H, Gamma, aero_dir)

39 linearization = bire.LinearizationBIRE(props, aero_dir)

40 dB_range = np.deg2rad(np.arange(-90, 91, 5))

41 rank = np.zeros_like(dB_range)

42 u_hat[2] = 0.

43 for i in range(len(dB_range)):

44 rank[i] = controllability_study(dB_range[i], linearization)

424

Monte-Carlo Directional Robustness Study

1 import numpy as np

2 import pickle

3 from state_control_simulator import simulate

4 import aero_trim as trim

5 from stdatmos import stdatm_english

6

7 H = 15000.

8 a = stdatm_english(H)[-1]

9 M = 0.6

10 V = M*a

11 gamma = np.deg2rad(0.)

12 phi = np.deg2rad(0.)

13 Gamma = 0.5

14 cg_shift = [0., 0., 0.]

15 aero_dir = '/home/christian/Python Projects/AFRL BIRE/Static Analysis/main/'

16

17 with open('./BIRE_linearization.lin', 'rb') as f:

18 BIRE_lin = pickle.load(f)

19 with open('./BIRE_solution.trim', 'rb') as f:

20 BIRE_trim = pickle.load(f)

21 props = trim.AircraftProperties(V, H, Gamma, aero_dir, bire=True)

22

23 t_range = np.arange(0., 20., 0.1)

24 N = 11

25 MC_states = np.zeros((N, N, N, 8, len(t_range)))

26 s_range = np.linspace(-1., 1., N)

27 omega = 5.

28 model_gust = {"type": "gust", "params": {"A": 80.,

29 "gamma": 1.,

30 "w": omega,

31 "s_x": 1.,

32 "s_y": 1.,

33 "s_z": 1.,

34 "t_0": 1.}}

35

36 start = time.time()

37 cur_iter = 0

38 max_iter = N*N*N*8

39 for i in range(N):

40 model_gust['params']['s_x'] = s_range[i]

41 for j in range(N):

42 model_gust['params']['s_y'] = s_range[j]

43 for k in range(N):

44 model_gust['params']['s_z'] = s_range[k]

45 simulate(BIRE_trim, t_range, BIRE_lin, props, cg_shift, True, model=model_gust)

46 save_dir = './Simulation Data/BIRE/'

47 save_dir_controlled = save_dir + 'Controlled/'

48 z_ctr = np.load(save_dir_controlled + 'shifted_states_CG_' + str(cg_shift[0]) + '.npy')

49 MC_states[i, j, k, :] = z_ctr.T

50 cur_iter += 1

51 prstime = calcProcessTime(start,cur_iter ,max_iter)

52 print("time elapsed: %s(s), time left: %s(s), estimated finish time: %s"%prstime)

53 np.save('./MC_states_w_' + str(int(omega)) + '.npy', MC_states)

425

APPENDIX D

AERODYNAMIC DATABASES

D.1 Baseline Aerodynamic Database

426

T
ab

le
D

.1
:

A
er

o
d

y
n

am
ic

d
at

ab
as

e
ge

n
er

at
ed

b
y

M
ac

h
U

p
X

fo
r

th
e

b
as

el
in

e
ai

rc
ra

ft
.

α
β

δ
a

δ
e

δ
r

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

-1
0

0
-1

0
0

0
0

0
0

0
.0

7
7

0
-0

.7
0
5
2

0
0
.1

7
4

-0

-1
0

0
0

-2
0

0
0

0
0

0
.0

8
6
1

-0
.0

3
5
3

-0
.5

7
7
8

0
.0

34
6

0
.0

2
0
7

0
.0

1
0
6

-1
0

0
0

0
0

-9
0

0
0

0
.0

4
2
5

0
.0

2
2
2

-0
.5

8
2
3

0
.0

38
6

0
.0

2
2
2

-0
.0

1
1
5

-1
0

0
0

0
0

0
-3

0
0

0
.0

5
1
2

0
-0

.6
2
8
1

0
0
.0

9
0
1

-0

-1
0

0
0

0
0

0
0

-3
0

0
.0

4
6

-0
.0

1
8
2

-0
.5

8
0
9

0
.0

00
6

0
.0

2
3
8

0
.0

0
7
1

-1
0

0
0

0
0

0
0

0
0
.0

4
6
1

0
-0

.5
8
0
1

0
0
.0

2
3
1

-0

-1
0

0
0

0
0

0
0

3
0

0
.0

4
5
9

0
.0

1
8
2

-0
.5

8
1

-0
.0

0
0
6

0
.0

2
3
8

-0
.0

0
7
1

-1
0

0
0

0
0

0
3
0

0
0
.0

3
8
9

0
-0

.5
3
3
6

0
-0

.0
4
2
7

-0

-1
0

0
0

0
0

90
0

0
0
.0

4
2
6

-0
.0

2
2
2

-0
.5

8
2
3

-0
.0

38
6

0
.0

2
2
2

0
.0

1
1
5

-1
0

0
0

20
0

0
0

0
0
.0

8
5
8

0
.0

3
5
3

-0
.5

7
7
8

-0
.0

34
6

0
.0

2
0
6

-0
.0

1
0
6

-1
0

0
10

0
0

0
0

0
0
.0

3
9
8

0
-0

.4
5
2
2

0
-0

.1
2
7
1

-0

-5
0

-1
0

0
0

0
0

0
0
.0

3
6
6

0
-0

.3
8
6
7

-0
0
.1

6
2
8

-0

-5
0

0
-2

0
0

0
0

0
0
.0

5
2
2

-0
.0

3
7
1

-0
.2

5
6
1

0
.0

2
9

0
.0

0
7

0
.0

1
2
1

-5
0

0
0

0
-9

0
0

0
0
.0

1
1
3

0
.0

1
2
4

-0
.2

6
1
4

0
.0

35
8

0
.0

1
2
4

-0
.0

0
6
6

-5
0

0
0

0
0

-3
0

0
0
.0

1
6
7

0
-0

.3
0
6
8

0
0
.0

7
7
5

-0

-5
0

0
0

0
0

0
-3

0
0
.0

1
4
7

-0
.0

1
8

-0
.2

5
8
6

-0
.0

0
0
6

0
.0

1
0
2

0
.0

0
7
1

-5
0

0
0

0
0

0
0

0
.0

1
4
9

0
-0

.2
5
8
1

0
0
.0

0
9
7

-0

-5
0

0
0

0
0

0
3
0

0
.0

1
4
6

0
.0

1
8

-0
.2

5
8
6

0
.0

00
6

0
.0

1
0
1

-0
.0

0
7
1

-5
0

0
0

0
0

3
0

0
0
.0

1
0
7

-0
-0

.2
1
0
4

0
-0

.0
5
7
1

0

427

T
ab

le
D

.1
:

A
er

o
d

y
n

am
ic

d
at

ab
as

e
of

th
e

b
as

el
in

e
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
r

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

-5
0

0
0

0
90

0
0

0
.0

1
1
3

-0
.0

1
2
4

-0
.2

6
1
4

-0
.0

3
5
8

0
.0

1
2
5

0
.0

0
6
6

-5
0

0
20

0
0

0
0

0
.0

5
1
9

0
.0

3
7
1

-0
.2

5
6
1

-0
.0

2
9

0
.0

0
6
9

-0
.0

1
2
1

-5
0

10
0

0
0

0
0

0
.0

1
7
9

-0
-0

.1
2
7
8

0
-0

.1
4
3
9

0

0
-6

0
-2

0
0

0
0

0
0
.0

4
1
5

0
.0

3
9
6

0
.0

3
2
8

0
.0

3
3
8

0
.0

7
1
8

-0
.0

1
6
2

0
-6

0
0

-3
0

0
0

0
0
.0

2
1
6

-0
.0

2
8
5

0
.0

3
1
4

-0
.0

0
6
1

0
.0

4
2
8

0
.0

1
7
5

0
-6

0
0

0
-9

0
0

0
0
.0

0
5
3

0
.0

8
0
1

0
.0

3
6
4

0
.0

42
0
.0

3
6
7

-0
.0

3
0
9

0
-6

0
0

0
0

0
-3

0
0
.0

1
0
1

0
.0

6
2
2

0
.0

5
0
7

0
.0

05
0
.0

1
-0

.0
2
3
3

0
-6

0
0

0
0

0
0

0
.0

0
9
7

0
.0

7
6
4

0
.0

3
9
4

0
.0

07
1

0
.0

2
2

-0
.0

2
9

0
-6

0
0

0
0

0
3
0

-0
.0

3
7
5

0
.0

9
3
4

-0
.2

0
7
6

0
.0

10
2

0
.2

9
3

-0
.0

3
4
1

0
-6

0
0

0
90

0
0

0
.0

0
6
6

0
.0

7
2
3

0
.0

4
0
3

-0
.0

27
7

0
.0

0
9
6

-0
.0

2
6
8

0
-6

0
0

30
0

0
0

0
.0

3
6
4

0
.1

8
0
3

0
.0

3
1

0
.0

21
1

0
.0

4
1
6

-0
.0

7
6
8

0
-6

0
20

0
0

0
0

0
.0

4
7
2

0
.1

1
0
7

0
.0

4
6
3

-0
.0

19
4

-0
.0

2
9
5

-0
.0

4
1

0
-4

0
-2

0
0

0
0

0
0
.0

4
1
1

0
.0

1
1
3

0
.0

4
5
4

0
.0

3
0
7

0
.0

4
4
9

-0
.0

0
5
9

0
-4

0
0

-3
0

0
0

0
0
.0

2
2
2

-0
.0

5
4
9

0
.0

3
5
1

-0
.0

0
8
5

0
.0

3
9
6

0
.0

2
7
7

0
-4

0
0

0
-9

0
0

0
0
.0

0
3
6

0
.0

5
1
6

0
.0

3
4
1

0
.0

3
9
7

0
.0

3
6
8

-0
.0

2
0
3

0
-4

0
0

0
0

0
-3

0
0
.0

0
7
9

0
.0

3
2
8

0
.0

3
8
4

0
.0

0
3
1

0
.0

2
4
7

-0
.0

1
2
2

0
-4

0
0

0
0

0
0

0
.0

0
7
9

0
.0

4
9
8

0
.0

4
1
8

0
.0

04
7

0
.0

2
0
5

-0
.0

1
9

0
-4

0
0

0
0

0
3
0

0
.0

0
4
5

0
.0

6
5
5

-0
.0

0
3
6

0
.0

0
6
8

0
.0

7
-0

.0
2
5
1

0
-4

0
0

0
90

0
0

0
.0

0
4
5

0
.0

4
7
7

0
.0

3
4
5

-0
.0

30
1

0
.0

2
1
2

-0
.0

1
7
4

0
-4

0
0

30
0

0
0

0
.0

3
2
3

0
.1

5
3
7

0
.0

3
2
2

0
.0

18
5

0
.0

4
1
9

-0
.0

6
6
5

428

T
ab

le
D

.1
:

A
er

o
d

y
n

am
ic

d
at

ab
as

e
of

th
e

b
as

el
in

e
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
r

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

0
-4

0
20

0
0

0
0

0
.0

4
4
4

0
.0

8
7

0
.0

3
7
5

-0
.0

2
1

-0
.0

0
4
3

-0
.0

3
1
9

0
-2

0
-2

0
0

0
0

0
0
.0

4
0
9

-0
.0

1
5
5

0
.0

4
0
8

0
.0

2
8
2

0
.0

3
6
3

0
.0

0
4
3

0
-2

0
0

-3
0

0
0

0
0
.0

2
3
4

-0
.0

8
0
1

0
.0

3
7
4

-0
.0

10
6

0
.0

3
7
5

0
.0

3
7
6

0
-2

0
0

0
-9

0
0

0
0
.0

0
3
2

0
.0

2
6
1

0
.0

4
8
9

0
.0

37
1

0
.0

1
7
5

-0
.0

1
0
7

0
-2

0
0

0
0

0
-3

0
0
.0

0
7

0
.0

0
8
3

0
.0

4
9
1

0
.0

00
3

0
.0

1
3
4

-0
.0

0
2
9

0
-2

0
0

0
0

0
0

0
.0

0
7
1

0
.0

2
4
4

0
.0

4
8
5

0
.0

0
2
7

0
.0

1
4

-0
.0

0
9
3

0
-2

0
0

0
0

0
3
0

0
.0

0
6
7

0
.0

4
2

0
.0

5
6
8

0
.0

0
4
1

0
.0

0
4
5

-0
.0

1
6
4

0
-2

0
0

0
90

0
0

0
.0

0
3
8

0
.0

2
3
7

0
.0

5
5
4

-0
.0

3
2
2

0
.0

0
2
5

-0
.0

0
8
2

0
-2

0
0

30
0

0
0

0
.0

2
9
3

0
.1

2
8
8

0
.0

4
3
1

0
.0

1
6
3

0
.0

3
0
9

-0
.0

5
6
7

0
-2

0
20

0
0

0
0

0
.0

4
2
6

0
.0

6
3
4

0
.0

5
5
6

-0
.0

2
2
7

-0
.0

0
9

-0
.0

2
2
6

0
0

-1
0

0
0

0
0

0
0
.0

1
7
4

0
-0

.0
9
8
9

-0
0
.1

8
6
8

-0

0
0

0
-2

0
0

0
0

0
0
.0

4
1
2

-0
.0

3
9
8

0
.0

3
1

0
.0

25
3

0
.0

3
2
8

0
.0

1
3
7

0
0

0
0

-3
0

0
0

0
0
.0

2
5
2

-0
.1

0
3
9

0
.0

2
3
2

-0
.0

1
3
4

0
.0

5
3

0
.0

4
6
8

0
0

0
0

0
-9

0
0

0
0
.0

0
2
9

0
.0

0
0
6

0
.0

4
0
1

0
.0

3
5
1

0
.0

2
3
9

-0
.0

0
1

0
0

0
0

0
0

-3
0

0
0
.0

0
4
4

0
-0

.0
0
3

-0
0
.0

8
4
8

-0

0
0

0
0

0
0

0
-3

0
0
.0

0
6
6

-0
.0

1
6
6

0
.0

5
4
3

-0
.0

0
2
1

0
.0

0
7
8

0
.0

0
6
6

0
0

0
0

0
0

0
0

0
.0

0
6
2

0
0
.0

3
1
4

-0
0
.0

3
3

-0

0
0

0
0

0
0

0
3
0

0
.0

0
6
5

0
.0

1
6
6

0
.0

5
4
3

0
.0

02
1

0
.0

0
7
7

-0
.0

0
6
6

0
0

0
0

0
0

3
0

0
0
.0

0
6
7

0
0
.0

8
7
1

-0
-0

.0
4
2
2

-0

0
0

0
0

0
90

0
0

0
.0

0
2
9

-0
.0

0
0
6

0
.0

4
0
1

-0
.0

3
5
1

0
.0

2
3
9

0
.0

0
1

429

T
ab

le
D

.1
:

A
er

o
d

y
n

am
ic

d
at

ab
as

e
of

th
e

b
as

el
in

e
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
r

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

0
0

0
0

30
0

0
0

0
.0

2
5
8

0
.1

0
3
8

0
.0

2
3
2

0
.0

13
4

0
.0

5
3
4

-0
.0

4
6
8

0
0

0
20

0
0

0
0

0
.0

4
0
9

0
.0

3
9
8

0
.0

3
1

-0
.0

25
3

0
.0

3
2
7

-0
.0

1
3
7

0
0

10
0

0
0

0
0

0
.0

2
0
3

0
0
.1

6
2
1

-0
-0

.1
2
2
4

-0

0
2

0
-2

0
0

0
0

0
0
.0

4
3
2

-0
.0

6
3
5

0
.0

5
5
5

0
.0

22
7

-0
.0

0
8
7

0
.0

2
2
6

0
2

0
0

-3
0

0
0

0
0
.0

2
8
9

-0
.1

2
8
9

0
.0

4
3
1

-0
.0

1
6
3

0
.0

3
0
7

0
.0

5
6
8

0
2

0
0

0
-9

0
0

0
0
.0

0
3
9

-0
.0

2
3
6

0
.0

5
5
4

0
.0

32
2

0
.0

0
2
5

0
.0

0
8
2

0
2

0
0

0
0

0
-3

0
0
.0

0
7

-0
.0

4
2

0
.0

5
6
8

-0
.0

0
4
1

0
.0

0
4
7

0
.0

1
6
4

0
2

0
0

0
0

0
0

0
.0

0
7
3

-0
.0

2
4
4

0
.0

4
8
5

-0
.0

0
2
7

0
.0

1
4
1

0
.0

0
9
3

0
2

0
0

0
0

0
3
0

0
.0

0
7

-0
.0

0
8
3

0
.0

4
9
1

-0
.0

0
0
3

0
.0

1
3
4

0
.0

0
2
9

0
2

0
0

0
90

0
0

0
.0

0
3
4

-0
.0

2
6
1

0
.0

4
8
9

-0
.0

3
7
1

0
.0

1
7
6

0
.0

1
0
7

0
2

0
0

30
0

0
0

0
.0

2
4
3

0
.0

8
0
.0

3
7
4

0
.0

10
6

0
.0

3
7
9

-0
.0

3
7
5

0
2

0
20

0
0

0
0

0
.0

4
0
7

0
.0

1
5
5

0
.0

4
0
8

-0
.0

28
2

0
.0

3
6
2

-0
.0

0
4
3

0
4

0
-2

0
0

0
0

0
0
.0

4
5
2

-0
.0

8
7

0
.0

3
7
5

0
.0

2
1

-0
.0

0
4

0
.0

3
1
9

0
4

0
0

-3
0

0
0

0
0
.0

3
2

-0
.1

5
3
8

0
.0

3
2
2

-0
.0

1
8
5

0
.0

4
1
7

0
.0

6
6
5

0
4

0
0

0
-9

0
0

0
0
.0

0
4
9

-0
.0

4
7
7

0
.0

3
4
5

0
.0

30
1

0
.0

2
1
3

0
.0

1
7
4

0
4

0
0

0
0

0
-3

0
0
.0

0
5

-0
.0

6
5
5

-0
.0

0
3
7

-0
.0

06
8

0
.0

7
0
2

0
.0

2
5
1

0
4

0
0

0
0

0
0

0
.0

0
8
3

-0
.0

4
9
8

0
.0

4
1
8

-0
.0

0
4
7

0
.0

2
0
7

0
.0

1
9

0
4

0
0

0
0

0
3
0

0
.0

0
8
2

-0
.0

3
2
7

0
.0

3
8
4

-0
.0

0
3
1

0
.0

2
4
8

0
.0

1
2
3

0
4

0
0

0
90

0
0

0
.0

0
4

-0
.0

5
1
6

0
.0

3
4
1

-0
.0

3
9
7

0
.0

3
7
1

0
.0

2
0
3

0
4

0
0

30
0

0
0

0
.0

2
3
2

0
.0

5
4
8

0
.0

3
5
1

0
.0

08
5

0
.0

4
0
1

-0
.0

2
7
6

430

T
ab

le
D

.1
:

A
er

o
d

y
n

am
ic

d
at

ab
as

e
of

th
e

b
as

el
in

e
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
r

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

0
4

0
20

0
0

0
0

0
.0

4
1
1

-0
.0

1
1
3

0
.0

4
5
4

-0
.0

3
0
7

0
.0

4
4
9

0
.0

0
5
9

0
6

0
-2

0
0

0
0

0
0
.0

4
8
2

-0
.1

1
0
7

0
.0

4
6
3

0
.0

19
4

-0
.0

2
9

0
.0

4
1
1

0
6

0
0

-3
0

0
0

0
0
.0

3
6
3

-0
.1

8
0
4

0
.0

3
1

-0
.0

2
1
1

0
.0

4
1
5

0
.0

7
6
8

0
6

0
0

0
-9

0
0

0
0
.0

0
7
2

-0
.0

7
2
2

0
.0

4
0
3

0
.0

27
7

0
.0

0
9
8

0
.0

2
6
8

0
6

0
0

0
0

0
-3

0
-0

.0
3
6
9

-0
.0

9
3
4

-0
.2

0
7
6

-0
.0

1
0
2

0
.2

9
3
4

0
.0

3
4
1

0
6

0
0

0
0

0
0

0
.0

1
0
3

-0
.0

7
6
3

0
.0

3
9
4

-0
.0

0
7
1

0
.0

2
2
3

0
.0

2
9

0
6

0
0

0
0

0
3
0

0
.0

1
0
5

-0
.0

6
2
2

0
.0

5
0
7

-0
.0

0
5

0
.0

1
0
3

0
.0

2
3
3

0
6

0
0

0
90

0
0

0
.0

0
5
9

-0
.0

8
0
.0

3
6
4

-0
.0

4
2

0
.0

3
7

0
.0

3
0
9

0
6

0
0

30
0

0
0

0
.0

2
2
8

0
.0

2
8
4

0
.0

3
1
4

0
.0

0
6

0
.0

4
3
5

-0
.0

1
7
4

0
6

0
20

0
0

0
0

0
.0

4
1
7

-0
.0

3
9
6

0
.0

3
2
7

-0
.0

3
3
8

0
.0

7
2

0
.0

1
6
2

5
0

-1
0

0
0

0
0

0
0
.0

2
1
5

0
0
.2

3
2
8

-0
0
.1

6
1
9

-0

5
0

0
-2

0
0

0
0

0
0
.0

5
8

-0
.0

4
3
1

0
.3

6
4
4

0
.0

29
2

0
.0

0
6
7

0
.0

1
6
5

5
0

0
0

0
-9

0
0

0
0
.0

1
6
3

-0
.0

1
0
4

0
.3

6
5
8

0
.0

35
6

0
.0

0
8
1

0
.0

0
4
5

5
0

0
0

0
0

-3
0

0
0
.0

1
4
7

0
0
.3

1
9

-0
0
.0

7
2
1

-0

5
0

0
0

0
0

0
-3

0
0
.0

1
9
8

-0
.0

1
5

0
.3

6
4
4

-0
.0

0
3
3

0
.0

0
7
9

0
.0

0
6
1

5
0

0
0

0
0

0
0

0
.0

1
9
9

0
0
.3

6
4
5

-0
0
.0

0
7
8

-0

5
0

0
0

0
0

0
3
0

0
.0

1
9
7

0
.0

1
5

0
.3

6
4
5

0
.0

03
3

0
.0

0
7
8

-0
.0

0
6
1

5
0

0
0

0
0

3
0

0
0
.0

2
3
1

0
0
.4

1
0
4

-0
-0

.0
5
6
7

-0

5
0

0
0

0
90

0
0

0
.0

1
6
3

0
.0

1
0
4

0
.3

6
5
8

-0
.0

35
6

0
.0

0
8
1

-0
.0

0
4
5

5
0

0
20

0
0

0
0

0
.0

5
7
6

0
.0

4
3
1

0
.3

6
4
5

-0
.0

29
2

0
.0

0
6
5

-0
.0

1
6
5

431

T
ab

le
D

.1
:

A
er

o
d

y
n

am
ic

d
at

ab
as

e
of

th
e

b
as

el
in

e
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
r

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

5
0

10
0

0
0

0
0

0
.0

4
3
9

0
0
.4

9
5
3

-0
-0

.1
4
9
2

-0

10
0

-1
0

0
0

0
0

0
0
.0

5
1
9

0
0
.5

7
0
6

-0
0
.1

2
9
6

-0

10
0

0
-2

0
0

0
0

0
0
.0

9
9
2

-0
.0

4
7
5

0
.7

0
2
4

0
.0

31
9

-0
.0

2
6
1

0
.0

2
0
2

10
0

0
0

0
-9

0
0

0
0
.0

5
6

-0
.0

2
5
9

0
.7

0
6
1

0
.0

36
8

-0
.0

2
4
6

0
.0

1
1
8

10
0

0
0

0
0

-3
0

0
0
.0

5
2

0
0
.6

5
7
9

-0
0
.0

3
9
4

-0

10
0

0
0

0
0

0
-3

0
0
.0

5
9
3

-0
.0

1
3
9

0
.7

0
2
3

-0
.0

0
4
5

-0
.0

2
3
8

0
.0

0
5
6

10
0

0
0

0
0

0
0

0
.0

5
9
4

0
0
.7

0
2
4

-0
-0

.0
2
4

-0

10
0

0
0

0
0

0
3
0

0
.0

5
9
2

0
.0

1
3
9

0
.7

0
2
3

0
.0

0
4
5

-0
.0

2
3
9

-0
.0

0
5
6

10
0

0
0

0
0

3
0

0
0
.0

6
4
9

0
0
.7

4
7
7

-0
-0

.0
8
7
8

-0

10
0

0
0

0
90

0
0

0
.0

5
6

0
.0

2
5
9

0
.7

0
6
1

-0
.0

36
8

-0
.0

2
4
6

-0
.0

1
1
8

10
0

0
20

0
0

0
0

0
.0

9
8
8

0
.0

4
7
5

0
.7

0
2
5

-0
.0

31
9

-0
.0

2
6
4

-0
.0

2
0
2

10
0

10
0

0
0

0
0

0
.0

9
3

0
0
.8

3
1
9

-0
-0

.1
8
1
8

-0

432

D.2 BIRE Aerodynamic Database

433

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
ge

n
er

at
ed

b
y

M
ac

h
U

p
X

fo
r

th
e

B
IR

E
a
ir

cr
a
ft

.

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

-1
0

0
-1

0
0

-9
0

0
0

0
0
.0

4
8
7

0
.1

3
3
3

-0
.5

1
4
7

0
.0

02
-0

.0
5
1
3

-0
.0

6
3
8

-1
0

0
-1

0
0

-6
0

0
0

0
0
.0

5
8
6

0
.1

4
4
5

-0
.6

0
6
1

0
.0

0
0
1

0
.0

6
0
9

-0
.0

7
0
1

-1
0

0
-1

0
0

-3
0

0
0

0
0
.0

7
3
2

0
.0

9
8

-0
.6

9
5
7

0
.0

0
2
3

0
.1

6
5

-0
.0

4
7
2

-1
0

0
-1

0
0

0
0

0
0

0
.0

7
7
8

0
-0

.7
2
0
8

0
0
.1

9
2
6

-0

-1
0

0
-1

0
0

30
0

0
0

0
.0

7
3
2

-0
.0

9
8

-0
.6

9
5
7

-0
.0

0
2
3

0
.1

6
5

0
.0

4
7
2

-1
0

0
-1

0
0

60
0

0
0

0
.0

5
8
6

-0
.1

4
4
5

-0
.6

0
6
1

-0
.0

00
1

0
.0

6
0
9

0
.0

7
0
1

-1
0

0
-1

0
0

90
0

0
0

0
.0

4
8
7

-0
.1

3
3
3

-0
.5

1
4
7

-0
.0

0
2

-0
.0

5
1
3

0
.0

6
3
8

-1
0

0
0

-2
0

-9
0

0
0

0
0
.0

7
7
5

-0
.0

1
9
7

-0
.5

1
4
7

0
.0

43
2

-0
.0

5
3
8

0
.0

0
5
1

-1
0

0
0

-2
0

-6
0

0
0

0
0
.0

7
1
6

0
.0

1
9
4

-0
.5

3
2
9

0
.0

4
-0

.0
2
5
2

-0
.0

1
3
6

-1
0

0
0

-2
0

-3
0

0
0

0
0
.0

8
2
8

0
.0

2
7
3

-0
.5

6
9
2

0
.0

42
3

0
.0

1
6
4

-0
.0

1
5
4

-1
0

0
0

-2
0

0
0

0
0

0
.0

8
6
6

-0
.0

0
0
8

-0
.5

8
9
6

0
.0

38
8

0
.0

3
4
2

-0
.0

0
1

-1
0

0
0

-2
0

30
0

0
0

0
.0

8
7

-0
.0

4
1
9

-0
.5

9
1

0
.0

3
9
9

0
.0

3
3

0
.0

1
7
8

-1
0

0
0

-2
0

60
0

0
0

0
.0

8
2

-0
.0

5
1
6

-0
.5

4
6
9

0
.0

44
9

-0
.0

1
6
8

0
.0

2
2

-1
0

0
0

-2
0

90
0

0
0

0
.0

7
7
6

-0
.0

1
9
7

-0
.5

1
4
7

0
.0

43
2

-0
.0

5
3
5

0
.0

0
5
2

-1
0

0
0

0
-9

0
-9

0
0

0
0
.0

3
3
1

0
.0

1
3

-0
.5

1
8
8

0
.0

35
6

-0
.0

5
3
4

-0
.0

0
7
1

-1
0

0
0

0
-9

0
0

-3
0

0
0
.0

3
6
4

0
-0

.5
0
8
1

0
-0

.0
5
0
3

-0

-1
0

0
0

0
-9

0
0

0
-3

0
0
.0

3
5
6

-0
.0

4
7
4

-0
.5

1
6

0
.0

01
9

-0
.0

5
3
6

0
.0

2
2
1

-1
0

0
0

0
-9

0
0

0
0

0
.0

3
6
6

0
-0

.5
1
5
8

0
-0

.0
5
3
5

-0

-1
0

0
0

0
-9

0
0

0
3
0

0
.0

3
5
8

0
.0

4
7
4

-0
.5

1
5
9

-0
.0

0
1
9

-0
.0

5
3
6

-0
.0

2
2
1

434

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

-1
0

0
0

0
-9

0
0

3
0

0
0
.0

3
6
6

0
-0

.5
2
3
6

0
-0

.0
5
6
8

-0

-1
0

0
0

0
-9

0
90

0
0

0
.0

3
3
1

-0
.0

1
3

-0
.5

1
8
8

-0
.0

3
5
6

-0
.0

5
3
4

0
.0

0
7
1

-1
0

0
0

0
-6

0
-9

0
0

0
0
.0

3
1
3

0
.0

4
8
4

-0
.5

4
1

0
.0

3
3

-0
.0

2
4
2

-0
.0

2
5

-1
0

0
0

0
-6

0
0

-3
0

0
0
.0

3
7
1

0
.0

5
6
1

-0
.5

4
5
7

-0
.0

0
1
8

-0
.0

0
3
5

-0
.0

2
7
4

-1
0

0
0

0
-6

0
0

0
-3

0
0
.0

3
4
1

0
.0

0
1
9

-0
.5

1
8
7

0
.0

0
0
1

-0
.0

4
7
4

-0
.0

0
2
2

-1
0

0
0

0
-6

0
0

0
0

0
.0

3
6
1

0
.0

3
5
8

-0
.5

4
0
6

-0
.0

0
2
4

-0
.0

2
1
5

-0
.0

1
8

-1
0

0
0

0
-6

0
0

0
3
0

0
.0

3
6
7

0
.0

7
0
2

-0
.5

6
3
4

-0
.0

0
5
2

0
.0

0
5
4

-0
.0

3
4
1

-1
0

0
0

0
-6

0
0

3
0

0
0
.0

3
4
7

0
.0

1
5
5

-0
.5

3
5
6

-0
.0

0
2
9

-0
.0

3
9
5

-0
.0

0
8
7

-1
0

0
0

0
-6

0
90

0
0

0
.0

3
4
1

0
.0

2
3
2

-0
.5

4
5
9

-0
.0

3
7
7

-0
.0

1
8
7

-0
.0

1
1
1

-1
0

0
0

0
-3

0
-9

0
0

0
0
.0

4
0
1

0
.0

5
2
6

-0
.5

8
4
8

0
.0

36
1

0
.0

2
6
5

-0
.0

2
6
3

-1
0

0
0

0
-3

0
0

-3
0

0
0
.0

4
7
2

0
.0

5
7
8

-0
.6

1
5
3

0
.0

0
1
3

0
.0

7
6

-0
.0

2
7
6

-1
0

0
0

0
-3

0
0

0
-3

0
0
.0

4
2

0
.0

2
4
5

-0
.5

6
1
2

0
.0

0
3
6

0
.0

0
2

-0
.0

1
2

-1
0

0
0

0
-3

0
0

0
0

0
.0

4
4

0
.0

3
5
6

-0
.5

8
1
6

0
.0

0
1

0
.0

2
5
5

-0
.0

1
7
3

-1
0

0
0

0
-3

0
0

0
3
0

0
.0

4
5
7

0
.0

4
6
7

-0
.6

0
2
1

-0
.0

0
1
7

0
.0

4
9
2

-0
.0

2
2
6

-1
0

0
0

0
-3

0
0

3
0

0
0
.0

3
9
3

0
.0

1
3
5

-0
.5

4
8
6

0
.0

00
9

-0
.0

2
4
4

-0
.0

0
7

-1
0

0
0

0
-3

0
90

0
0

0
.0

4
1
5

0
.0

2
-0

.5
8
7
1

-0
.0

3
4
2

0
.0

2
8
1

-0
.0

0
9

-1
0

0
0

0
0

-9
0

0
0

0
.0

4
2
8

0
.0

1
7
4

-0
.5

9
4
3

0
.0

36
2

0
.0

3
6

-0
.0

0
9

-1
0

0
0

0
0

0
-3

0
0

0
.0

5
0
8

0
-0

.6
3
9
1

0
0
.1

0
2
2

-0

-1
0

0
0

0
0

0
0

-3
0

0
.0

4
6
1

-0
.0

0
0
2

-0
.5

9
1
5

0
.0

02
5

0
.0

3
5
9

0
.0

0
0
2

-1
0

0
0

0
0

0
0

0
0
.0

4
6
1

0
-0

.5
9
1
5

0
0
.0

3
5
9

-0

435

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

-1
0

0
0

0
0

0
0

3
0

0
.0

4
6
1

0
.0

0
0
2

-0
.5

9
1
5

-0
.0

02
5

0
.0

3
5
9

-0
.0

0
0
2

-1
0

0
0

0
0

0
3
0

0
0
.0

3
9
5

0
-0

.5
4
5
3

0
-0

.0
2
9
4

-0

-1
0

0
0

0
0

90
0

0
0
.0

4
2
8

-0
.0

1
7
4

-0
.5

9
4
3

-0
.0

36
2

0
.0

3
6

0
.0

0
9

-1
0

0
0

0
30

-9
0

0
0

0
.0

4
1
5

-0
.0

2
-0

.5
8
7
1

0
.0

3
4
2

0
.0

2
8
1

0
.0

0
9

-1
0

0
0

0
30

0
-3

0
0

0
.0

4
7
2

-0
.0

5
7
8

-0
.6

1
5
3

-0
.0

01
3

0
.0

7
6

0
.0

2
7
6

-1
0

0
0

0
30

0
0

-3
0

0
.0

4
5
7

-0
.0

4
6
7

-0
.6

0
2
1

0
.0

01
7

0
.0

4
9
2

0
.0

2
2
6

-1
0

0
0

0
30

0
0

0
0
.0

4
4

-0
.0

3
5
6

-0
.5

8
1
6

-0
.0

0
1

0
.0

2
5
5

0
.0

1
7
3

-1
0

0
0

0
30

0
0

3
0

0
.0

4
2

-0
.0

2
4
5

-0
.5

6
1
2

-0
.0

03
6

0
.0

0
2

0
.0

1
2

-1
0

0
0

0
30

0
3
0

0
0
.0

3
9
3

-0
.0

1
3
5

-0
.5

4
8
6

-0
.0

00
9

-0
.0

2
4
4

0
.0

0
7

-1
0

0
0

0
30

90
0

0
0
.0

4
0
1

-0
.0

5
2
6

-0
.5

8
4
8

-0
.0

36
1

0
.0

2
6
5

0
.0

2
6
3

-1
0

0
0

0
60

-9
0

0
0

0
.0

3
4
1

-0
.0

2
3
2

-0
.5

4
5
9

0
.0

37
7

-0
.0

1
8
7

0
.0

1
1
1

-1
0

0
0

0
60

0
-3

0
0

0
.0

3
7
1

-0
.0

5
6
1

-0
.5

4
5
7

0
.0

01
8

-0
.0

0
3
5

0
.0

2
7
4

-1
0

0
0

0
60

0
0

-3
0

0
.0

3
6
7

-0
.0

7
0
2

-0
.5

6
3
4

0
.0

05
2

0
.0

0
5
4

0
.0

3
4
1

-1
0

0
0

0
60

0
0

0
0
.0

3
6
1

-0
.0

3
5
8

-0
.5

4
0
6

0
.0

0
2
4

-0
.0

2
1
5

0
.0

1
8

-1
0

0
0

0
60

0
0

3
0

0
.0

3
4
1

-0
.0

0
1
9

-0
.5

1
8
7

-0
.0

00
1

-0
.0

4
7
4

0
.0

0
2
2

-1
0

0
0

0
60

0
3
0

0
0
.0

3
4
7

-0
.0

1
5
5

-0
.5

3
5
6

0
.0

0
2
9

-0
.0

3
9
5

0
.0

0
8
7

-1
0

0
0

0
60

90
0

0
0
.0

3
1
3

-0
.0

4
8
4

-0
.5

4
1

-0
.0

3
3

-0
.0

2
4
2

0
.0

2
5

-1
0

0
0

0
90

-9
0

0
0

0
.0

3
3
1

0
.0

1
3

-0
.5

1
8
8

0
.0

35
6

-0
.0

5
3
4

-0
.0

0
7
1

-1
0

0
0

0
90

0
-3

0
0

0
.0

3
6
4

0
-0

.5
0
8
1

0
-0

.0
5
0
3

-0

-1
0

0
0

0
90

0
0

-3
0

0
.0

3
5
8

-0
.0

4
7
4

-0
.5

1
5
9

0
.0

01
9

-0
.0

5
3
6

0
.0

2
2
1

436

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

-1
0

0
0

0
90

0
0

0
0
.0

3
6
6

0
-0

.5
1
5
8

0
-0

.0
5
3
5

-0

-1
0

0
0

0
90

0
0

3
0

0
.0

3
5
6

0
.0

4
7
4

-0
.5

1
6

-0
.0

0
1
9

-0
.0

5
3
6

-0
.0

2
2
1

-1
0

0
0

0
90

0
3
0

0
0
.0

3
6
6

0
-0

.5
2
3
6

0
-0

.0
5
6
8

-0

-1
0

0
0

0
90

90
0

0
0
.0

3
3
1

-0
.0

1
3

-0
.5

1
8
8

-0
.0

3
5
6

-0
.0

5
3
4

0
.0

0
7
1

-1
0

0
0

20
-9

0
0

0
0

0
.0

7
7
6

0
.0

1
9
7

-0
.5

1
4
7

-0
.0

4
3
2

-0
.0

5
3
5

-0
.0

0
5
2

-1
0

0
0

20
-6

0
0

0
0

0
.0

8
2

0
.0

5
1
6

-0
.5

4
6
9

-0
.0

4
4
9

-0
.0

1
6
8

-0
.0

2
2

-1
0

0
0

20
-3

0
0

0
0

0
.0

8
7

0
.0

4
1
9

-0
.5

9
1

-0
.0

39
9

0
.0

3
3

-0
.0

1
7
8

-1
0

0
0

20
0

0
0

0
0
.0

8
6
6

0
.0

0
0
8

-0
.5

8
9
6

-0
.0

38
8

0
.0

3
4
2

0
.0

0
1

-1
0

0
0

20
30

0
0

0
0
.0

8
2
8

-0
.0

2
7
3

-0
.5

6
9
2

-0
.0

42
3

0
.0

1
6
4

0
.0

1
5
4

-1
0

0
0

20
60

0
0

0
0
.0

7
1
6

-0
.0

1
9
4

-0
.5

3
2
9

-0
.0

4
-0

.0
2
5
2

0
.0

1
3
6

-1
0

0
0

20
90

0
0

0
0
.0

7
7
5

0
.0

1
9
7

-0
.5

1
4
7

-0
.0

43
2

-0
.0

5
3
8

-0
.0

0
5
1

-1
0

0
10

0
-9

0
0

0
0

0
.0

4
9
2

-0
.1

3
3
2

-0
.5

1
4
7

-0
.0

0
2

-0
.0

5
1
2

0
.0

6
3
8

-1
0

0
10

0
-6

0
0

0
0

0
.0

3
8
5

-0
.0

7
3

-0
.4

7
3
8

-0
.0

0
5

-0
.0

9
8
4

0
.0

3
4
4

-1
0

0
10

0
-3

0
0

0
0

0
.0

4
-0

.0
2
7
1

-0
.4

6
5
5

-0
.0

00
2

-0
.1

1
0
2

0
.0

1
3

-1
0

0
10

0
0

0
0

0
0
.0

3
9
8

0
-0

.4
5
9
9

0
-0

.1
1
8

-0

-1
0

0
10

0
30

0
0

0
0
.0

4
0
.0

2
7
1

-0
.4

6
5
5

0
.0

00
2

-0
.1

1
0
2

-0
.0

1
3

-1
0

0
10

0
60

0
0

0
0
.0

3
8
5

0
.0

7
3

-0
.4

7
3
8

0
.0

0
5

-0
.0

9
8
4

-0
.0

3
4
4

-1
0

0
10

0
90

0
0

0
0
.0

4
9
2

0
.1

3
3
2

-0
.5

1
4
7

0
.0

0
2

-0
.0

5
1
2

-0
.0

6
3
8

-5
0

-1
0

0
-9

0
0

0
0

0
.0

2
3
6

0
.1

2
8
2

-0
.2

2
0
4

0
.0

0
1
4

-0
.0

3
3
6

-0
.0

6
1
5

-5
0

-1
0

0
-6

0
0

0
0

0
.0

2
9
1

0
.1

3
5

-0
.3

0
3
3

0
.0

0
0
3

0
.0

6
5
6

-0
.0

6
4
8

437

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

-5
0

-1
0

0
-3

0
0

0
0

0
.0

3
4

0
.0

8
4
2

-0
.3

7
6
3

-0
0
.1

5
1
8

-0
.0

4
0
4

-5
0

-1
0

0
0

0
0

0
0
.0

3
6

0
-0

.3
9
4
9

0
0
.1

7
2
7

-0

-5
0

-1
0

0
30

0
0

0
0
.0

3
4

-0
.0

8
4
2

-0
.3

7
6
3

0
0
.1

5
1
8

0
.0

4
0
4

-5
0

-1
0

0
60

0
0

0
0
.0

2
9
1

-0
.1

3
5

-0
.3

0
3
3

-0
.0

00
3

0
.0

6
5
6

0
.0

6
4
8

-5
0

-1
0

0
90

0
0

0
0
.0

2
3
6

-0
.1

2
8
2

-0
.2

2
0
4

-0
.0

0
1
4

-0
.0

3
3
6

0
.0

6
1
5

-5
0

0
-2

0
-9

0
0

0
0

0
.0

5
2
4

-0
.0

0
9
2

-0
.2

2
0
4

0
.0

4
1
4

-0
.0

3
5
3

0
.0

0
2
5

-5
0

0
-2

0
-6

0
0

0
0

0
.0

5
1
4

0
.0

1
5
7

-0
.2

2
9
9

0
.0

3
9
6

-0
.0

2
1
1

-0
.0

0
9
2

-5
0

0
-2

0
-3

0
0

0
0

0
.0

5
0
7

0
.0

1
3
2

-0
.2

4
6
2

0
.0

3
7
1

-0
.0

0
0
2

-0
.0

0
7
2

-5
0

0
-2

0
0

0
0

0
0
.0

5
1
8

-0
.0

0
0
2

-0
.2

6
1
7

0
.0

3
3
4

0
.0

1
3
2

-0
.0

0
0
1

-5
0

0
-2

0
30

0
0

0
0
.0

5
4
6

-0
.0

2
8
3

-0
.2

7
4
2

0
.0

3
8
2

0
.0

2
5

0
.0

1
2
5

-5
0

0
-2

0
60

0
0

0
0
.0

5
4
1

-0
.0

3
3
1

-0
.2

4
1
2

0
.0

4
1
4

-0
.0

1
2
2

0
.0

1
4
3

-5
0

0
-2

0
90

0
0

0
0
.0

5
2
5

-0
.0

0
9
3

-0
.2

2
0
4

0
.0

4
1
4

-0
.0

3
5

0
.0

0
2
5

-5
0

0
0

-9
0

-9
0

0
0

0
.0

0
7
8

0
.0

0
5
5

-0
.2

2
2
1

0
.0

35
-0

.0
3
5

-0
.0

0
3

-5
0

0
0

-9
0

0
-3

0
0

0
.0

1
1
4

0
-0

.2
1
2
9

0
-0

.0
3
1
9

-0

-5
0

0
0

-9
0

0
0

-3
0

0
.0

1
0
5

-0
.0

4
5
4

-0
.2

2
0
8

0
.0

00
6

-0
.0

3
5
1

0
.0

2
1
2

-5
0

0
0

-9
0

0
0

0
0
.0

1
1
5

0
-0

.2
2
0
8

0
-0

.0
3
5

-0

-5
0

0
0

-9
0

0
0

3
0

0
.0

1
0
7

0
.0

4
5
4

-0
.2

2
0
8

-0
.0

00
6

-0
.0

3
5
1

-0
.0

2
1
2

-5
0

0
0

-9
0

0
3
0

0
0
.0

1
1
5

0
-0

.2
2
8
6

0
-0

.0
3
8
2

-0

-5
0

0
0

-9
0

90
0

0
0
.0

0
7
9

-0
.0

0
5
5

-0
.2

2
2
1

-0
.0

3
5

-0
.0

3
5

0
.0

0
3

-5
0

0
0

-6
0

-9
0

0
0

0
.0

0
8
3

0
.0

3
2
2

-0
.2

3
7

0
.0

3
3
9

-0
.0

1
7
1

-0
.0

1
5
9

438

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

-5
0

0
0

-6
0

0
-3

0
0

0
.0

1
2
3

0
.0

4
5
7

-0
.2

4
1
2

-0
.0

00
4

0
.0

0
1
6

-0
.0

2
1
7

-5
0

0
0

-6
0

0
0

-3
0

0
.0

1
0
5

-0
.0

0
9
3

-0
.2

1
5

-0
.0

00
2

-0
.0

4
0
9

0
.0

0
3
9

-5
0

0
0

-6
0

0
0

0
0
.0

1
2

0
.0

2
4
5

-0
.2

3
5
9

-0
.0

00
9

-0
.0

1
6
6

-0
.0

1
1
9

-5
0

0
0

-6
0

0
0

3
0

0
.0

1
2
3

0
.0

5
9
1

-0
.2

5
7
4

-0
.0

01
8

0
.0

0
8
2

-0
.0

2
8

-5
0

0
0

-6
0

0
3
0

0
0
.0

1
1
1

0
.0

0
2
4

-0
.2

3
-0

.0
0
1
2

-0
.0

3
5
5

-0
.0

0
1
7

-5
0

0
0

-6
0

90
0

0
0
.0

0
8
7

0
.0

1
8

-0
.2

3
8
3

-0
.0

35
6

-0
.0

1
5
4

-0
.0

0
8
4

-5
0

0
0

-3
0

-9
0

0
0

0
.0

0
9
6

0
.0

2
9
2

-0
.2

6
1
5

0
.0

3
3
3

0
.0

1
2
6

-0
.0

1
4
4

-5
0

0
0

-3
0

0
-3

0
0

0
.0

1
4
4

0
.0

4
3
2

-0
.2

9
3
6

-0
.0

00
3

0
.0

6
2
6

-0
.0

2
0
4

-5
0

0
0

-3
0

0
0

-3
0

0
.0

1
2
4

0
.0

1
0
3

-0
.2

4
0
1

0
.0

00
5

-0
.0

1
0
9

-0
.0

0
5
1

-5
0

0
0

-3
0

0
0

0
0
.0

1
3
4

0
.0

2
1
4

-0
.2

6
0
6

-0
.0

00
6

0
.0

1
2
8

-0
.0

1
0
3

-5
0

0
0

-3
0

0
0

3
0

0
.0

1
4

0
.0

3
2
4

-0
.2

8
1
1

-0
.0

01
8

0
.0

3
6
5

-0
.0

1
5
5

-5
0

0
0

-3
0

0
3
0

0
0
.0

1
0
9

-0
.0

0
0
4

-0
.2

2
7
9

-0
.0

0
0
7

-0
.0

3
6
8

-0
.0

0
0
2

-5
0

0
0

-3
0

90
0

0
0
.0

1
0
3

0
.0

1
4

-0
.2

6
3
3

-0
.0

34
3

0
.0

1
3
9

-0
.0

0
6
4

-5
0

0
0

0
-9

0
0

0
0
.0

1
0
4

0
.0

0
8
2

-0
.2

6
3
2

0
.0

3
4
3

0
.0

1
3
9

-0
.0

0
4
2

-5
0

0
0

0
0

-3
0

0
0
.0

1
5
7

0
-0

.3
1
1
4

0
0
.0

8
2
3

0

-5
0

0
0

0
0

0
-3

0
0
.0

1
4

-0
.0

0
0
1

-0
.2

6
3
3

0
.0

01
0
.0

1
5
3

0
.0

0
0
1

-5
0

0
0

0
0

0
0

0
.0

1
4

0
-0

.2
6
3
3

0
0
.0

1
5
3

-0

-5
0

0
0

0
0

0
3
0

0
.0

1
4

0
.0

0
0
1

-0
.2

6
3
3

-0
.0

0
1

0
.0

1
5
3

-0
.0

0
0
1

-5
0

0
0

0
0

3
0

0
0
.0

1
0
1

0
-0

.2
1
5
9

0
-0

.0
5
1

-0

-5
0

0
0

0
90

0
0

0
.0

1
0
4

-0
.0

0
8
2

-0
.2

6
3
2

-0
.0

3
4
3

0
.0

1
3
9

0
.0

0
4
2

439

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

-5
0

0
0

30
-9

0
0

0
0
.0

1
0
3

-0
.0

1
4

-0
.2

6
3
3

0
.0

34
3

0
.0

1
3
9

0
.0

0
6
4

-5
0

0
0

30
0

-3
0

0
0
.0

1
4
4

-0
.0

4
3
2

-0
.2

9
3
6

0
.0

0
0
3

0
.0

6
2
6

0
.0

2
0
4

-5
0

0
0

30
0

0
-3

0
0
.0

1
4

-0
.0

3
2
4

-0
.2

8
1
1

0
.0

0
1
8

0
.0

3
6
5

0
.0

1
5
5

-5
0

0
0

30
0

0
0

0
.0

1
3
4

-0
.0

2
1
4

-0
.2

6
0
6

0
.0

00
6

0
.0

1
2
8

0
.0

1
0
3

-5
0

0
0

30
0

0
3
0

0
.0

1
2
4

-0
.0

1
0
3

-0
.2

4
0
1

-0
.0

0
0
5

-0
.0

1
0
9

0
.0

0
5
1

-5
0

0
0

30
0

3
0

0
0
.0

1
0
9

0
.0

0
0
4

-0
.2

2
7
9

0
.0

0
0
7

-0
.0

3
6
8

0
.0

0
0
2

-5
0

0
0

30
90

0
0

0
.0

0
9
6

-0
.0

2
9
2

-0
.2

6
1
5

-0
.0

3
3
3

0
.0

1
2
6

0
.0

1
4
4

-5
0

0
0

60
-9

0
0

0
0
.0

0
8
7

-0
.0

1
8

-0
.2

3
8
3

0
.0

35
6

-0
.0

1
5
4

0
.0

0
8
4

-5
0

0
0

60
0

-3
0

0
0
.0

1
2
3

-0
.0

4
5
7

-0
.2

4
1
2

0
.0

0
0
4

0
.0

0
1
6

0
.0

2
1
7

-5
0

0
0

60
0

0
-3

0
0
.0

1
2
3

-0
.0

5
9
1

-0
.2

5
7
4

0
.0

0
1
8

0
.0

0
8
2

0
.0

2
8

-5
0

0
0

60
0

0
0

0
.0

1
2

-0
.0

2
4
5

-0
.2

3
5
9

0
.0

00
9

-0
.0

1
6
6

0
.0

1
1
9

-5
0

0
0

60
0

0
3
0

0
.0

1
0
5

0
.0

0
9
3

-0
.2

1
5

0
.0

0
0
2

-0
.0

4
0
9

-0
.0

0
3
9

-5
0

0
0

60
0

3
0

0
0
.0

1
1
1

-0
.0

0
2
4

-0
.2

3
0
.0

0
1
2

-0
.0

3
5
5

0
.0

0
1
7

-5
0

0
0

60
90

0
0

0
.0

0
8
3

-0
.0

3
2
2

-0
.2

3
7

-0
.0

3
3
9

-0
.0

1
7
1

0
.0

1
5
9

-5
0

0
0

90
-9

0
0

0
0
.0

0
7
9

0
.0

0
5
5

-0
.2

2
2
1

0
.0

35
-0

.0
3
5

-0
.0

0
3

-5
0

0
0

90
0

-3
0

0
0
.0

1
1
4

0
-0

.2
1
2
9

0
-0

.0
3
1
9

-0

-5
0

0
0

90
0

0
-3

0
0
.0

1
0
7

-0
.0

4
5
4

-0
.2

2
0
8

0
.0

0
0
6

-0
.0

3
5
1

0
.0

2
1
2

-5
0

0
0

90
0

0
0

0
.0

1
1
5

0
-0

.2
2
0
8

0
-0

.0
3
5

-0

-5
0

0
0

90
0

0
3
0

0
.0

1
0
5

0
.0

4
5
4

-0
.2

2
0
8

-0
.0

0
0
6

-0
.0

3
5
1

-0
.0

2
1
2

-5
0

0
0

90
0

3
0

0
0
.0

1
1
5

0
-0

.2
2
8
6

0
-0

.0
3
8
2

-0

440

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

-5
0

0
0

90
90

0
0

0
.0

0
7
8

-0
.0

0
5
5

-0
.2

2
2
1

-0
.0

3
5

-0
.0

3
5

0
.0

0
3

-5
0

0
20

-9
0

0
0

0
0
.0

5
2
5

0
.0

0
9
3

-0
.2

2
0
4

-0
.0

41
4

-0
.0

3
5

-0
.0

0
2
5

-5
0

0
20

-6
0

0
0

0
0
.0

5
4
1

0
.0

3
3
1

-0
.2

4
1
2

-0
.0

41
4

-0
.0

1
2
2

-0
.0

1
4
3

-5
0

0
20

-3
0

0
0

0
0
.0

5
4
6

0
.0

2
8
3

-0
.2

7
4
2

-0
.0

38
2

0
.0

2
5

-0
.0

1
2
5

-5
0

0
20

0
0

0
0

0
.0

5
1
8

0
.0

0
0
2

-0
.2

6
1
7

-0
.0

3
3
4

0
.0

1
3
2

0
.0

0
0
1

-5
0

0
20

30
0

0
0

0
.0

5
0
7

-0
.0

1
3
2

-0
.2

4
6
2

-0
.0

3
7
1

-0
.0

0
0
2

0
.0

0
7
2

-5
0

0
20

60
0

0
0

0
.0

5
1
4

-0
.0

1
5
7

-0
.2

2
9
9

-0
.0

3
9
6

-0
.0

2
1
1

0
.0

0
9
2

-5
0

0
20

90
0

0
0

0
.0

5
2
4

0
.0

0
9
2

-0
.2

2
0
4

-0
.0

4
1
4

-0
.0

3
5
3

-0
.0

0
2
5

-5
0

10
0

-9
0

0
0

0
0
.0

2
4
1

-0
.1

2
8
2

-0
.2

2
0
4

-0
.0

0
1
4

-0
.0

3
3
6

0
.0

6
1
5

-5
0

10
0

-6
0

0
0

0
0
.0

1
9
9

-0
.0

8
5
9

-0
.1

6
7
8

-0
.0

0
2
1

-0
.0

9
6
2

0
.0

4
1
2

-5
0

10
0

-3
0

0
0

0
0
.0

1
7
9

-0
.0

4
1
4

-0
.1

4
4
1

-0
.0

0
1
2

-0
.1

2
4
3

0
.0

1
9
9

-5
0

10
0

0
0

0
0

0
.0

1
7
1

0
-0

.1
3
0
6

0
-0

.1
4
0
6

-0

-5
0

10
0

30
0

0
0

0
.0

1
7
9

0
.0

4
1
4

-0
.1

4
4
1

0
.0

0
1
2

-0
.1

2
4
3

-0
.0

1
9
9

-5
0

10
0

60
0

0
0

0
.0

1
9
9

0
.0

8
5
9

-0
.1

6
7
8

0
.0

0
2
1

-0
.0

9
6
2

-0
.0

4
1
2

-5
0

10
0

90
0

0
0

0
.0

2
4
1

0
.1

2
8
2

-0
.2

2
0
4

0
.0

0
1
4

-0
.0

3
3
6

-0
.0

6
1
5

0
-6

0
-2

0
-9

0
0

0
0

0
.0

5
5
6

0
.1

4
5
7

0
.1

1
4
7

0
.0

4
3
5

-0
.0

1
5
2

-0
.0

6
8
2

0
-6

0
-2

0
-6

0
0

0
0

0
.0

5
3

0
.1

2
5
1

0
.0

3
8
5

0
.0

4
2
2

0
.0

7
1
6

-0
.0

5
7
6

0
-6

0
-2

0
-3

0
0

0
0

0
.0

4
7
4

0
.0

5
7
3

0
.0

0
9
9

0
.0

3
8
5

0
.1

0
1
4

-0
.0

2
5
5

0
-6

0
-2

0
0

0
0

0
0
.0

0
3
2

-0
.0

0
1

-0
.1

6
2

0
.0

32
6

0
.2

8
9
8

0
.0

0
4
5

0
-6

0
-2

0
30

0
0

0
0
.0

4
7
9

0
.0

1
6
6

0
.1

3
9
7

0
.0

3
9
1

-0
.0

4
8
2

-0
.0

0
9

441

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

0
-6

0
-2

0
60

0
0

0
0
.0

5
3
2

0
.0

9
3
2

0
.1

7
0
4

0
.0

42
9

-0
.0

8
0
4

-0
.0

4
4
6

0
-6

0
-2

0
90

0
0

0
0
.0

5
4
7

0
.1

4
5
6

0
.1

1
4
7

0
.0

43
5

-0
.0

1
4
9

-0
.0

6
8
1

0
-6

0
0

-9
0

-9
0

0
0

0
.0

0
9
2

0
.1

4
1
5

0
.0

8
6
6

0
.0

3
7

-0
.0

1
8
4

-0
.0

6
5
7

0
-6

0
0

-9
0

0
-3

0
0

0
.0

1
2
7

0
.1

4
3

0
.0

8
3
1

0
.0

0
2
8

-0
.0

1
4
1

-0
.0

6
6
7

0
-6

0
0

-9
0

0
0

-3
0

0
.0

1
2
4

0
.0

9
7
7

0
.0

7
5

0
.0

0
1
4

-0
.0

1
6
8

-0
.0

4
5
6

0
-6

0
0

-9
0

0
0

0
0
.0

1
2
7

0
.1

4
2
9

0
.0

7
5
2

0
.0

01
9

-0
.0

1
7

-0
.0

6
6
7

0
-6

0
0

-9
0

0
0

3
0

0
.0

1
1
4

0
.1

8
8
7

0
.0

7
5
5

0
.0

02
5

-0
.0

1
7
2

-0
.0

8
7
9

0
-6

0
0

-9
0

0
3
0

0
0
.0

1
2
7

0
.1

4
2
9

0
.0

6
7
4

0
.0

01
1

-0
.0

1
9
9

-0
.0

6
6
6

0
-6

0
0

-9
0

90
0

0
0
.0

0
9
2

0
.1

4
5
1

0
.0

6
4
4

-0
.0

3
3
1

-0
.0

1
5
6

-0
.0

6
7
6

0
-6

0
0

-6
0

-9
0

0
0

0
.0

0
7
5

0
.1

1
7
2

0
.0

1
4
4

0
.0

36
4

0
.0

6
4
9

-0
.0

5
4
4

0
-6

0
0

-6
0

0
-3

0
0

0
.0

1
0
3

0
.1

3
6
7

-0
.0

0
0
8

0
.0

0
2
4

0
.0

8
2
5

-0
.0

6
3
7

0
-6

0
0

-6
0

0
0

-3
0

0
.0

1
1

0
.0

8
0
9

0
.0

2
5

0
.0

0
1
2

0
.0

4
0
7

-0
.0

3
7
7

0
-6

0
0

-6
0

0
0

0
0
.0

1
1

0
.1

1
4
7

0
.0

0
4
6

0
.0

01
5

0
.0

6
4
3

-0
.0

5
3
5

0
-6

0
0

-6
0

0
0

3
0

0
.0

0
9
8

0
.1

4
9

-0
.0

1
5
9

0
.0

0
1
7

0
.0

8
8
1

-0
.0

6
9
4

0
-6

0
0

-6
0

0
3
0

0
0
.0

1
1
2

0
.0

9
3
9

0
.0

0
9
4

0
.0

00
9

0
.0

4
6
8

-0
.0

4
3
8

0
-6

0
0

-6
0

90
0

0
0
.0

0
7
5

0
.1

1
3
2

-0
.0

0
4
9

-0
.0

3
3
2

0
.0

6
3
6

-0
.0

5
2
6

0
-6

0
0

-3
0

-9
0

0
0

0
.0

0
3
9

0
.0

4
8
5

-0
.0

0
3
3

0
.0

35
4

0
.0

8
5
6

-0
.0

2
2
3

0
-6

0
0

-3
0

0
-3

0
0

0
.0

0
5
9

0
.0

6
6
9

-0
.0

4
0
.0

0
1
9

0
.1

2
6
9

-0
.0

3
1
1

0
-6

0
0

-3
0

0
0

-3
0

0
.0

0
7
8

0
.0

3
3
4

0
.0

1
2
8

0
.0

0
1
1

0
.0

5
4
3

-0
.0

1
5
6

0
-6

0
0

-3
0

0
0

0
0
.0

0
7
6

0
.0

4
4
7

-0
.0

0
7
5

0
.0

0
1
4

0
.0

7
7
8

-0
.0

2
0
8

442

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

0
-6

0
0

-3
0

0
0

3
0

0
.0

0
7

0
.0

5
6

-0
.0

2
7
8

0
.0

0
1
4

0
.1

0
1
3

-0
.0

2
6
1

0
-6

0
0

-3
0

0
3
0

0
0
.0

0
7
6

0
.0

2
2
8

0
.0

2
4
7

0
.0

0
1

0
.0

2
8
9

-0
.0

1
0
7

0
-6

0
0

-3
0

90
0

0
0
.0

0
4
2

0
.0

4
1
2

-0
.0

1
0
7

-0
.0

3
2
4

0
.0

6
9
1

-0
.0

1
9
2

0
-6

0
0

0
-9

0
0

0
0
.0

0
1
6

-0
.0

0
0
3

0
.0

3
9
7

0
.0

34
0
.0

3
6
3

0
.0

0
0
4

0
-6

0
0

0
0

-3
0

0
0
.0

0
3
1

0
.0

0
0
4

-0
.0

0
7
7

0
.0

01
0
.0

8
9
3

-0
.0

0
0
2

0
-6

0
0

0
0

0
-3

0
0
.0

0
0
5

0
.0

0
0
6

-0
.0

3
1
9

0
.0

0
1
7

0
.1

0
2
2

-0
.0

0
0
2

0
-6

0
0

0
0

0
0

-0
.0

1
2
9

0
.0

0
2
5

-0
.1

1
2
7

0
.0

0
2
9

0
.1

9
1
1

-0
.0

0
0
7

0
-6

0
0

0
0

0
3
0

0
.0

0
1
3

0
.0

0
1
5

0
.0

2
2
1

-0
.0

0
2
8

0
.0

3
8
4

-0
.0

0
1
1

0
-6

0
0

0
0

3
0

0
0
.0

0
5
5

0
.0

0
0
1

0
.0

9
4
9

0
.0

01
-0

.0
5
1
7

-0
.0

0
0
1

0
-6

0
0

0
90

0
0

0
.0

0
2
4

0
.0

0
1
1

0
.0

5
1
8

-0
.0

3
1
6

-0
.0

0
3
2

-0
.0

0
0
5

0
-6

0
0

30
-9

0
0

0
0
.0

0
3
6

0
.0

1
9
6

0
.1

2
4
1

0
.0

35
5

-0
.0

6
0
4

-0
.0

0
9
1

0
-6

0
0

30
0

-3
0

0
0
.0

0
6
2

0
.0

0
4
2

0
.0

9
0
6

0
.0

02
2

-0
.0

2
2
9

-0
.0

0
2
2

0
-6

0
0

30
0

0
-3

0
0
.0

0
6
9

0
.0

1
4
6

0
.1

0
2
2

0
.0

01
3

-0
.0

4
8
2

-0
.0

0
6
9

0
-6

0
0

30
0

0
0

0
.0

0
7
2

0
.0

2
5
6

0
.1

2
2
6

0
.0

0
2
1

-0
.0

7
1
6

-0
.0

1
2
1

0
-6

0
0

30
0

0
3
0

0
.0

0
7
1

0
.0

3
6
6

0
.1

4
3

0
.0

03
-0

.0
9
5

-0
.0

1
7
3

0
-6

0
0

30
0

3
0

0
0
.0

0
6
7

0
.0

4
7
4

0
.1

5
4
8

0
.0

0
1
7

-0
.1

2
0
6

-0
.0

2
2
2

0
-6

0
0

30
90

0
0

0
.0

0
3
8

0
.0

3
3
2

0
.1

2
3
3

-0
.0

3
1
7

-0
.0

8
4
6

-0
.0

1
5
4

0
-6

0
0

60
-9

0
0

0
0
.0

0
6
8

0
.0

9
3
6

0
.1

4
4
7

0
.0

36
9

-0
.0

8
4
9

-0
.0

4
3
5

0
-6

0
0

60
0

-3
0

0
0
.0

1
0
3

0
.0

7
7
4

0
.1

3
0
8

0
.0

02
8

-0
.0

6
9

-0
.0

3
6
2

0
-6

0
0

60
0

0
-3

0
0
.0

1
0
1

0
.0

6
5

0
.1

1
5
2

0
.0

01
5

-0
.0

6
3

-0
.0

3
0
4

443

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

0
-6

0
0

60
0

0
0

0
.0

1
0
4

0
.0

9
8
5

0
.1

3
5
9

0
.0

0
2
3

-0
.0

8
6
9

-0
.0

4
6

0
-6

0
0

60
0

0
3
0

0
.0

0
9
5

0
.1

3
2
5

0
.1

5
6
8

0
.0

0
3
3

-0
.1

1
1

-0
.0

6
1
8

0
-6

0
0

60
0

3
0

0
0
.0

1
0
.1

2
0
2

0
.1

4
1
3

0
.0

0
1
6

-0
.1

0
5
2

-0
.0

5
6
1

0
-6

0
0

60
90

0
0

0
.0

0
6
8

0
.1

0
4
3

0
.1

2
7
8

-0
.0

3
2
5

-0
.0

8
9
1

-0
.0

4
8
6

0
-6

0
0

90
-9

0
0

0
0
.0

0
8
4

0
.1

4
1
5

0
.0

8
6
6

0
.0

3
7

-0
.0

1
8
5

-0
.0

6
5
7

0
-6

0
0

90
0

-3
0

0
0
.0

1
1
9

0
.1

4
3

0
.0

8
3
2

0
.0

02
8

-0
.0

1
4
1

-0
.0

6
6
7

0
-6

0
0

90
0

0
-3

0
0
.0

1
1
9

0
.0

9
7
7

0
.0

7
5

0
.0

01
4

-0
.0

1
6
8

-0
.0

4
5
6

0
-6

0
0

90
0

0
0

0
.0

1
1
9

0
.1

4
2
9

0
.0

7
5
3

0
.0

0
1
9

-0
.0

1
7

-0
.0

6
6
6

0
-6

0
0

90
0

0
3
0

0
.0

1
0
3

0
.1

8
8
7

0
.0

7
5
5

0
.0

0
2
5

-0
.0

1
7
3

-0
.0

8
7
9

0
-6

0
0

90
0

3
0

0
0
.0

1
1
9

0
.1

4
2
9

0
.0

6
7
4

0
.0

0
1
1

-0
.0

1
9
9

-0
.0

6
6
6

0
-6

0
0

90
90

0
0

0
.0

0
8
3

0
.1

4
5
1

0
.0

6
4
4

-0
.0

3
3
1

-0
.0

1
5
6

-0
.0

6
7
5

0
-4

0
-2

0
-9

0
0

0
0

0
.0

5
1
5

0
.0

9
8
2

0
.1

0
1
6

0
.0

42
8

-0
.0

1
5
4

-0
.0

4
5
8

0
-4

0
-2

0
-6

0
0

0
0

0
.0

5
0
.0

8
7
7

0
.0

4
8
6

0
.0

41
6

0
.0

4
4
9

-0
.0

4
0
2

0
-4

0
-2

0
-3

0
0

0
0

0
.0

4
6
3

0
.0

4
2
9

0
.0

2
4
2

0
.0

37
7

0
.0

7
0
6

-0
.0

1
8
9

0
-4

0
-2

0
0

0
0

0
-0

.2
1
7
2

0
.0

4
6
9

0
.7

2
8
9

0
.0

2
9
4

-0
.7

0
7
7

-0
.0

1
8
1

0
-4

0
-2

0
30

0
0

0
0
.0

4
6
5

0
.0

0
8
2

0
.1

1
1
2

0
.0

3
8

-0
.0

2
9
6

-0
.0

0
4
6

0
-4

0
-2

0
60

0
0

0
0
.0

4
9
9

0
.0

6
0
.1

3
6
9

0
.0

41
9

-0
.0

5
6
7

-0
.0

2
8
7

0
-4

0
-2

0
90

0
0

0
0
.0

5
0
9

0
.0

9
8
2

0
.1

0
1
7

0
.0

42
8

-0
.0

1
5
1

-0
.0

4
5
8

0
-4

0
0

-9
0

-9
0

0
0

0
.0

0
5
5

0
.0

9
4

0
.0

8
3

0
.0

36
4

-0
.0

1
7
6

-0
.0

4
3
6

0
-4

0
0

-9
0

0
-3

0
0

0
.0

0
9

0
.0

9
5
5

0
.0

8
3
3

0
.0

0
2
2

-0
.0

1
3
7

-0
.0

4
4
6

444

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

0
-4

0
0

-9
0

0
0

-3
0

0
.0

0
8
5

0
.0

5
0
4

0
.0

7
5
2

0
.0

0
1
1

-0
.0

1
6
6

-0
.0

2
3
5

0
-4

0
0

-9
0

0
0

0
0
.0

0
9

0
.0

9
5
4

0
.0

7
5
4

0
.0

01
5

-0
.0

1
6
7

-0
.0

4
4
5

0
-4

0
0

-9
0

0
0

3
0

0
.0

0
7
9

0
.1

4
0
7

0
.0

7
5
6

0
.0

0
2

-0
.0

1
6
9

-0
.0

6
5
6

0
-4

0
0

-9
0

0
3
0

0
0
.0

0
9

0
.0

9
5
3

0
.0

6
7
5

0
.0

00
9

-0
.0

1
9
8

-0
.0

4
4
5

0
-4

0
0

-9
0

90
0

0
0
.0

0
5
4

0
.0

9
7
6

0
.0

6
8
3

-0
.0

3
3
4

-0
.0

1
5
9

-0
.0

4
5
5

0
-4

0
0

-6
0

-9
0

0
0

0
.0

0
4
7

0
.0

8
0
7

0
.0

3
3

0
.0

3
6

0
.0

4
-0

.0
3
7
4

0
-4

0
0

-6
0

0
-3

0
0

0
.0

0
7
6

0
.1

0
1
7

0
.0

2
0
6

0
.0

0
1
9

0
.0

5
8
2

-0
.0

4
7
3

0
-4

0
0

-6
0

0
0

-3
0

0
.0

0
8
1

0
.0

4
6
1

0
.0

4
6
7

0
.0

01
0
.0

1
6
1

-0
.0

2
1
4

0
-4

0
0

-6
0

0
0

0
0
.0

0
8
3

0
.0

7
9
7

0
.0

2
6
2

0
.0

01
3

0
.0

3
9
8

-0
.0

3
7
1

0
-4

0
0

-6
0

0
0

3
0

0
.0

0
7
2

0
.1

1
3
6

0
.0

0
5
7

0
.0

01
5

0
.0

6
3
6

-0
.0

5
3

0
-4

0
0

-6
0

0
3
0

0
0
.0

0
8
3

0
.0

5
8

0
.0

3
1
7

0
.0

00
8

0
.0

2
1
4

-0
.0

2
7

0
-4

0
0

-6
0

90
0

0
0
.0

0
4
6

0
.0

7
9
1

0
.0

1
9
9

-0
.0

3
3
2

0
.0

3
9
3

-0
.0

3
6
8

0
-4

0
0

-3
0

-9
0

0
0

0
.0

0
3

0
.0

3
5
5

0
.0

1
6
5

0
.0

34
9

0
.0

5
9

-0
.0

1
6
2

0
-4

0
0

-3
0

0
-3

0
0

0
.0

0
5

0
.0

5
5
6

-0
.0

1
9
6

0
.0

0
1
4

0
.1

0
3
8

-0
.0

2
5
8

0
-4

0
0

-3
0

0
0

-3
0

0
.0

0
6
8

0
.0

2
2
3

0
.0

3
3
5

0
.0

0
0
8

0
.0

3
0
8

-0
.0

1
0
3

0
-4

0
0

-3
0

0
0

0
0
.0

0
6
6

0
.0

3
3
3

0
.0

1
3
4

0
.0

01
1

0
.0

5
4

-0
.0

1
5
5

0
-4

0
0

-3
0

0
0

3
0

0
.0

0
6

0
.0

4
4
6

-0
.0

0
7

0
.0

0
1
2

0
.0

7
7
6

-0
.0

2
0
8

0
-4

0
0

-3
0

0
3
0

0
0
.0

0
6
7

0
.0

1
6

0
.0

3
7
7

0
.0

00
9

0
.0

1
3
8

-0
.0

0
7
4

0
-4

0
0

-3
0

90
0

0
0
.0

0
3
1

0
.0

3
1
4

0
.0

1
1
3

-0
.0

3
2
4

0
.0

4
8
3

-0
.0

1
4
6

0
-4

0
0

0
-9

0
0

0
0
.0

0
1
7

-0
.0

0
0
5

0
.0

3
8
8

0
.0

3
3
6

0
.0

3
3
3

0
.0

0
0
4

445

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

0
-4

0
0

0
0

-3
0

0
0
.0

0
3
1

0
.0

0
0
2

-0
.0

0
7
5

0
.0

0
0
7

0
.0

8
9
5

-0
.0

0
0
1

0
-4

0
0

0
0

0
-3

0
0
.0

0
3
7

0
.0

0
0
4

0
.0

0
2
3

0
.0

02
8

0
.0

6
5
6

-0
.0

0
0
3

0
-4

0
0

0
0

0
0

-0
.1

8
0
8

0
.0

1
4
2

0
.6

1
1
1

0
.0

02
6

-0
.6

0
4
1

0
.0

0
0
5

0
-4

0
0

0
0

0
3
0

-0
.0

0
5
5

0
.0

0
1
9

0
.1

6
0
4

-0
.0

0
7
7

-0
.1

0
9
8

-0
.0

0
1
6

0
-4

0
0

0
0

3
0

0
0
.0

0
5
5

0
.0

0
0
1

0
.0

9
4
4

0
.0

0
0
7

-0
.0

5
0
8

-0
.0

0
0
1

0
-4

0
0

0
90

0
0

0
.0

0
2
3

0
.0

0
1

0
.0

5
1
4

-0
.0

3
2

0
.0

0
2

-0
.0

0
0
5

0
-4

0
0

30
-9

0
0

0
0
.0

0
2
8

0
.0

1
0
5

0
.1

0
3
6

0
.0

34
9

-0
.0

4
0
7

-0
.0

0
4
8

0
-4

0
0

30
0

-3
0

0
0
.0

0
4

-0
.0

1
6
8

0
.0

5
1
4

0
.0

0
1
6

0
.0

2
1
5

0
.0

0
7
5

0
-4

0
0

30
0

0
-3

0
0
.0

0
6

0
.0

0
2
5

0
.0

7
9
8

0
.0

00
8

-0
.0

2
2
2

-0
.0

0
1
3

0
-4

0
0

30
0

0
0

0
.0

0
6
4

0
.0

1
3
7

0
.1

0
0
5

0
.0

0
1
4

-0
.0

4
6
1

-0
.0

0
6
5

0
-4

0
0

30
0

0
3
0

0
.0

0
6
4

0
.0

2
4
7

0
.1

2
0
9

0
.0

0
2
2

-0
.0

6
9
5

-0
.0

1
1
7

0
-4

0
0

30
0

3
0

0
0
.0

0
6

0
.0

3
5
5

0
.1

3
3
1

0
.0

0
1
1

-0
.0

9
5
4

-0
.0

1
6
6

0
-4

0
0

30
90

0
0

0
.0

0
2
9

0
.0

1
8
4

0
.1

0
0
1

-0
.0

3
2
4

-0
.0

5
3
7

-0
.0

0
8
7

0
-4

0
0

60
-9

0
0

0
0
.0

0
4
2

0
.0

5
8
6

0
.1

1
9
6

0
.0

36
2

-0
.0

5
9
5

-0
.0

2
7
3

0
-4

0
0

60
0

-3
0

0
0
.0

0
7
5

0
.0

4
1
2

0
.1

0
8
6

0
.0

02
1

-0
.0

4
3

-0
.0

1
9
4

0
-4

0
0

60
0

0
-3

0
0
.0

0
7
3

0
.0

2
9
2

0
.0

9
3
3

0
.0

0
1

-0
.0

3
7
4

-0
.0

1
3
7

0
-4

0
0

60
0

0
0

0
.0

0
7
8

0
.0

6
2
6

0
.1

1
4

0
.0

0
1
7

-0
.0

6
1
3

-0
.0

2
9
3

0
-4

0
0

60
0

0
3
0

0
.0

0
7
1

0
.0

9
6
3

0
.1

3
4
8

0
.0

0
2
4

-0
.0

8
5
3

-0
.0

4
5

0
-4

0
0

60
0

3
0

0
0
.0

0
7
5

0
.0

8
4
1

0
.1

1
9
3

0
.0

0
1
1

-0
.0

7
9
5

-0
.0

3
9
3

0
-4

0
0

60
90

0
0

0
.0

0
4
2

0
.0

6
7

0
.1

0
8
8

-0
.0

3
3

-0
.0

6
3

-0
.0

3
1
3

446

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

0
-4

0
0

90
-9

0
0

0
0
.0

0
4
9

0
.0

9
4

0
.0

8
3

0
.0

36
4

-0
.0

1
7
7

-0
.0

4
3
6

0
-4

0
0

90
0

-3
0

0
0
.0

0
8
4

0
.0

9
5
5

0
.0

8
3
3

0
.0

02
2

-0
.0

1
3
7

-0
.0

4
4
5

0
-4

0
0

90
0

0
-3

0
0
.0

0
8
2

0
.0

5
0
5

0
.0

7
5
3

0
.0

01
1

-0
.0

1
6
6

-0
.0

2
3
5

0
-4

0
0

90
0

0
0

0
.0

0
8
5

0
.0

9
5
4

0
.0

7
5
4

0
.0

0
1
5

-0
.0

1
6
8

-0
.0

4
4
5

0
-4

0
0

90
0

0
3
0

0
.0

0
7
1

0
.1

4
0
7

0
.0

7
5
6

0
.0

02
-0

.0
1
6
9

-0
.0

6
5
6

0
-4

0
0

90
0

3
0

0
0
.0

0
8
5

0
.0

9
5
3

0
.0

6
7
5

0
.0

0
0
9

-0
.0

1
9
8

-0
.0

4
4
5

0
-4

0
0

90
90

0
0

0
.0

0
4
8

0
.0

9
7
6

0
.0

6
8
3

-0
.0

3
3
4

-0
.0

1
5
9

-0
.0

4
5
4

0
-2

0
-2

0
-9

0
0

0
0

0
.0

4
8
5

0
.0

5
0
6

0
.0

8
8
5

0
.0

41
7

-0
.0

1
6

-0
.0

2
3
4

0
-2

0
-2

0
-6

0
0

0
0

0
.0

4
7
8

0
.0

4
9
7

0
.0

5
9
2

0
.0

40
6

0
.0

1
7
4

-0
.0

2
2
5

0
-2

0
-2

0
-3

0
0

0
0

0
.0

4
5
4

0
.0

2
7
7

0
.0

4
0
3

0
.0

36
8

0
.0

3
7
7

-0
.0

1
2
1

0
-2

0
-2

0
0

0
0

0
-4

.8
9
4
4

0
.0

4
4
2

3
.1

4
4
3

0
.1

6
0
9

-3
.4

0
3
5

0
.3

2
6
9

0
-2

0
-2

0
30

0
0

0
0
.0

4
5
4

0
.0

0
0
3

0
.0

8
3
8

0
.0

36
8

-0
.0

1
2
6

-0
.0

0
0
3

0
-2

0
-2

0
60

0
0

0
0
.0

4
7
7

0
.0

2
7

0
.1

0
3
4

0
.0

40
7

-0
.0

3
3
6

-0
.0

1
2
8

0
-2

0
-2

0
90

0
0

0
0
.0

4
8
2

0
.0

5
0
6

0
.0

8
8
5

0
.0

41
7

-0
.0

1
5
6

-0
.0

2
3
4

0
-2

0
0

-9
0

-9
0

0
0

0
.0

0
3
2

0
.0

4
6
1

0
.0

7
9
4

0
.0

35
6

-0
.0

1
6
9

-0
.0

2
1
4

0
-2

0
0

-9
0

0
-3

0
0

0
.0

0
6
8

0
.0

4
7
8

0
.0

8
3
3

0
.0

0
1
1

-0
.0

1
3
3

-0
.0

2
2
3

0
-2

0
0

-9
0

0
0

-3
0

0
.0

0
6
1

0
.0

0
3

0
.0

7
5
4

0
.0

0
0
3

-0
.0

1
6
4

-0
.0

0
1
3

0
-2

0
0

-9
0

0
0

0
0
.0

0
6
8

0
.0

4
7
7

0
.0

7
5
5

0
.0

00
8

-0
.0

1
6
5

-0
.0

2
2
3

0
-2

0
0

-9
0

0
0

3
0

0
.0

0
5
9

0
.0

9
2
7

0
.0

7
5
6

0
.0

01
2

-0
.0

1
6
5

-0
.0

4
3
3

0
-2

0
0

-9
0

0
3
0

0
0
.0

0
6
8

0
.0

4
7
7

0
.0

6
7
6

0
.0

00
4

-0
.0

1
9
6

-0
.0

2
2
3

447

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

0
-2

0
0

-9
0

90
0

0
0
.0

0
3
2

0
.0

4
9
7

0
.0

7
2
1

-0
.0

3
4

-0
.0

1
6
2

-0
.0

2
3
2

0
-2

0
0

-6
0

-9
0

0
0

0
.0

0
3

0
.0

4
4

0
.0

5
1
9

0
.0

35
3

0
.0

1
4
6

-0
.0

2
0
3

0
-2

0
0

-6
0

0
-3

0
0

0
.0

0
6
1

0
.0

6
6
1

0
.0

4
2
5

0
.0

01
0
.0

3
3
4

-0
.0

3
0
7

0
-2

0
0

-6
0

0
0

-3
0

0
.0

0
6
3

0
.0

1
0
8

0
.0

6
8
7

0
.0

0
0
3

-0
.0

0
8
9

-0
.0

0
4
9

0
-2

0
0

-6
0

0
0

0
0
.0

0
6
6

0
.0

4
4
3

0
.0

4
8
1

0
.0

00
7

0
.0

1
4
8

-0
.0

2
0
6

0
-2

0
0

-6
0

0
0

3
0

0
.0

0
5
6

0
.0

7
7
9

0
.0

2
7
5

0
.0

0
1

0
.0

3
8
6

-0
.0

3
6
3

0
-2

0
0

-6
0

0
3
0

0
0
.0

0
6
5

0
.0

2
2
6

0
.0

5
3
6

0
.0

00
5

-0
.0

0
3
6

-0
.0

1
0
5

0
-2

0
0

-6
0

90
0

0
0
.0

0
2
9

0
.0

4
4
9

0
.0

4
4
8

-0
.0

3
3
7

0
.0

1
4
9

-0
.0

2
0
9

0
-2

0
0

-3
0

-9
0

0
0

0
.0

0
2
5

0
.0

2
1
8

0
.0

3
7
8

0
.0

34
3

0
.0

3
0
6

-0
.0

0
9
9

0
-2

0
0

-3
0

0
-3

0
0

0
.0

0
4
5

0
.0

4
3
9

0
.0

0
1
8

0
.0

0
0
8

0
.0

7
9
4

-0
.0

2
0
3

0
-2

0
0

-3
0

0
0

-3
0

0
.0

0
6
1

0
.0

1
0
7

0
.0

5
5
3

0
.0

0
0
2

0
.0

0
5
9

-0
.0

0
4
8

0
-2

0
0

-3
0

0
0

0
0
.0

0
6

0
.0

2
1
8

0
.0

3
4
9

0
.0

00
6

0
.0

2
9
5

-0
.0

1
0
1

0
-2

0
0

-3
0

0
0

3
0

0
.0

0
5
5

0
.0

3
2
9

0
.0

1
4
5

0
.0

00
9

0
.0

5
3
1

-0
.0

1
5
3

0
-2

0
0

-3
0

0
3
0

0
0
.0

0
5
9

-0
.0

0
0
5

0
.0

6
8
4

0
.0

0
0
6

-0
.0

2
0
9

0
.0

0
0
3

0
-2

0
0

-3
0

90
0

0
0
.0

0
2
5

0
.0

2
1
2

0
.0

3
4

-0
.0

3
2
8

0
.0

2
6
6

-0
.0

0
9
8

0
-2

0
0

0
-9

0
0

0
0
.0

0
2

-0
.0

0
0
6

0
.0

4
7
2

0
.0

3
3
1

0
.0

1
9
9

0
.0

0
0
4

0
-2

0
0

0
0

-3
0

0
0
.0

0
3

0
.0

0
0
2

-0
.0

0
8
2

0
.0

0
0
6

0
.0

9
0
5

-0
.0

0
0
1

0
-2

0
0

0
0

0
-3

0
-0

.0
3
5
3

0
.0

0
0
4

-0
.1

7
6
5

-0
.0

0
5
5

0
.2

6
1
9

0
.0

0
1
5

0
-2

0
0

0
0

0
0

0
.0

0
5
5

0
0
.0

5
8
9

0
.0

0
1

0
.0

0
2
1

-0

0
-2

0
0

0
0

0
3
0

0
.0

0
5
7

0
.0

0
0
1

0
.0

6
5
3

-0
.0

0
0
3

-0
.0

0
4
7

-0
.0

0
0
1

448

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

0
-2

0
0

0
0

3
0

0
0
.0

0
5
5

0
0
.0

9
3
9

0
.0

00
4

-0
.0

5
-0

0
-2

0
0

0
90

0
0

0
.0

0
2

0
.0

0
0
9

0
.0

4
2
5

-0
.0

3
2
2

0
.0

1
6
3

-0
.0

0
0
5

0
-2

0
0

30
-9

0
0

0
0
.0

0
2
3

-0
.0

0
1
5

0
.0

7
7
8

0
.0

34
-0

.0
1
5
2

0
.0

0
0
7

0
-2

0
0

30
0

-3
0

0
0
.0

0
4
6

-0
.0

1
9
9

0
.0

4
6

0
.0

0
0
8

0
.0

2
8
7

0
.0

0
9
1

0
-2

0
0

30
0

0
-3

0
0
.0

0
5
5

-0
.0

0
9
2

0
.0

5
8
2

0
.0

0
0
2

0
.0

0
2
8

0
.0

0
4
2

0
-2

0
0

30
0

0
0

0
.0

0
5
9

0
.0

0
1
8

0
.0

7
8
6

0
.0

0
0
7

-0
.0

2
0
7

-0
.0

0
1

0
-2

0
0

30
0

0
3
0

0
.0

0
6

0
.0

1
2
8

0
.0

9
9

0
.0

0
1
3

-0
.0

4
4
1

-0
.0

0
6
2

0
-2

0
0

30
0

3
0

0
0
.0

0
5
6

0
.0

2
3
7

0
.1

1
1
4

0
.0

0
0
5

-0
.0

7
0
3

-0
.0

1
1
1

0
-2

0
0

30
90

0
0

0
.0

0
2
4

0
.0

0
4
4

0
.0

7
8
4

-0
.0

3
3

-0
.0

2
4
5

-0
.0

0
2
2

0
-2

0
0

60
-9

0
0

0
0
.0

0
2
8

0
.0

2
4
1

0
.0

9
4
8

0
.0

35
2

-0
.0

3
4
6

-0
.0

1
1
3

0
-2

0
0

60
0

-3
0

0
0
.0

0
6

0
.0

0
5
4

0
.0

8
6
6

0
.0

0
1

-0
.0

1
7
4

-0
.0

0
2
7

0
-2

0
0

60
0

0
-3

0
0
.0

0
5
7

-0
.0

0
6
4

0
.0

7
1
5

0
.0

0
0
3

-0
.0

1
2

0
.0

0
2
9

0
-2

0
0

60
0

0
0

0
.0

0
6
4

0
.0

2
7

0
.0

9
2
1

0
.0

0
0
8

-0
.0

3
5
8

-0
.0

1
2
7

0
-2

0
0

60
0

0
3
0

0
.0

0
5
8

0
.0

6
0
5

0
.1

1
2
8

0
.0

0
1
4

-0
.0

5
9
7

-0
.0

2
8
4

0
-2

0
0

60
0

3
0

0
0
.0

0
6
1

0
.0

4
8
6

0
.0

9
7
6

0
.0

0
0
4

-0
.0

5
4
3

-0
.0

2
2
8

0
-2

0
0

60
90

0
0

0
.0

0
2
7

0
.0

3
0
1

0
.0

8
9
9

-0
.0

3
3
8

-0
.0

3
7
1

-0
.0

1
4
2

0
-2

0
0

90
-9

0
0

0
0
.0

0
2
9

0
.0

4
6
1

0
.0

7
9
4

0
.0

35
6

-0
.0

1
7

-0
.0

2
1
4

0
-2

0
0

90
0

-3
0

0
0
.0

0
6
5

0
.0

4
7
8

0
.0

8
3
4

0
.0

01
1

-0
.0

1
3
4

-0
.0

2
2
3

0
-2

0
0

90
0

0
-3

0
0
.0

0
6

0
.0

0
3

0
.0

7
5
4

0
.0

00
3

-0
.0

1
6
4

-0
.0

0
1
3

0
-2

0
0

90
0

0
0

0
.0

0
6
5

0
.0

4
7
7

0
.0

7
5
5

0
.0

0
0
8

-0
.0

1
6
5

-0
.0

2
2
3

449

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

0
-2

0
0

90
0

0
3
0

0
.0

0
5
3

0
.0

9
2
7

0
.0

7
5
6

0
.0

0
1
2

-0
.0

1
6
6

-0
.0

4
3
3

0
-2

0
0

90
0

3
0

0
0
.0

0
6
5

0
.0

4
7
7

0
.0

6
7
6

0
.0

0
0
4

-0
.0

1
9
6

-0
.0

2
2
2

0
-2

0
0

90
90

0
0

0
.0

0
2
9

0
.0

4
9
7

0
.0

7
2
1

-0
.0

3
4

-0
.0

1
6
1

-0
.0

2
3
2

0
0

-1
0

0
-9

0
0

0
0

0
.0

1
8
2

0
.1

2
7
5

0
.0

7
5
4

0
.0

00
2

-0
.0

1
6
3

-0
.0

6
1
2

0
0

-1
0

0
-6

0
0

0
0

0
.0

1
7
8

0
.1

1
8
6

0
.0

0
2
3

0
.0

00
2

0
.0

7
0
2

-0
.0

5
6
7

0
0

-1
0

0
-3

0
0

0
0

0
.0

1
7
4

0
.0

7
2
9

-0
.0

5
9
8

0
.0

0
0
2

0
.1

4
2
8

-0
.0

3
4
7

0
0

-1
0

0
0

0
0

0
0
.0

1
3
4

0
-0

.1
3
4
4

0
0
.2

2
6
4

-0

0
0

-1
0

0
30

0
0

0
0
.0

1
7
4

-0
.0

7
2
9

-0
.0

5
9
8

-0
.0

00
2

0
.1

4
2
8

0
.0

3
4
7

0
0

-1
0

0
60

0
0

0
0
.0

1
7
8

-0
.1

1
8
6

0
.0

0
2
3

-0
.0

0
0
2

0
.0

7
0
2

0
.0

5
6
7

0
0

-1
0

0
90

0
0

0
0
.0

1
8
2

-0
.1

2
7
5

0
.0

7
5
4

-0
.0

0
0
2

-0
.0

1
6
3

0
.0

6
1
2

0
0

0
-2

0
-9

0
0

0
0

0
.0

4
7

0
.0

0
3
1

0
.0

7
5
3

0
.0

4
0
8

-0
.0

1
6
8

-0
.0

0
1

0
0

0
-2

0
-6

0
0

0
0

0
.0

4
6
6

0
.0

1
1
6

0
.0

6
9
7

0
.0

3
9
8

-0
.0

1
0
5

-0
.0

0
4
9

0
0

0
-2

0
-3

0
0

0
0

0
.0

4
4
8

0
.0

1
2
6

0
.0

5
6
3

0
.0

36
0
.0

0
4
6

-0
.0

0
5
2

0
0

0
-2

0
0

0
0

0
-5

.9
1
8
7

0
.0

1
3

-0
.0

1
4
2

0
.2

9
4
4

0
.0

8
4

-0
.0

1
2
5

0
0

0
-2

0
30

0
0

0
0
.0

4
4
8

-0
.0

0
7
6

0
.0

5
6
5

0
.0

3
6

0
.0

0
4
1

0
.0

0
3
9

0
0

0
-2

0
60

0
0

0
0
.0

4
6
6

-0
.0

0
5
8

0
.0

7
0
.0

39
8

-0
.0

1
0
8

0
.0

0
3

0
0

0
-2

0
90

0
0

0
0
.0

4
7

0
.0

0
3

0
.0

7
5
3

0
.0

4
0
8

-0
.0

1
6
5

-0
.0

0
1

0
0

0
0

-9
0

-9
0

0
0

0
.0

0
2
3

-0
.0

0
1
8

0
.0

7
5
8

0
.0

34
7

-0
.0

1
6
4

0
.0

0
0
9

0
0

0
0

-9
0

0
-3

0
0

0
.0

0
5
9

0
0
.0

8
3
4

-0
-0

.0
1
3
2

-0

0
0

0
0

-9
0

0
0

-3
0

0
.0

0
5

-0
.0

4
4
8

0
.0

7
5
5

-0
.0

00
5

-0
.0

1
6
4

0
.0

2
1

450

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

0
0

0
0

-9
0

0
0

0
0
.0

0
6

0
0
.0

7
5
5

-0
-0

.0
1
6
4

-0

0
0

0
0

-9
0

0
0

3
0

0
.0

0
5
3

0
.0

4
4
8

0
.0

7
5
5

0
.0

0
0
5

-0
.0

1
6
4

-0
.0

2
1

0
0

0
0

-9
0

0
3
0

0
0
.0

0
5
9

0
0
.0

6
7
7

-0
-0

.0
1
9
6

-0

0
0

0
0

-9
0

90
0

0
0
.0

0
2
3

0
.0

0
1
8

0
.0

7
5
8

-0
.0

3
4
7

-0
.0

1
6
5

-0
.0

0
0
9

0
0

0
0

-6
0

-9
0

0
0

0
.0

0
2
3

0
.0

0
7

0
.0

7
0
9

0
.0

3
4
5

-0
.0

1
1
2

-0
.0

0
3

0
0

0
0

-6
0

0
-3

0
0

0
.0

0
5
5

0
.0

3
0
4

0
.0

6
4
5

0
.0

00
1

0
.0

0
8
1

-0
.0

1
4

0
0

0
0

-6
0

0
0

-3
0

0
.0

0
5
5

-0
.0

2
4
7

0
.0

9
0
7

-0
.0

00
5

-0
.0

3
4
2

0
.0

1
1
7

0
0

0
0

-6
0

0
0

0
0
.0

0
5
9

0
.0

0
8
7

0
.0

7
0
1

0
-0

.0
1
0
4

-0
.0

0
3
9

0
0

0
0

-6
0

0
0

3
0

0
.0

0
5
1

0
.0

4
2
1

0
.0

4
9
5

0
.0

0
0
4

0
.0

1
3
4

-0
.0

1
9
6

0
0

0
0

-6
0

0
3
0

0
0
.0

0
5
8

-0
.0

1
3

0
.0

7
5
6

0
.0

00
1

-0
.0

2
8
9

0
.0

0
6
1

0
0

0
0

-6
0

90
0

0
0
.0

0
2
3

0
.0

1
0
5

0
.0

6
9
8

-0
.0

3
4
4

-0
.0

0
9
7

-0
.0

0
4
8

0
0

0
0

-3
0

-9
0

0
0

0
.0

0
2
2

0
.0

0
8
7

0
.0

5
8
1

0
.0

3
3
7

0
.0

0
3
1

-0
.0

0
3
8

0
0

0
0

-3
0

0
-3

0
0

0
.0

0
4
4

0
.0

3
2

0
.0

2
3
6

0
0
.0

5
4
4

-0
.0

1
4
7

0
0

0
0

-3
0

0
0

-3
0

0
.0

0
5
9

-0
.0

0
1

0
.0

7
7
1

-0
.0

00
5

-0
.0

1
8
9

0
.0

0
0
6

0
0

0
0

-3
0

0
0

0
0
.0

0
5
8

0
.0

1
0
1

0
.0

5
6
6

0
0
.0

0
4
6

-0
.0

0
4
6

0
0

0
0

-3
0

0
0

3
0

0
.0

0
5
3

0
.0

2
1
1

0
.0

3
6
2

0
.0

0
0
4

0
.0

2
8
1

-0
.0

0
9
8

0
0

0
0

-3
0

0
3
0

0
0
.0

0
5
6

-0
.0

1
1
9

0
.0

8
9
6

0
.0

00
1

-0
.0

4
5
2

0
.0

0
5
6

0
0

0
0

-3
0

90
0

0
0
.0

0
2
2

0
.0

1
1
5

0
.0

5
5
7

-0
.0

3
3
3

0
.0

0
6

-0
.0

0
5
3

0
0

0
0

0
-9

0
0

0
0
.0

0
2

-0
.0

0
0
7

0
.0

4
4
6

0
.0

32
7

0
.0

1
8
4

0
.0

0
0
5

0
0

0
0

0
0

-3
0

0
0
.0

0
3
1

-0
-0

.0
0
5
9

-0
0
.0

8
7
8

0

451

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

0
0

0
0

0
0

0
-3

0
0
.0

0
5
3

-0
.0

0
0
3

0
.0

7
5
3

-0
.0

0
3

-0
.0

1
3
9

0
.0

0
0
3

0
0

0
0

0
0

0
0

0
.0

0
4

0
0
.0

1
3
8

0
0
.0

5
2
1

-0

0
0

0
0

0
0

0
3
0

0
.0

0
5
3

0
.0

0
0
3

0
.0

7
5
3

0
.0

0
3

-0
.0

1
3
9

-0
.0

0
0
3

0
0

0
0

0
0

3
0

0
0
.0

0
5
6

-0
0
.0

9
1
6

-0
-0

.0
4
7
4

0

0
0

0
0

0
90

0
0

0
.0

0
2

0
.0

0
0
7

0
.0

4
4
6

-0
.0

32
7

0
.0

1
8
4

-0
.0

0
0
5

0
0

0
0

30
-9

0
0

0
0
.0

0
2
2

-0
.0

1
1
5

0
.0

5
5
7

0
.0

33
3

0
.0

0
6

0
.0

0
5
3

0
0

0
0

30
0

-3
0

0
0
.0

0
4
4

-0
.0

3
2

0
.0

2
3
6

-0
0
.0

5
4
4

0
.0

1
4
7

0
0

0
0

30
0

0
-3

0
0
.0

0
5
3

-0
.0

2
1
1

0
.0

3
6
2

-0
.0

0
0
4

0
.0

2
8
1

0
.0

0
9
8

0
0

0
0

30
0

0
0

0
.0

0
5
8

-0
.0

1
0
1

0
.0

5
6
6

-0
0
.0

0
4
6

0
.0

0
4
6

0
0

0
0

30
0

0
3
0

0
.0

0
5
9

0
.0

0
1

0
.0

7
7
1

0
.0

00
5

-0
.0

1
8
9

-0
.0

0
0
6

0
0

0
0

30
0

3
0

0
0
.0

0
5
6

0
.0

1
1
9

0
.0

8
9
6

-0
.0

00
1

-0
.0

4
5
2

-0
.0

0
5
6

0
0

0
0

30
90

0
0

0
.0

0
2
2

-0
.0

0
8
7

0
.0

5
8
1

-0
.0

3
3
7

0
.0

0
3
1

0
.0

0
3
8

0
0

0
0

60
-9

0
0

0
0
.0

0
2
3

-0
.0

1
0
5

0
.0

6
9
8

0
.0

34
4

-0
.0

0
9
7

0
.0

0
4
8

0
0

0
0

60
0

-3
0

0
0
.0

0
5
5

-0
.0

3
0
4

0
.0

6
4
5

-0
.0

0
0
1

0
.0

0
8
1

0
.0

1
4

0
0

0
0

60
0

0
-3

0
0
.0

0
5
1

-0
.0

4
2
1

0
.0

4
9
5

-0
.0

0
0
4

0
.0

1
3
4

0
.0

1
9
6

0
0

0
0

60
0

0
0

0
.0

0
5
9

-0
.0

0
8
7

0
.0

7
0
1

-0
-0

.0
1
0
4

0
.0

0
3
9

0
0

0
0

60
0

0
3
0

0
.0

0
5
5

0
.0

2
4
7

0
.0

9
0
7

0
.0

00
5

-0
.0

3
4
2

-0
.0

1
1
7

0
0

0
0

60
0

3
0

0
0
.0

0
5
8

0
.0

1
3

0
.0

7
5
6

-0
.0

00
1

-0
.0

2
8
9

-0
.0

0
6
1

0
0

0
0

60
90

0
0

0
.0

0
2
3

-0
.0

0
7

0
.0

7
0
9

-0
.0

3
4
5

-0
.0

1
1
2

0
.0

0
3

0
0

0
0

90
-9

0
0

0
0
.0

0
2
3

-0
.0

0
1
8

0
.0

7
5
8

0
.0

34
7

-0
.0

1
6
5

0
.0

0
0
9

452

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

0
0

0
0

90
0

-3
0

0
0
.0

0
5
9

-0
0
.0

8
3
4

-0
-0

.0
1
3
2

0

0
0

0
0

90
0

0
-3

0
0
.0

0
5
3

-0
.0

4
4
8

0
.0

7
5
5

-0
.0

0
0
5

-0
.0

1
6
4

0
.0

2
1

0
0

0
0

90
0

0
0

0
.0

0
6

0
0
.0

7
5
5

-0
-0

.0
1
6
4

-0

0
0

0
0

90
0

0
3
0

0
.0

0
5

0
.0

4
4
8

0
.0

7
5
5

0
.0

00
5

-0
.0

1
6
4

-0
.0

2
1

0
0

0
0

90
0

3
0

0
0
.0

0
5
9

0
0
.0

6
7
7

-0
-0

.0
1
9
6

-0

0
0

0
0

90
90

0
0

0
.0

0
2
3

0
.0

0
1
8

0
.0

7
5
8

-0
.0

34
7

-0
.0

1
6
4

-0
.0

0
0
9

0
0

0
20

-9
0

0
0

0
0
.0

4
7

-0
.0

0
3

0
.0

7
5
3

-0
.0

4
0
8

-0
.0

1
6
5

0
.0

0
1

0
0

0
20

-6
0

0
0

0
0
.0

4
6
6

0
.0

0
5
8

0
.0

7
-0

.0
3
9
8

-0
.0

1
0
8

-0
.0

0
3

0
0

0
20

-3
0

0
0

0
0
.0

4
4
8

0
.0

0
7
6

0
.0

5
6
5

-0
.0

3
6

0
.0

0
4
1

-0
.0

0
3
9

0
0

0
20

0
0

0
0

-5
.9

1
8
7

-0
.0

1
3

-0
.0

1
4
2

-0
.2

9
4
4

0
.0

8
4
1

0
.0

1
2
5

0
0

0
20

30
0

0
0

0
.0

4
4
8

-0
.0

1
2
6

0
.0

5
6
3

-0
.0

3
6

0
.0

0
4
6

0
.0

0
5
2

0
0

0
20

60
0

0
0

0
.0

4
6
6

-0
.0

1
1
6

0
.0

6
9
7

-0
.0

3
9
8

-0
.0

1
0
5

0
.0

0
4
9

0
0

0
20

90
0

0
0

0
.0

4
7

-0
.0

0
3
1

0
.0

7
5
3

-0
.0

4
0
8

-0
.0

1
6
8

0
.0

0
1

0
0

10
0

-9
0

0
0

0
0
.0

1
8
7

-0
.1

2
7
5

0
.0

7
5
4

-0
.0

0
0
2

-0
.0

1
6
3

0
.0

6
1
2

0
0

10
0

-6
0

0
0

0
0
.0

1
9

-0
.1

0
1
2

0
.1

3
7
7

-0
.0

0
0
2

-0
.0

9
0
8

0
.0

4
8
9

0
0

10
0

-3
0

0
0

0
0
.0

1
9
2

-0
.0

5
2
8

0
.1

7
2
9

-0
.0

0
0
2

-0
.1

3
3
4

0
.0

2
5
6

0
0

10
0

0
0

0
0

0
.0

1
8
5

0
0
.1

6
1
7

0
-0

.1
2
1
8

-0

0
0

10
0

30
0

0
0

0
.0

1
9
2

0
.0

5
2
8

0
.1

7
2
9

0
.0

00
2

-0
.1

3
3
4

-0
.0

2
5
6

0
0

10
0

60
0

0
0

0
.0

1
9

0
.1

0
1
2

0
.1

3
7
7

0
.0

00
2

-0
.0

9
0
8

-0
.0

4
8
9

0
0

10
0

90
0

0
0

0
.0

1
8
7

0
.1

2
7
5

0
.0

7
5
4

0
.0

00
2

-0
.0

1
6
3

-0
.0

6
1
2

453

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

0
2

0
-2

0
-9

0
0

0
0

0
.0

4
7
1

-0
.0

4
4
5

0
.0

6
2

0
.0

40
2

-0
.0

1
7
9

0
.0

2
1
4

0
2

0
-2

0
-6

0
0

0
0

0
.0

4
6
5

-0
.0

2
6
5

0
.0

8
0
2

0
.0

39
1

-0
.0

3
8
5

0
.0

1
2
8

0
2

0
-2

0
-3

0
0

0
0

0
.0

4
4
5

-0
.0

0
2
6

0
.0

7
2
3

0
.0

35
5

-0
.0

2
8
7

0
.0

0
1
6

0
2

0
-2

0
0

0
0

0
-4

.8
7
7
7

-0
.0

3
7
6

-3
.0

5
7
1

0
.1

6
0
3

3
.4

4
2
5

-0
.3

2
4
7

0
2

0
-2

0
30

0
0

0
0
.0

4
4
7

-0
.0

1
5
3

0
.0

2
9
5

0
.0

35
6

0
.0

2
0
4

0
.0

0
8
1

0
2

0
-2

0
60

0
0

0
0
.0

4
6
8

-0
.0

3
8
5

0
.0

3
6
6

0
.0

39
2

0
.0

1
1
8

0
.0

1
8
8

0
2

0
-2

0
90

0
0

0
0
.0

4
7
3

-0
.0

4
4
5

0
.0

6
2

0
.0

40
2

-0
.0

1
7
5

0
.0

2
1
4

0
2

0
0

-9
0

-9
0

0
0

0
.0

0
2
9

-0
.0

4
9
7

0
.0

7
2
1

0
.0

3
4

-0
.0

1
6
1

0
.0

2
3
2

0
2

0
0

-9
0

0
-3

0
0

0
.0

0
6
5

-0
.0

4
7
8

0
.0

8
3
4

-0
.0

01
1

-0
.0

1
3
4

0
.0

2
2
3

0
2

0
0

-9
0

0
0

-3
0

0
.0

0
5
3

-0
.0

9
2
7

0
.0

7
5
6

-0
.0

01
2

-0
.0

1
6
6

0
.0

4
3
3

0
2

0
0

-9
0

0
0

0
0
.0

0
6
5

-0
.0

4
7
7

0
.0

7
5
5

-0
.0

0
0
8

-0
.0

1
6
5

0
.0

2
2
3

0
2

0
0

-9
0

0
0

3
0

0
.0

0
6

-0
.0

0
3

0
.0

7
5
4

-0
.0

0
0
3

-0
.0

1
6
4

0
.0

0
1
3

0
2

0
0

-9
0

0
3
0

0
0
.0

0
6
5

-0
.0

4
7
7

0
.0

6
7
6

-0
.0

0
0
4

-0
.0

1
9
6

0
.0

2
2
2

0
2

0
0

-9
0

90
0

0
0
.0

0
2
9

-0
.0

4
6
1

0
.0

7
9
4

-0
.0

3
5
6

-0
.0

1
7

0
.0

2
1
4

0
2

0
0

-6
0

-9
0

0
0

0
.0

0
2
7

-0
.0

3
0
1

0
.0

8
9
9

0
.0

33
8

-0
.0

3
7
1

0
.0

1
4
2

0
2

0
0

-6
0

0
-3

0
0

0
.0

0
6

-0
.0

0
5
4

0
.0

8
6
6

-0
.0

0
1

-0
.0

1
7
4

0
.0

0
2
7

0
2

0
0

-6
0

0
0

-3
0

0
.0

0
5
8

-0
.0

6
0
5

0
.1

1
2
8

-0
.0

01
4

-0
.0

5
9
7

0
.0

2
8
4

0
2

0
0

-6
0

0
0

0
0
.0

0
6
4

-0
.0

2
7

0
.0

9
2
1

-0
.0

0
0
8

-0
.0

3
5
8

0
.0

1
2
7

0
2

0
0

-6
0

0
0

3
0

0
.0

0
5
7

0
.0

0
6
4

0
.0

7
1
5

-0
.0

0
0
3

-0
.0

1
2

-0
.0

0
2
9

0
2

0
0

-6
0

0
3
0

0
0
.0

0
6
1

-0
.0

4
8
6

0
.0

9
7
6

-0
.0

0
0
4

-0
.0

5
4
3

0
.0

2
2
8

454

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

0
2

0
0

-6
0

90
0

0
0
.0

0
2
8

-0
.0

2
4
1

0
.0

9
4
8

-0
.0

3
5
2

-0
.0

3
4
6

0
.0

1
1
3

0
2

0
0

-3
0

-9
0

0
0

0
.0

0
2
4

-0
.0

0
4
4

0
.0

7
8
4

0
.0

3
3

-0
.0

2
4
5

0
.0

0
2
2

0
2

0
0

-3
0

0
-3

0
0

0
.0

0
4
6

0
.0

1
9
9

0
.0

4
6

-0
.0

0
0
8

0
.0

2
8
7

-0
.0

0
9
1

0
2

0
0

-3
0

0
0

-3
0

0
.0

0
6

-0
.0

1
2
8

0
.0

9
9

-0
.0

01
3

-0
.0

4
4
1

0
.0

0
6
2

0
2

0
0

-3
0

0
0

0
0
.0

0
5
9

-0
.0

0
1
8

0
.0

7
8
6

-0
.0

0
0
7

-0
.0

2
0
7

0
.0

0
1

0
2

0
0

-3
0

0
0

3
0

0
.0

0
5
5

0
.0

0
9
2

0
.0

5
8
2

-0
.0

0
0
2

0
.0

0
2
8

-0
.0

0
4
2

0
2

0
0

-3
0

0
3
0

0
0
.0

0
5
6

-0
.0

2
3
7

0
.1

1
1
4

-0
.0

0
0
5

-0
.0

7
0
3

0
.0

1
1
1

0
2

0
0

-3
0

90
0

0
0
.0

0
2
3

0
.0

0
1
5

0
.0

7
7
8

-0
.0

3
4

-0
.0

1
5
2

-0
.0

0
0
7

0
2

0
0

0
-9

0
0

0
0
.0

0
2

-0
.0

0
0
9

0
.0

4
2
5

0
.0

32
2

0
.0

1
6
3

0
.0

0
0
5

0
2

0
0

0
0

-3
0

0
0
.0

0
3

-0
.0

0
0
2

-0
.0

0
8
2

-0
.0

00
6

0
.0

9
0
5

0
.0

0
0
1

0
2

0
0

0
0

0
-3

0
0
.0

0
5
7

-0
.0

0
0
1

0
.0

6
5
3

0
.0

00
3

-0
.0

0
4
7

0
.0

0
0
1

0
2

0
0

0
0

0
0

0
.0

0
5
5

-0
0
.0

5
8
9

-0
.0

0
1

0
.0

0
2
1

0

0
2

0
0

0
0

0
3
0

-0
.0

3
5
3

-0
.0

0
0
4

-0
.1

7
6
5

0
.0

0
5
5

0
.2

6
1
9

-0
.0

0
1
5

0
2

0
0

0
0

3
0

0
0
.0

0
5
5

-0
0
.0

9
3
9

-0
.0

0
0
4

-0
.0

5
0

0
2

0
0

0
90

0
0

0
.0

0
2

0
.0

0
0
6

0
.0

4
7
2

-0
.0

33
1

0
.0

1
9
9

-0
.0

0
0
4

0
2

0
0

30
-9

0
0

0
0
.0

0
2
5

-0
.0

2
1
2

0
.0

3
4

0
.0

32
8

0
.0

2
6
6

0
.0

0
9
8

0
2

0
0

30
0

-3
0

0
0
.0

0
4
5

-0
.0

4
3
9

0
.0

0
1
8

-0
.0

0
0
8

0
.0

7
9
4

0
.0

2
0
3

0
2

0
0

30
0

0
-3

0
0
.0

0
5
5

-0
.0

3
2
9

0
.0

1
4
5

-0
.0

0
0
9

0
.0

5
3
1

0
.0

1
5
3

0
2

0
0

30
0

0
0

0
.0

0
6

-0
.0

2
1
8

0
.0

3
4
9

-0
.0

0
0
6

0
.0

2
9
5

0
.0

1
0
1

0
2

0
0

30
0

0
3
0

0
.0

0
6
1

-0
.0

1
0
7

0
.0

5
5
3

-0
.0

0
0
2

0
.0

0
5
9

0
.0

0
4
8

455

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

0
2

0
0

30
0

3
0

0
0
.0

0
5
9

0
.0

0
0
5

0
.0

6
8
4

-0
.0

00
6

-0
.0

2
0
9

-0
.0

0
0
3

0
2

0
0

30
90

0
0

0
.0

0
2
5

-0
.0

2
1
8

0
.0

3
7
8

-0
.0

3
4
3

0
.0

3
0
6

0
.0

0
9
9

0
2

0
0

60
-9

0
0

0
0
.0

0
2
9

-0
.0

4
4
9

0
.0

4
4
8

0
.0

33
7

0
.0

1
4
9

0
.0

2
0
9

0
2

0
0

60
0

-3
0

0
0
.0

0
6
1

-0
.0

6
6
1

0
.0

4
2
5

-0
.0

0
1

0
.0

3
3
4

0
.0

3
0
7

0
2

0
0

60
0

0
-3

0
0
.0

0
5
6

-0
.0

7
7
9

0
.0

2
7
5

-0
.0

0
1

0
.0

3
8
6

0
.0

3
6
3

0
2

0
0

60
0

0
0

0
.0

0
6
6

-0
.0

4
4
3

0
.0

4
8
1

-0
.0

0
0
7

0
.0

1
4
8

0
.0

2
0
6

0
2

0
0

60
0

0
3
0

0
.0

0
6
3

-0
.0

1
0
8

0
.0

6
8
7

-0
.0

0
0
3

-0
.0

0
8
9

0
.0

0
4
9

0
2

0
0

60
0

3
0

0
0
.0

0
6
5

-0
.0

2
2
6

0
.0

5
3
6

-0
.0

0
0
5

-0
.0

0
3
6

0
.0

1
0
5

0
2

0
0

60
90

0
0

0
.0

0
3

-0
.0

4
4

0
.0

5
1
9

-0
.0

3
5
3

0
.0

1
4
6

0
.0

2
0
3

0
2

0
0

90
-9

0
0

0
0
.0

0
3
2

-0
.0

4
9
7

0
.0

7
2
1

0
.0

3
4

-0
.0

1
6
2

0
.0

2
3
2

0
2

0
0

90
0

-3
0

0
0
.0

0
6
8

-0
.0

4
7
8

0
.0

8
3
3

-0
.0

0
1
1

-0
.0

1
3
3

0
.0

2
2
3

0
2

0
0

90
0

0
-3

0
0
.0

0
5
9

-0
.0

9
2
7

0
.0

7
5
6

-0
.0

0
1
2

-0
.0

1
6
5

0
.0

4
3
3

0
2

0
0

90
0

0
0

0
.0

0
6
8

-0
.0

4
7
7

0
.0

7
5
5

-0
.0

0
0
8

-0
.0

1
6
5

0
.0

2
2
3

0
2

0
0

90
0

0
3
0

0
.0

0
6
1

-0
.0

0
3

0
.0

7
5
4

-0
.0

0
0
3

-0
.0

1
6
4

0
.0

0
1
3

0
2

0
0

90
0

3
0

0
0
.0

0
6
8

-0
.0

4
7
7

0
.0

6
7
6

-0
.0

0
0
4

-0
.0

1
9
6

0
.0

2
2
3

0
2

0
0

90
90

0
0

0
.0

0
3
2

-0
.0

4
6
1

0
.0

7
9
4

-0
.0

3
5
6

-0
.0

1
6
9

0
.0

2
1
4

0
4

0
-2

0
-9

0
0

0
0

0
.0

4
8
6

-0
.0

9
1
9

0
.0

4
8
7

0
.0

39
7

-0
.0

1
8
9

0
.0

4
3
7

0
4

0
-2

0
-6

0
0

0
0

0
.0

4
7
4

-0
.0

6
4
6

0
.0

9
0
6

0
.0

38
6

-0
.0

6
6
4

0
.0

3
0
4

0
4

0
-2

0
-3

0
0

0
0

0
.0

4
4
5

-0
.0

1
8

0
.0

8
8
6

0
.0

35
1

-0
.0

6
2
1

0
.0

0
8
5

0
4

0
-2

0
0

0
0

0
-0

.0
9
8
8

0
.0

0
2
7

0
.4

9
6
1

0
.0

24
4

-0
.5

0
4
2

-0
.0

0
8
3

456

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

0
4

0
-2

0
30

0
0

0
0
.0

4
5
1

-0
.0

2
2
7

0
.0

0
2
9

0
.0

35
5

0
.0

3
6
2

0
.0

1
2
1

0
4

0
-2

0
60

0
0

0
0
.0

4
8
2

-0
.0

7
1
1

0
.0

0
3
4

0
.0

3
9

0
.0

3
4
2

0
.0

3
4
5

0
4

0
-2

0
90

0
0

0
0
.0

4
9
1

-0
.0

9
1
9

0
.0

4
8
7

0
.0

39
7

-0
.0

1
8
5

0
.0

4
3
7

0
4

0
0

-9
0

-9
0

0
0

0
.0

0
4
8

-0
.0

9
7
6

0
.0

6
8
3

0
.0

33
4

-0
.0

1
5
9

0
.0

4
5
4

0
4

0
0

-9
0

0
-3

0
0

0
.0

0
8
4

-0
.0

9
5
5

0
.0

8
3
3

-0
.0

02
2

-0
.0

1
3
7

0
.0

4
4
5

0
4

0
0

-9
0

0
0

-3
0

0
.0

0
7
1

-0
.1

4
0
7

0
.0

7
5
6

-0
.0

0
2

-0
.0

1
6
9

0
.0

6
5
6

0
4

0
0

-9
0

0
0

0
0
.0

0
8
5

-0
.0

9
5
4

0
.0

7
5
4

-0
.0

0
1
5

-0
.0

1
6
8

0
.0

4
4
5

0
4

0
0

-9
0

0
0

3
0

0
.0

0
8
2

-0
.0

5
0
5

0
.0

7
5
3

-0
.0

0
1
1

-0
.0

1
6
6

0
.0

2
3
5

0
4

0
0

-9
0

0
3
0

0
0
.0

0
8
5

-0
.0

9
5
3

0
.0

6
7
5

-0
.0

0
0
9

-0
.0

1
9
8

0
.0

4
4
5

0
4

0
0

-9
0

90
0

0
0
.0

0
4
9

-0
.0

9
4

0
.0

8
3

-0
.0

3
6
4

-0
.0

1
7
7

0
.0

4
3
6

0
4

0
0

-6
0

-9
0

0
0

0
.0

0
4
2

-0
.0

6
7

0
.1

0
8
8

0
.0

3
3

-0
.0

6
3

0
.0

3
1
3

0
4

0
0

-6
0

0
-3

0
0

0
.0

0
7
5

-0
.0

4
1
2

0
.1

0
8
6

-0
.0

02
1

-0
.0

4
3

0
.0

1
9
4

0
4

0
0

-6
0

0
0

-3
0

0
.0

0
7
1

-0
.0

9
6
3

0
.1

3
4
8

-0
.0

02
4

-0
.0

8
5
3

0
.0

4
5

0
4

0
0

-6
0

0
0

0
0
.0

0
7
8

-0
.0

6
2
6

0
.1

1
4

-0
.0

0
1
7

-0
.0

6
1
3

0
.0

2
9
3

0
4

0
0

-6
0

0
0

3
0

0
.0

0
7
3

-0
.0

2
9
2

0
.0

9
3
3

-0
.0

0
1

-0
.0

3
7
4

0
.0

1
3
7

0
4

0
0

-6
0

0
3
0

0
0
.0

0
7
5

-0
.0

8
4
1

0
.1

1
9
3

-0
.0

0
1
1

-0
.0

7
9
5

0
.0

3
9
3

0
4

0
0

-6
0

90
0

0
0
.0

0
4
2

-0
.0

5
8
6

0
.1

1
9
6

-0
.0

3
6
2

-0
.0

5
9
5

0
.0

2
7
3

0
4

0
0

-3
0

-9
0

0
0

0
.0

0
2
9

-0
.0

1
8
4

0
.1

0
0
1

0
.0

32
4

-0
.0

5
3
7

0
.0

0
8
7

0
4

0
0

-3
0

0
-3

0
0

0
.0

0
4

0
.0

1
6
8

0
.0

5
1
4

-0
.0

0
1
6

0
.0

2
1
5

-0
.0

0
7
5

0
4

0
0

-3
0

0
0

-3
0

0
.0

0
6
4

-0
.0

2
4
7

0
.1

2
0
9

-0
.0

02
2

-0
.0

6
9
5

0
.0

1
1
7

457

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

0
4

0
0

-3
0

0
0

0
0
.0

0
6
4

-0
.0

1
3
7

0
.1

0
0
5

-0
.0

0
1
4

-0
.0

4
6
1

0
.0

0
6
5

0
4

0
0

-3
0

0
0

3
0

0
.0

0
6

-0
.0

0
2
5

0
.0

7
9
8

-0
.0

0
0
8

-0
.0

2
2
2

0
.0

0
1
3

0
4

0
0

-3
0

0
3
0

0
0
.0

0
6

-0
.0

3
5
5

0
.1

3
3
1

-0
.0

0
1
1

-0
.0

9
5
4

0
.0

1
6
6

0
4

0
0

-3
0

90
0

0
0
.0

0
2
8

-0
.0

1
0
5

0
.1

0
3
6

-0
.0

3
4
9

-0
.0

4
0
7

0
.0

0
4
8

0
4

0
0

0
-9

0
0

0
0
.0

0
2
3

-0
.0

0
1

0
.0

5
1
4

0
.0

3
2

0
.0

0
2

0
.0

0
0
5

0
4

0
0

0
0

-3
0

0
0
.0

0
3
1

-0
.0

0
0
2

-0
.0

0
7
5

-0
.0

00
7

0
.0

8
9
5

0
.0

0
0
1

0
4

0
0

0
0

0
-3

0
-0

.0
0
5
5

-0
.0

0
1
9

0
.1

6
0
4

0
.0

0
7
7

-0
.1

0
9
8

0
.0

0
1
6

0
4

0
0

0
0

0
0

-0
.1

8
0
8

-0
.0

1
4
2

0
.6

1
1
1

-0
.0

02
6

-0
.6

0
4
1

-0
.0

0
0
5

0
4

0
0

0
0

0
3
0

0
.0

0
3
7

-0
.0

0
0
4

0
.0

0
2
3

-0
.0

0
2
8

0
.0

6
5
6

0
.0

0
0
3

0
4

0
0

0
0

3
0

0
0
.0

0
5
5

-0
.0

0
0
1

0
.0

9
4
4

-0
.0

0
0
7

-0
.0

5
0
8

0
.0

0
0
1

0
4

0
0

0
90

0
0

0
.0

0
1
7

0
.0

0
0
5

0
.0

3
8
8

-0
.0

33
6

0
.0

3
3
3

-0
.0

0
0
4

0
4

0
0

30
-9

0
0

0
0
.0

0
3
1

-0
.0

3
1
4

0
.0

1
1
3

0
.0

32
4

0
.0

4
8
3

0
.0

1
4
6

0
4

0
0

30
0

-3
0

0
0
.0

0
5

-0
.0

5
5
6

-0
.0

1
9
6

-0
.0

01
4

0
.1

0
3
8

0
.0

2
5
8

0
4

0
0

30
0

0
-3

0
0
.0

0
6

-0
.0

4
4
6

-0
.0

0
7

-0
.0

01
2

0
.0

7
7
6

0
.0

2
0
8

0
4

0
0

30
0

0
0

0
.0

0
6
6

-0
.0

3
3
3

0
.0

1
3
4

-0
.0

0
1
1

0
.0

5
4

0
.0

1
5
5

0
4

0
0

30
0

0
3
0

0
.0

0
6
8

-0
.0

2
2
3

0
.0

3
3
5

-0
.0

0
0
8

0
.0

3
0
8

0
.0

1
0
3

0
4

0
0

30
0

3
0

0
0
.0

0
6
7

-0
.0

1
6

0
.0

3
7
7

-0
.0

0
0
9

0
.0

1
3
8

0
.0

0
7
4

0
4

0
0

30
90

0
0

0
.0

0
3

-0
.0

3
5
5

0
.0

1
6
5

-0
.0

3
4
9

0
.0

5
9

0
.0

1
6
2

0
4

0
0

60
-9

0
0

0
0
.0

0
4
6

-0
.0

7
9
1

0
.0

1
9
9

0
.0

33
2

0
.0

3
9
3

0
.0

3
6
8

0
4

0
0

60
0

-3
0

0
0
.0

0
7
6

-0
.1

0
1
7

0
.0

2
0
6

-0
.0

0
1
9

0
.0

5
8
2

0
.0

4
7
3

458

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

0
4

0
0

60
0

0
-3

0
0
.0

0
7
2

-0
.1

1
3
6

0
.0

0
5
7

-0
.0

0
1
5

0
.0

6
3
6

0
.0

5
3

0
4

0
0

60
0

0
0

0
.0

0
8
3

-0
.0

7
9
7

0
.0

2
6
2

-0
.0

0
1
3

0
.0

3
9
8

0
.0

3
7
1

0
4

0
0

60
0

0
3
0

0
.0

0
8
1

-0
.0

4
6
1

0
.0

4
6
7

-0
.0

0
1

0
.0

1
6
1

0
.0

2
1
4

0
4

0
0

60
0

3
0

0
0
.0

0
8
3

-0
.0

5
8

0
.0

3
1
7

-0
.0

0
0
8

0
.0

2
1
4

0
.0

2
7

0
4

0
0

60
90

0
0

0
.0

0
4
7

-0
.0

8
0
7

0
.0

3
3

-0
.0

3
6

0
.0

4
0
.0

3
7
4

0
4

0
0

90
-9

0
0

0
0
.0

0
5
4

-0
.0

9
7
6

0
.0

6
8
3

0
.0

33
4

-0
.0

1
5
9

0
.0

4
5
5

0
4

0
0

90
0

-3
0

0
0
.0

0
9

-0
.0

9
5
5

0
.0

8
3
3

-0
.0

0
2
2

-0
.0

1
3
7

0
.0

4
4
6

0
4

0
0

90
0

0
-3

0
0
.0

0
7
9

-0
.1

4
0
7

0
.0

7
5
6

-0
.0

0
2

-0
.0

1
6
9

0
.0

6
5
6

0
4

0
0

90
0

0
0

0
.0

0
9

-0
.0

9
5
4

0
.0

7
5
4

-0
.0

0
1
5

-0
.0

1
6
7

0
.0

4
4
5

0
4

0
0

90
0

0
3
0

0
.0

0
8
5

-0
.0

5
0
4

0
.0

7
5
2

-0
.0

0
1
1

-0
.0

1
6
6

0
.0

2
3
5

0
4

0
0

90
0

3
0

0
0
.0

0
9

-0
.0

9
5
3

0
.0

6
7
5

-0
.0

0
0
9

-0
.0

1
9
8

0
.0

4
4
5

0
4

0
0

90
90

0
0

0
.0

0
5
5

-0
.0

9
4

0
.0

8
3

-0
.0

3
6
4

-0
.0

1
7
6

0
.0

4
3
6

0
6

0
-2

0
-9

0
0

0
0

0
.0

5
1
8

-0
.1

3
9
3

0
.0

3
5
4

0
.0

39
7

-0
.0

1
9
7

0
.0

6
5
9

0
6

0
-2

0
-6

0
0

0
0

0
.0

4
9
5

-0
.1

0
2
8

0
.1

0
0
9

0
.0

38
4

-0
.0

9
4

0
.0

4
8
1

0
6

0
-2

0
-3

0
0

0
0

0
.0

4
5

-0
.0

3
3
1

0
.1

0
3
9

0
.0

3
5

-0
.0

9
4
5

0
.0

1
5
3

0
6

0
-2

0
0

0
0

0
0
.0

3
1
5

-0
.0

0
1
2

-0
.0

6
4
8

0
.0

26
8

0
.0

9
2
8

0
.0

0
1
5

0
6

0
-2

0
30

0
0

0
0
.0

4
6
2

-0
.0

3
0
5

-0
.0

2
4
4

0
.0

35
8

0
.0

5
2
9

0
.0

1
6
3

0
6

0
-2

0
60

0
0

0
0
.0

5
1

-0
.1

0
3
4

-0
.0

2
9
7

0
.0

39
2

0
.0

5
6
6

0
.0

5

0
6

0
-2

0
90

0
0

0
0
.0

5
2
6

-0
.1

3
9
3

0
.0

3
5
4

0
.0

39
7

-0
.0

1
9
3

0
.0

6
6

0
6

0
0

-9
0

-9
0

0
0

0
.0

0
8
3

-0
.1

4
5
1

0
.0

6
4
4

0
.0

33
1

-0
.0

1
5
6

0
.0

6
7
5

459

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

0
6

0
0

-9
0

0
-3

0
0

0
.0

1
1
9

-0
.1

4
3

0
.0

8
3
2

-0
.0

02
8

-0
.0

1
4
1

0
.0

6
6
7

0
6

0
0

-9
0

0
0

-3
0

0
.0

1
0
3

-0
.1

8
8
7

0
.0

7
5
5

-0
.0

02
5

-0
.0

1
7
3

0
.0

8
7
9

0
6

0
0

-9
0

0
0

0
0
.0

1
1
9

-0
.1

4
2
9

0
.0

7
5
3

-0
.0

0
1
9

-0
.0

1
7

0
.0

6
6
6

0
6

0
0

-9
0

0
0

3
0

0
.0

1
1
9

-0
.0

9
7
7

0
.0

7
5

-0
.0

0
1
4

-0
.0

1
6
8

0
.0

4
5
6

0
6

0
0

-9
0

0
3
0

0
0
.0

1
1
9

-0
.1

4
2
9

0
.0

6
7
4

-0
.0

0
1
1

-0
.0

1
9
9

0
.0

6
6
6

0
6

0
0

-9
0

90
0

0
0
.0

0
8
4

-0
.1

4
1
5

0
.0

8
6
6

-0
.0

3
7

-0
.0

1
8
5

0
.0

6
5
7

0
6

0
0

-6
0

-9
0

0
0

0
.0

0
6
8

-0
.1

0
4
3

0
.1

2
7
8

0
.0

32
5

-0
.0

8
9
1

0
.0

4
8
6

0
6

0
0

-6
0

0
-3

0
0

0
.0

1
0
3

-0
.0

7
7
4

0
.1

3
0
8

-0
.0

02
8

-0
.0

6
9

0
.0

3
6
2

0
6

0
0

-6
0

0
0

-3
0

0
.0

0
9
5

-0
.1

3
2
5

0
.1

5
6
8

-0
.0

03
3

-0
.1

1
1

0
.0

6
1
8

0
6

0
0

-6
0

0
0

0
0
.0

1
0
4

-0
.0

9
8
5

0
.1

3
5
9

-0
.0

0
2
3

-0
.0

8
6
9

0
.0

4
6

0
6

0
0

-6
0

0
0

3
0

0
.0

1
0
1

-0
.0

6
5

0
.1

1
5
2

-0
.0

0
1
5

-0
.0

6
3

0
.0

3
0
4

0
6

0
0

-6
0

0
3
0

0
0
.0

1
-0

.1
2
0
2

0
.1

4
1
3

-0
.0

0
1
6

-0
.1

0
5
2

0
.0

5
6
1

0
6

0
0

-6
0

90
0

0
0
.0

0
6
8

-0
.0

9
3
6

0
.1

4
4
7

-0
.0

3
6
9

-0
.0

8
4
9

0
.0

4
3
5

0
6

0
0

-3
0

-9
0

0
0

0
.0

0
3
8

-0
.0

3
3
2

0
.1

2
3
3

0
.0

31
7

-0
.0

8
4
6

0
.0

1
5
4

0
6

0
0

-3
0

0
-3

0
0

0
.0

0
6
2

-0
.0

0
4
2

0
.0

9
0
6

-0
.0

02
2

-0
.0

2
2
9

0
.0

0
2
2

0
6

0
0

-3
0

0
0

-3
0

0
.0

0
7
1

-0
.0

3
6
6

0
.1

4
3

-0
.0

0
3

-0
.0

9
5

0
.0

1
7
3

0
6

0
0

-3
0

0
0

0
0
.0

0
7
2

-0
.0

2
5
6

0
.1

2
2
6

-0
.0

0
2
1

-0
.0

7
1
6

0
.0

1
2
1

0
6

0
0

-3
0

0
0

3
0

0
.0

0
6
9

-0
.0

1
4
6

0
.1

0
2
2

-0
.0

0
1
3

-0
.0

4
8
2

0
.0

0
6
9

0
6

0
0

-3
0

0
3
0

0
0
.0

0
6
7

-0
.0

4
7
4

0
.1

5
4
8

-0
.0

0
1
7

-0
.1

2
0
6

0
.0

2
2
2

0
6

0
0

-3
0

90
0

0
0
.0

0
3
6

-0
.0

1
9
6

0
.1

2
4
1

-0
.0

3
5
5

-0
.0

6
0
4

0
.0

0
9
1

460

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

0
6

0
0

0
-9

0
0

0
0
.0

0
2
4

-0
.0

0
1
1

0
.0

5
1
8

0
.0

31
6

-0
.0

0
3
2

0
.0

0
0
5

0
6

0
0

0
0

-3
0

0
0
.0

0
3
1

-0
.0

0
0
4

-0
.0

0
7
7

-0
.0

0
1

0
.0

8
9
3

0
.0

0
0
2

0
6

0
0

0
0

0
-3

0
0
.0

0
1
3

-0
.0

0
1
5

0
.0

2
2
1

0
.0

02
8

0
.0

3
8
4

0
.0

0
1
1

0
6

0
0

0
0

0
0

-0
.0

1
2
9

-0
.0

0
2
5

-0
.1

1
2
7

-0
.0

0
2
9

0
.1

9
1
1

0
.0

0
0
7

0
6

0
0

0
0

0
3
0

0
.0

0
0
5

-0
.0

0
0
6

-0
.0

3
1
9

-0
.0

0
1
7

0
.1

0
2
2

0
.0

0
0
2

0
6

0
0

0
0

3
0

0
0
.0

0
5
5

-0
.0

0
0
1

0
.0

9
4
9

-0
.0

0
1

-0
.0

5
1
7

0
.0

0
0
1

0
6

0
0

0
90

0
0

0
.0

0
1
6

0
.0

0
0
3

0
.0

3
9
7

-0
.0

3
4

0
.0

3
6
3

-0
.0

0
0
4

0
6

0
0

30
-9

0
0

0
0
.0

0
4
2

-0
.0

4
1
2

-0
.0

1
0
7

0
.0

32
4

0
.0

6
9
1

0
.0

1
9
2

0
6

0
0

30
0

-3
0

0
0
.0

0
5
9

-0
.0

6
6
9

-0
.0

4
-0

.0
01

9
0
.1

2
6
9

0
.0

3
1
1

0
6

0
0

30
0

0
-3

0
0
.0

0
7

-0
.0

5
6

-0
.0

2
7
8

-0
.0

0
1
4

0
.1

0
1
3

0
.0

2
6
1

0
6

0
0

30
0

0
0

0
.0

0
7
6

-0
.0

4
4
7

-0
.0

0
7
5

-0
.0

0
1
4

0
.0

7
7
8

0
.0

2
0
8

0
6

0
0

30
0

0
3
0

0
.0

0
7
8

-0
.0

3
3
4

0
.0

1
2
8

-0
.0

0
1
1

0
.0

5
4
3

0
.0

1
5
6

0
6

0
0

30
0

3
0

0
0
.0

0
7
6

-0
.0

2
2
8

0
.0

2
4
7

-0
.0

0
1

0
.0

2
8
9

0
.0

1
0
7

0
6

0
0

30
90

0
0

0
.0

0
3
9

-0
.0

4
8
5

-0
.0

0
3
3

-0
.0

3
5
4

0
.0

8
5
6

0
.0

2
2
3

0
6

0
0

60
-9

0
0

0
0
.0

0
7
5

-0
.1

1
3
2

-0
.0

0
4
9

0
.0

33
2

0
.0

6
3
6

0
.0

5
2
6

0
6

0
0

60
0

-3
0

0
0
.0

1
0
3

-0
.1

3
6
7

-0
.0

0
0
8

-0
.0

02
4

0
.0

8
2
5

0
.0

6
3
7

0
6

0
0

60
0

0
-3

0
0
.0

0
9
8

-0
.1

4
9

-0
.0

1
5
9

-0
.0

0
1
7

0
.0

8
8
1

0
.0

6
9
4

0
6

0
0

60
0

0
0

0
.0

1
1

-0
.1

1
4
7

0
.0

0
4
6

-0
.0

0
1
5

0
.0

6
4
3

0
.0

5
3
5

0
6

0
0

60
0

0
3
0

0
.0

1
1

-0
.0

8
0
9

0
.0

2
5

-0
.0

0
1
2

0
.0

4
0
7

0
.0

3
7
7

0
6

0
0

60
0

3
0

0
0
.0

1
1
2

-0
.0

9
3
9

0
.0

0
9
4

-0
.0

0
0
9

0
.0

4
6
8

0
.0

4
3
8

461

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

0
6

0
0

60
90

0
0

0
.0

0
7
5

-0
.1

1
7
2

0
.0

1
4
4

-0
.0

3
6
4

0
.0

6
4
9

0
.0

5
4
4

0
6

0
0

90
-9

0
0

0
0
.0

0
9
2

-0
.1

4
5
1

0
.0

6
4
4

0
.0

33
1

-0
.0

1
5
6

0
.0

6
7
6

0
6

0
0

90
0

-3
0

0
0
.0

1
2
7

-0
.1

4
3

0
.0

8
3
1

-0
.0

0
2
8

-0
.0

1
4
1

0
.0

6
6
7

0
6

0
0

90
0

0
-3

0
0
.0

1
1
4

-0
.1

8
8
7

0
.0

7
5
5

-0
.0

0
2
5

-0
.0

1
7
2

0
.0

8
7
9

0
6

0
0

90
0

0
0

0
.0

1
2
7

-0
.1

4
2
9

0
.0

7
5
2

-0
.0

0
1
9

-0
.0

1
7

0
.0

6
6
7

0
6

0
0

90
0

0
3
0

0
.0

1
2
4

-0
.0

9
7
7

0
.0

7
5

-0
.0

0
1
4

-0
.0

1
6
8

0
.0

4
5
6

0
6

0
0

90
0

3
0

0
0
.0

1
2
7

-0
.1

4
2
9

0
.0

6
7
4

-0
.0

0
1
1

-0
.0

1
9
9

0
.0

6
6
6

0
6

0
0

90
90

0
0

0
.0

0
9
2

-0
.1

4
1
5

0
.0

8
6
6

-0
.0

3
7

-0
.0

1
8
4

0
.0

6
5
7

5
0

-1
0

0
-9

0
0

0
0

0
.0

3
2
3

0
.1

2
9
2

0
.3

7
1
1

-0
.0

0
1
1

0
.0

0
1
1

-0
.0

6
2

5
0

-1
0

0
-6

0
0

0
0

0
.0

2
6

0
.1

0
5

0
.3

0
6
7

-0
.0

0
2
5

0
.0

7
6
8

-0
.0

4
9
8

5
0

-1
0

0
-3

0
0

0
0

0
.0

2
1
6

0
.0

6
1
6

0
.2

5
7
5

-0
.0

0
1
4

0
.1

3
3
5

-0
.0

2
9
1

5
0

-1
0

0
0

0
0

0
0
.0

1
9
5

0
0
.2

2
6
2

-0
0
.1

7
0
2

-0

5
0

-1
0

0
30

0
0

0
0
.0

2
1
6

-0
.0

6
1
6

0
.2

5
7
5

0
.0

01
4

0
.1

3
3
5

0
.0

2
9
1

5
0

-1
0

0
60

0
0

0
0
.0

2
6

-0
.1

0
5

0
.3

0
6
7

0
.0

02
5

0
.0

7
6
8

0
.0

4
9
8

5
0

-1
0

0
90

0
0

0
0
.0

3
2
3

-0
.1

2
9
2

0
.3

7
1
1

0
.0

01
1

0
.0

0
1
1

0
.0

6
2

5
0

0
-2

0
-9

0
0

0
0

0
.0

6
1
2

0
.0

1
5
5

0
.3

7
0
8

0
.0

4
1
6

0
.0

0
1
7

-0
.0

0
4
5

5
0

0
-2

0
-6

0
0

0
0

0
.0

5
7
7

0
.0

0
8
9

0
.3

6
8
7

0
.0

39
0
.0

0
0
7

-0
.0

0
1

5
0

0
-2

0
-3

0
0

0
0

0
.0

5
4
9

0
.0

1
2
1

0
.3

5
9

0
.0

3
6
8

0
.0

0
9
2

-0
.0

0
3
4

5
0

0
-2

0
0

0
0

0
0
.0

5
6

0
.0

0
4
2

0
.3

5
5
9

0
.0

3
3
6

0
.0

1
7

-0
.0

0
0
4

5
0

0
-2

0
30

0
0

0
0
.0

6
1
3

0
.0

1
3
3

0
.3

8
7
5

0
.0

3
8
8

-0
.0

1
7
2

-0
.0

0
4
7

462

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

5
0

0
-2

0
60

0
0

0
0
.0

6
2
3

0
.0

2
0
6

0
.3

8
0
4

0
.0

4
2
3

-0
.0

0
8
6

-0
.0

0
7
9

5
0

0
-2

0
90

0
0

0
0
.0

6
1
1

0
.0

1
5
4

0
.3

7
0
8

0
.0

4
1
6

0
.0

0
2
1

-0
.0

0
4
5

5
0

0
0

-9
0

-9
0

0
0

0
.0

1
6
6

-0
.0

0
9

0
.3

7
3
5

0
.0

3
5

0
.0

0
2
2

0
.0

0
4
8

5
0

0
0

-9
0

0
-3

0
0

0
.0

2
0
2

0
0
.3

7
9
4

-0
0
.0

0
5
5

-0

5
0

0
0

-9
0

0
0

-3
0

0
.0

1
9
2

-0
.0

4
6

0
.3

7
1
7

-0
.0

01
6

0
.0

0
2
3

0
.0

2
1
5

5
0

0
0

-9
0

0
0

0
0
.0

2
0
1

0
0
.3

7
1
6

-0
0
.0

0
2
3

-0

5
0

0
0

-9
0

0
0

3
0

0
.0

1
9
4

0
.0

4
6
1

0
.3

7
1
7

0
.0

0
1
6

0
.0

0
2
4

-0
.0

2
1
5

5
0

0
0

-9
0

0
3
0

0
0
.0

2
0
1

0
0
.3

6
3
8

-0
-0

.0
0
0
9

-0

5
0

0
0

-9
0

90
0

0
0
.0

1
6
6

0
.0

0
9

0
.3

7
3
5

-0
.0

3
5

0
.0

0
2
2

-0
.0

0
4
8

5
0

0
0

-6
0

-9
0

0
0

0
.0

1
5
7

-0
.0

1
6
7

0
.3

7
7
7

0
.0

33
3

-0
.0

0
4
3

0
.0

0
9
2

5
0

0
0

-6
0

0
-3

0
0

0
.0

1
8

0
.0

1
6
3

0
.3

6
9
2

-0
.0

0
2

0
.0

1
5
7

-0
.0

0
6
8

5
0

0
0

-6
0

0
0

-3
0

0
.0

2
0
1

-0
.0

4
1
4

0
.3

9
7
4

-0
.0

03
5

-0
.0

2
9

0
.0

2
0
1

5
0

0
0

-6
0

0
0

0
0
.0

1
9
4

-0
.0

0
6

0
.3

7
5
3

-0
.0

0
1
6

-0
.0

0
3
5

0
.0

0
3
6

5
0

0
0

-6
0

0
0

3
0

0
.0

1
7
3

0
.0

2
8
3

0
.3

5
4
1

0
0
.0

2
1
3

-0
.0

1
2
5

5
0

0
0

-6
0

0
3
0

0
0
.0

2
-0

.0
2
6
9

0
.3

8
0
5

-0
.0

0
1
1

-0
.0

2
1
7

0
.0

1
3
3

5
0

0
0

-6
0

90
0

0
0
.0

1
6

0
.0

0
4

0
.3

7
6
9

-0
.0

3
6
4

-0
.0

0
3
4

-0
.0

0
1
7

5
0

0
0

-3
0

-9
0

0
0

0
.0

1
4
9

-0
.0

1
1
4

0
.3

7
7
3

0
.0

32
8

-0
.0

0
6

0
.0

0
6
5

5
0

0
0

-3
0

0
-3

0
0

0
.0

1
5
2

0
.0

2
0
4

0
.3

4
1
7

-0
.0

0
1
1

0
.0

4
5
6

-0
.0

0
8
9

5
0

0
0

-3
0

0
0

-3
0

0
.0

2
-0

.0
1
2
3

0
.3

9
4
7

-0
.0

03
2

-0
.0

2
7
7

0
.0

0
6
3

5
0

0
0

-3
0

0
0

0
0
.0

1
8
9

-0
.0

0
1
3

0
.3

7
4
2

-0
.0

0
1
1

-0
.0

0
3
9

0
.0

0
1
2

463

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

5
0

0
0

-3
0

0
0

3
0

0
.0

1
7
4

0
.0

0
9
8

0
.3

5
3
7

0
.0

01
0
.0

1
9
9

-0
.0

0
4
1

5
0

0
0

-3
0

0
3
0

0
0
.0

2
1

-0
.0

2
3

0
.4

0
6
9

-0
.0

0
0
8

-0
.0

5
3
6

0
.0

1
1
2

5
0

0
0

-3
0

90
0

0
0
.0

1
5
9

0
.0

0
8
5

0
.3

7
5
5

-0
.0

3
4
7

-0
.0

0
2
8

-0
.0

0
4

5
0

0
0

0
-9

0
0

0
0
.0

1
4
7

-0
.0

0
9
4

0
.3

5
8
7

0
.0

34
4

0
.0

1
6
4

0
.0

0
4
9

5
0

0
0

0
0

-3
0

0
0
.0

1
2
6

0
0
.3

1
1
2

-0
0
.0

8
1
2

-0

5
0

0
0

0
0

0
-3

0
0
.0

1
8
3

-0
.0

0
0
1

0
.3

5
8
1

-0
.0

0
1
8

0
.0

1
5
2

0
.0

0
0
1

5
0

0
0

0
0

0
0

0
.0

1
8
3

0
0
.3

5
8
1

-0
0
.0

1
5
2

-0

5
0

0
0

0
0

0
3
0

0
.0

1
8
3

0
.0

0
0
1

0
.3

5
8
1

0
.0

01
8

0
.0

1
5
2

-0
.0

0
0
1

5
0

0
0

0
0

3
0

0
0
.0

2
1
8

0
0
.4

0
5
7

-0
-0

.0
5
1
4

-0

5
0

0
0

0
90

0
0

0
.0

1
4
7

0
.0

0
9
4

0
.3

5
8
7

-0
.0

34
4

0
.0

1
6
4

-0
.0

0
4
9

5
0

0
0

30
-9

0
0

0
0
.0

1
5
9

-0
.0

0
8
5

0
.3

7
5
5

0
.0

34
7

-0
.0

0
2
8

0
.0

0
4

5
0

0
0

30
0

-3
0

0
0
.0

1
5
2

-0
.0

2
0
4

0
.3

4
1
7

0
.0

01
1

0
.0

4
5
6

0
.0

0
8
9

5
0

0
0

30
0

0
-3

0
0
.0

1
7
4

-0
.0

0
9
8

0
.3

5
3
7

-0
.0

0
1

0
.0

1
9
9

0
.0

0
4
1

5
0

0
0

30
0

0
0

0
.0

1
8
9

0
.0

0
1
3

0
.3

7
4
2

0
.0

01
1

-0
.0

0
3
9

-0
.0

0
1
2

5
0

0
0

30
0

0
3
0

0
.0

2
0
.0

1
2
3

0
.3

9
4
7

0
.0

03
2

-0
.0

2
7
7

-0
.0

0
6
3

5
0

0
0

30
0

3
0

0
0
.0

2
1

0
.0

2
3

0
.4

0
6
9

0
.0

00
8

-0
.0

5
3
6

-0
.0

1
1
2

5
0

0
0

30
90

0
0

0
.0

1
4
9

0
.0

1
1
4

0
.3

7
7
3

-0
.0

32
8

-0
.0

0
6

-0
.0

0
6
5

5
0

0
0

60
-9

0
0

0
0
.0

1
6

-0
.0

0
4

0
.3

7
6
9

0
.0

36
4

-0
.0

0
3
4

0
.0

0
1
7

5
0

0
0

60
0

-3
0

0
0
.0

1
8

-0
.0

1
6
3

0
.3

6
9
2

0
.0

0
2

0
.0

1
5
7

0
.0

0
6
8

5
0

0
0

60
0

0
-3

0
0
.0

1
7
3

-0
.0

2
8
3

0
.3

5
4
1

-0
0
.0

2
1
3

0
.0

1
2
5

464

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

5
0

0
0

60
0

0
0

0
.0

1
9
4

0
.0

0
6

0
.3

7
5
3

0
.0

01
6

-0
.0

0
3
5

-0
.0

0
3
6

5
0

0
0

60
0

0
3
0

0
.0

2
0
1

0
.0

4
1
4

0
.3

9
7
4

0
.0

03
5

-0
.0

2
9

-0
.0

2
0
1

5
0

0
0

60
0

3
0

0
0
.0

2
0
.0

2
6
9

0
.3

8
0
5

0
.0

01
1

-0
.0

2
1
7

-0
.0

1
3
3

5
0

0
0

60
90

0
0

0
.0

1
5
7

0
.0

1
6
7

0
.3

7
7
7

-0
.0

33
3

-0
.0

0
4
3

-0
.0

0
9
2

5
0

0
0

90
-9

0
0

0
0
.0

1
6
6

-0
.0

0
9

0
.3

7
3
5

0
.0

3
5

0
.0

0
2
2

0
.0

0
4
8

5
0

0
0

90
0

-3
0

0
0
.0

2
0
2

0
0
.3

7
9
4

-0
0
.0

0
5
5

-0

5
0

0
0

90
0

0
-3

0
0
.0

1
9
4

-0
.0

4
6
1

0
.3

7
1
7

-0
.0

0
1
6

0
.0

0
2
4

0
.0

2
1
5

5
0

0
0

90
0

0
0

0
.0

2
0
1

0
0
.3

7
1
6

-0
0
.0

0
2
3

-0

5
0

0
0

90
0

0
3
0

0
.0

1
9
2

0
.0

4
6

0
.3

7
1
7

0
.0

01
6

0
.0

0
2
3

-0
.0

2
1
5

5
0

0
0

90
0

3
0

0
0
.0

2
0
1

0
0
.3

6
3
8

-0
-0

.0
0
0
9

-0

5
0

0
0

90
90

0
0

0
.0

1
6
6

0
.0

0
9

0
.3

7
3
5

-0
.0

3
5

0
.0

0
2
2

-0
.0

0
4
8

5
0

0
20

-9
0

0
0

0
0
.0

6
1
1

-0
.0

1
5
4

0
.3

7
0
8

-0
.0

4
1
6

0
.0

0
2
1

0
.0

0
4
5

5
0

0
20

-6
0

0
0

0
0
.0

6
2
3

-0
.0

2
0
6

0
.3

8
0
4

-0
.0

4
2
3

-0
.0

0
8
6

0
.0

0
7
9

5
0

0
20

-3
0

0
0

0
0
.0

6
1
3

-0
.0

1
3
3

0
.3

8
7
5

-0
.0

3
8
8

-0
.0

1
7
2

0
.0

0
4
7

5
0

0
20

0
0

0
0

0
.0

5
6

-0
.0

0
4
2

0
.3

5
5
9

-0
.0

3
3
6

0
.0

1
7

0
.0

0
0
4

5
0

0
20

30
0

0
0

0
.0

5
4
9

-0
.0

1
2
1

0
.3

5
9

-0
.0

3
6
8

0
.0

0
9
2

0
.0

0
3
4

5
0

0
20

60
0

0
0

0
.0

5
7
7

-0
.0

0
8
9

0
.3

6
8
7

-0
.0

3
9

0
.0

0
0
7

0
.0

0
1

5
0

0
20

90
0

0
0

0
.0

6
1
2

-0
.0

1
5
5

0
.3

7
0
8

-0
.0

4
1
6

0
.0

0
1
7

0
.0

0
4
5

5
0

10
0

-9
0

0
0

0
0
.0

3
2
8

-0
.1

2
9
1

0
.3

7
1
1

0
.0

0
1

0
.0

0
1
1

0
.0

6
1
9

5
0

10
0

-6
0

0
0

0
0
.0

3
7
6

-0
.1

1
7
1

0
.4

4
2
8

-0
.0

0
0
8

-0
.0

8
6

0
.0

5
6
8

465

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

5
0

10
0

-3
0

0
0

0
0
.0

4
1
3

-0
.0

6
4
1

0
.4

8
9
6

-0
.0

0
0
8

-0
.1

4
2
8

0
.0

3
1
3

5
0

10
0

0
0

0
0

0
.0

4
2
3

0
0
.4

8
8
5

-0
-0

.1
4
0
8

-0

5
0

10
0

30
0

0
0

0
.0

4
1
3

0
.0

6
4
1

0
.4

8
9
6

0
.0

00
8

-0
.1

4
2
8

-0
.0

3
1
3

5
0

10
0

60
0

0
0

0
.0

3
7
6

0
.1

1
7
1

0
.4

4
2
8

0
.0

00
8

-0
.0

8
6

-0
.0

5
6
8

5
0

10
0

90
0

0
0

0
.0

3
2
8

0
.1

2
9
1

0
.3

7
1
1

-0
.0

0
1

0
.0

0
1
1

-0
.0

6
1
9

10
-6

0
20

-9
0

0
0

0
0
.0

8
6
2

0
.0

9
0
8

0
.6

2
7
9

-0
.0

3
0
3

0
.0

0
4
5

-0
.0

5
0
9

10
-6

0
20

-6
0

0
0

0
0
.0

8
5
2

0
.0

5
4
8

0
.5

8
3
1

-0
.0

2
9

0
.0

6
2
7

-0
.0

3
2
4

10
-6

0
20

-3
0

0
0

0
0
.0

8
7
1

-0
.0

0
8

0
.6

1
8
4

-0
.0

3
0
.0

2
2
1

-0
.0

0
2

10
-6

0
20

0
0

0
0

0
.0

9
5
1

-0
.0

0
9
9

0
.6

8
2
4

-0
.0

2
9
4

-0
.0

5
3

-0
.0

0
0
5

10
-6

0
20

30
0

0
0

0
.1

0
4

0
.0

4
9
1

0
.7

3
2
6

-0
.0

3
2
6

-0
.1

1
6
3

-0
.0

2
8
5

10
-6

0
20

60
0

0
0

0
.1

0
0
1

0
.1

0
7

0
.6

9
6

-0
.0

3
3
4

-0
.0

7
6
2

-0
.0

5
6
9

10
-6

0
20

90
0

0
0

0
.0

8
5
6

0
.0

9
0
7

0
.6

2
7
9

-0
.0

3
0
3

0
.0

0
4
2

-0
.0

5
0
8

10
-4

0
20

-9
0

0
0

0
0
.0

8
3
4

0
.0

5
9
1

0
.6

4
2
9

-0
.0

3
1

0
.0

0
8

-0
.0

3
5
2

10
-4

0
20

-6
0

0
0

0
0
.0

9
0
1

0
.0

1
3
4

0
.6

2
1
5

-0
.0

3
6
5

0
.0

3
7
6

-0
.0

1
1
3

10
-4

0
20

-3
0

0
0

0
0
.0

9
1
3

-0
.0

1
5
3

0
.6

4
9
2

-0
.0

33
3

0
.0

0
5
8

0
.0

0
2
3

10
-4

0
20

0
0

0
0

0
.0

9
6

-0
.0

0
8
5

0
.6

8
6
2

-0
.0

3
2
4

-0
.0

3
8
5

-0
.0

0
0
4

10
-4

0
20

30
0

0
0

0
.1

0
0
8

0
.0

3
3
9

0
.7

1
7
7

-0
.0

3
5
7

-0
.0

8
0
5

-0
.0

2
0
8

10
-4

0
20

60
0

0
0

0
.0

9
4
6

0
.0

6
9

0
.6

8
8
6

-0
.0

3
5
3

-0
.0

4
8
6

-0
.0

3
8
6

10
-4

0
20

90
0

0
0

0
.0

8
3

0
.0

5
9

0
.6

4
3

-0
.0

3
1

0
.0

0
7
4

-0
.0

3
5
1

10
-2

0
20

-9
0

0
0

0
0
.0

9
0
.0

2
2
2

0
.6

5
3
3

-0
.0

3
6
4

0
.0

1
6
2

-0
.0

1
6
8

466

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

10
-2

0
20

-6
0

0
0

0
0
.0

9
3
7

-0
.0

2
8
7

0
.6

6
2
7

-0
.0

44
6

0
.0

0
6
5

0
.0

0
9
7

10
-2

0
20

-3
0

0
0

0
0
.0

9
5
4

-0
.0

2
1
5

0
.6

7
7
7

-0
.0

36
6

-0
.0

0
9
7

0
.0

0
6
3

10
-2

0
20

0
0

0
0

0
.0

9
6
7

-0
.0

0
6
9

0
.6

8
8
3

-0
.0

3
5
7

-0
.0

2
4

-0
.0

0
0
2

10
-2

0
20

30
0

0
0

0
.0

9
7
7

0
.0

1
9
1

0
.7

0
2
6

-0
.0

3
8
9

-0
.0

4
6
3

-0
.0

1
3
3

10
-2

0
20

60
0

0
0

0
.0

8
9
4

0
.0

2
8
6

0
.6

7
8
4

-0
.0

3
7
7

-0
.0

1
9
3

-0
.0

1
9
5

10
-2

0
20

90
0

0
0

0
.0

8
9
9

0
.0

2
2
1

0
.6

5
3
4

-0
.0

3
6
4

0
.0

1
5
7

-0
.0

1
6
7

10
0

-1
0

0
-9

0
0

0
0

0
.0

6
6
2

0
.1

3
5
7

0
.6

6
4
8

-0
.0

0
1
5

0
.0

1
9
2

-0
.0

6
5

10
0

-1
0

0
-6

0
0

0
0

0
.0

5
1

0
.0

9
2
6

0
.6

1
3
3

-0
.0

0
5
8

0
.0

7
7
9

-0
.0

4
3
1

10
0

-1
0

0
-3

0
0

0
0

0
.0

5
0
9

0
.0

4
6
4

0
.5

8
0
4

0
.0

00
2

0
.1

1
8
1

-0
.0

2
1
8

10
0

-1
0

0
0

0
0

0
0
.0

4
8
9

0
0
.5

6
1

-0
0
.1

4
1
7

-0

10
0

-1
0

0
30

0
0

0
0
.0

5
0
9

-0
.0

4
6
4

0
.5

8
0
4

-0
.0

0
0
2

0
.1

1
8
1

0
.0

2
1
8

10
0

-1
0

0
60

0
0

0
0
.0

5
1

-0
.0

9
2
6

0
.6

1
3
3

0
.0

05
8

0
.0

7
7
9

0
.0

4
3
1

10
0

-1
0

0
90

0
0

0
0
.0

6
6
2

-0
.1

3
5
7

0
.6

6
4
8

0
.0

01
5

0
.0

1
9
2

0
.0

6
5

10
0

0
-2

0
-9

0
0

0
0

0
.0

9
5

0
.0

2
6
1

0
.6

6
4
5

0
.0

4
3
5

0
.0

2
0
6

-0
.0

0
7
3

10
0

0
-2

0
-6

0
0

0
0

0
.0

8
3
8

0
.0

0
6
4

0
.6

7
2

0
.0

3
9
4

0
.0

0
3
7

0
.0

0
2
7

10
0

0
-2

0
-3

0
0

0
0

0
.0

9
4
6

-0
.0

0
3
2

0
.6

8
3
8

0
.0

42
6

-0
.0

0
9
4

0
.0

0
5
3

10
0

0
-2

0
0

0
0

0
0
.0

9
7
3

0
.0

0
5
3

0
.6

8
9
3

0
.0

3
9
1

-0
.0

1
0
1

0
.0

0
0
1

10
0

0
-2

0
30

0
0

0
0
.0

9
9
9

0
.0

2
7
5

0
.7

0
5

0
.0

3
9
9

-0
.0

2
5
7

-0
.0

1
0
3

10
0

0
-2

0
60

0
0

0
0
.0

9
7
4

0
.0

3
8
6

0
.6

8
5
9

0
.0

4
6
2

-0
.0

0
4
4

-0
.0

1
5
5

10
0

0
-2

0
90

0
0

0
0
.0

9
4
9

0
.0

2
6
1

0
.6

6
4
5

0
.0

4
3
5

0
.0

2
0
9

-0
.0

0
7
3

467

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

10
0

0
0

-9
0

-9
0

0
0

0
.0

5
0
6

-0
.0

1
6
5

0
.6

6
9
6

0
.0

35
7

0
.0

2
0
8

0
.0

0
8
9

10
0

0
0

-9
0

0
-3

0
0

0
.0

5
4
1

0
0
.6

7
3
9

-0
0
.0

2
4
3

-0

10
0

0
0

-9
0

0
0

-3
0

0
.0

5
3

-0
.0

4
8
4

0
.6

6
6
4

-0
.0

02
9

0
.0

2
1
1

0
.0

2
2
5

10
0

0
0

-9
0

0
0

0
0
.0

5
4

0
0
.6

6
6
2

-0
0
.0

2
1

-0

10
0

0
0

-9
0

0
0

3
0

0
.0

5
3
3

0
.0

4
8
4

0
.6

6
6
3

0
.0

0
2
9

0
.0

2
1
2

-0
.0

2
2
5

10
0

0
0

-9
0

0
3
0

0
0
.0

5
3
9

0
0
.6

5
8
5

-0
0
.0

1
7
7

-0

10
0

0
0

-9
0

90
0

0
0
.0

5
0
6

0
.0

1
6
5

0
.6

6
9
6

-0
.0

3
5
7

0
.0

2
0
8

-0
.0

0
8
9

10
0

0
0

-6
0

-9
0

0
0

0
.0

4
4
7

-0
.0

3
1
4

0
.6

8
1
6

0
.0

32
2

0
.0

0
2
2

0
.0

1
7
6

10
0

0
0

-6
0

0
-3

0
0

0
.0

4
8
3

0
.0

0
3
5

0
.6

7
5
2

-0
.0

0
3
9

0
.0

1
8
5

0
.0

0
0
2

10
0

0
0

-6
0

0
0

-3
0

0
.0

5
0
5

-0
.0

5
1
3

0
.7

0
3
5

-0
.0

07
4

-0
.0

2
7
3

0
.0

2
5
7

10
0

0
0

-6
0

0
0

0
0
.0

4
9
9

-0
.0

1
6
4

0
.6

8
-0

.0
0
3
4

0
.0

0
0
6

0
.0

0
9
4

10
0

0
0

-6
0

0
0

3
0

0
.0

4
7
8

0
.0

1
7
9

0
.6

5
7
7

0
.0

0
0
3

0
.0

2
7
3

-0
.0

0
6
6

10
0

0
0

-6
0

0
3
0

0
0
.0

5
1

-0
.0

3
6
4

0
.6

8
4
9

-0
.0

0
2
8

-0
.0

1
7
2

0
.0

1
8
6

10
0

0
0

-6
0

90
0

0
0
.0

4
8
4

-0
.0

0
1
4

0
.6

8
5
1

-0
.0

3
8
8

-0
.0

0
1
2

0
.0

0
1
1

10
0

0
0

-3
0

-9
0

0
0

0
.0

5
2
7

-0
.0

3
5
6

0
.7

0
1
8

0
.0

36
3

-0
.0

2
1
4

0
.0

1
8
7

10
0

0
0

-3
0

0
-3

0
0

0
.0

5
0
8

0
.0

0
5
8

0
.6

6
3
6

0
.0

01
2

0
.0

3
2

-0
.0

0
1
8

10
0

0
0

-3
0

0
0

-3
0

0
.0

5
8
7

-0
.0

2
7
5

0
.7

1
6
9

-0
.0

02
5

-0
.0

4
1
7

0
.0

1
3
8

10
0

0
0

-3
0

0
0

0
0
.0

5
6
5

-0
.0

1
6
3

0
.6

9
6
4

0
.0

01
2

-0
.0

1
8

0
.0

0
8
5

10
0

0
0

-3
0

0
0

3
0

0
.0

5
4

-0
.0

0
5
1

0
.6

7
6
1

0
.0

04
7

0
.0

0
5
7

0
.0

0
3
2

10
0

0
0

-3
0

0
3
0

0
0
.0

6
0
7

-0
.0

3
8
5

0
.7

2
9
9

0
.0

01
4

-0
.0

6
8
4

0
.0

1
8
9

468

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

10
0

0
0

-3
0

90
0

0
0
.0

5
4
1

0
.0

0
1
3

0
.7

0
1

-0
.0

3
4
1

-0
.0

1
8
8

-0
.0

0
0
9

10
0

0
0

0
-9

0
0

0
0
.0

5
3
6

-0
.0

1
8
6

0
.6

9
5

0
.0

36
6

-0
.0

1
1
7

0
.0

0
9
7

10
0

0
0

0
0

-3
0

0
0
.0

4
8
6

0
0
.6

4
5
9

-0
0
.0

5
3
7

-0

10
0

0
0

0
0

0
-3

0
0
.0

5
6
9

-0
.0

0
0
2

0
.6

9
1
9

-0
.0

0
3
3

-0
.0

1
1
5

0
.0

0
0
1

10
0

0
0

0
0

0
0

0
.0

5
6
9

0
0
.6

9
1
8

-0
-0

.0
1
1
5

-0

10
0

0
0

0
0

0
3
0

0
.0

5
6
9

0
.0

0
0
2

0
.6

9
1
9

0
.0

0
3
3

-0
.0

1
1
5

-0
.0

0
0
1

10
0

0
0

0
0

3
0

0
0
.0

6
3
1

0
0
.7

3
8
9

-0
-0

.0
7
7
6

-0

10
0

0
0

0
90

0
0

0
.0

5
3
6

0
.0

1
8
6

0
.6

9
5

-0
.0

36
6

-0
.0

1
1
7

-0
.0

0
9
7

10
0

0
0

30
-9

0
0

0
0
.0

5
4
1

-0
.0

0
1
3

0
.7

0
1

0
.0

34
1

-0
.0

1
8
8

0
.0

0
0
9

10
0

0
0

30
0

-3
0

0
0
.0

5
0
8

-0
.0

0
5
8

0
.6

6
3
6

-0
.0

0
1
2

0
.0

3
2

0
.0

0
1
8

10
0

0
0

30
0

0
-3

0
0
.0

5
4

0
.0

0
5
1

0
.6

7
6
1

-0
.0

0
4
7

0
.0

0
5
7

-0
.0

0
3
2

10
0

0
0

30
0

0
0

0
.0

5
6
5

0
.0

1
6
3

0
.6

9
6
4

-0
.0

01
2

-0
.0

1
8

-0
.0

0
8
5

10
0

0
0

30
0

0
3
0

0
.0

5
8
7

0
.0

2
7
5

0
.7

1
6
9

0
.0

0
2
5

-0
.0

4
1
7

-0
.0

1
3
8

10
0

0
0

30
0

3
0

0
0
.0

6
0
7

0
.0

3
8
5

0
.7

2
9
9

-0
.0

01
4

-0
.0

6
8
4

-0
.0

1
8
9

10
0

0
0

30
90

0
0

0
.0

5
2
7

0
.0

3
5
6

0
.7

0
1
8

-0
.0

36
3

-0
.0

2
1
4

-0
.0

1
8
7

10
0

0
0

60
-9

0
0

0
0
.0

4
8
4

0
.0

0
1
4

0
.6

8
5
1

0
.0

3
8
8

-0
.0

0
1
2

-0
.0

0
1
1

10
0

0
0

60
0

-3
0

0
0
.0

4
8
3

-0
.0

0
3
5

0
.6

7
5
2

0
.0

03
9

0
.0

1
8
5

-0
.0

0
0
2

10
0

0
0

60
0

0
-3

0
0
.0

4
7
8

-0
.0

1
7
9

0
.6

5
7
7

-0
.0

0
0
3

0
.0

2
7
3

0
.0

0
6
6

10
0

0
0

60
0

0
0

0
.0

4
9
9

0
.0

1
6
4

0
.6

8
0
.0

0
3
4

0
.0

0
0
6

-0
.0

0
9
4

10
0

0
0

60
0

0
3
0

0
.0

5
0
5

0
.0

5
1
3

0
.7

0
3
5

0
.0

0
7
4

-0
.0

2
7
3

-0
.0

2
5
7

469

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

10
0

0
0

60
0

3
0

0
0
.0

5
1

0
.0

3
6
4

0
.6

8
4
9

0
.0

0
2
8

-0
.0

1
7
2

-0
.0

1
8
6

10
0

0
0

60
90

0
0

0
.0

4
4
7

0
.0

3
1
4

0
.6

8
1
6

-0
.0

32
2

0
.0

0
2
2

-0
.0

1
7
6

10
0

0
0

90
-9

0
0

0
0
.0

5
0
6

-0
.0

1
6
5

0
.6

6
9
6

0
.0

35
7

0
.0

2
0
8

0
.0

0
8
9

10
0

0
0

90
0

-3
0

0
0
.0

5
4
1

0
0
.6

7
3
9

-0
0
.0

2
4
3

-0

10
0

0
0

90
0

0
-3

0
0
.0

5
3
3

-0
.0

4
8
4

0
.6

6
6
3

-0
.0

0
2
9

0
.0

2
1
2

0
.0

2
2
5

10
0

0
0

90
0

0
0

0
.0

5
4

0
0
.6

6
6
2

-0
0
.0

2
1

-0

10
0

0
0

90
0

0
3
0

0
.0

5
3

0
.0

4
8
4

0
.6

6
6
4

0
.0

0
2
9

0
.0

2
1
1

-0
.0

2
2
5

10
0

0
0

90
0

3
0

0
0
.0

5
3
9

0
0
.6

5
8
5

-0
0
.0

1
7
7

-0

10
0

0
0

90
90

0
0

0
.0

5
0
6

0
.0

1
6
5

0
.6

6
9
6

-0
.0

35
7

0
.0

2
0
8

-0
.0

0
8
9

10
0

0
20

-9
0

0
0

0
0
.0

9
4
9

-0
.0

2
6
1

0
.6

6
4
5

-0
.0

4
3
5

0
.0

2
0
9

0
.0

0
7
3

10
0

0
20

-6
0

0
0

0
0
.0

9
7
4

-0
.0

3
8
6

0
.6

8
5
9

-0
.0

4
6
2

-0
.0

0
4
4

0
.0

1
5
5

10
0

0
20

-3
0

0
0

0
0
.0

9
9
9

-0
.0

2
7
5

0
.7

0
5

-0
.0

3
9
9

-0
.0

2
5
7

0
.0

1
0
3

10
0

0
20

0
0

0
0

0
.0

9
7
3

-0
.0

0
5
3

0
.6

8
9
3

-0
.0

3
9
1

-0
.0

1
0
1

-0
.0

0
0
1

10
0

0
20

30
0

0
0

0
.0

9
4
6

0
.0

0
3
2

0
.6

8
3
8

-0
.0

42
6

-0
.0

0
9
4

-0
.0

0
5
3

10
0

0
20

60
0

0
0

0
.0

8
3
8

-0
.0

0
6
4

0
.6

7
2

-0
.0

3
9
4

0
.0

0
3
7

-0
.0

0
2
7

10
0

0
20

90
0

0
0

0
.0

9
5

-0
.0

2
6
1

0
.6

6
4
5

-0
.0

4
3
5

0
.0

2
0
6

0
.0

0
7
3

10
0

10
0

-9
0

0
0

0
0
.0

6
6
7

-0
.1

3
5
6

0
.6

6
4
7

0
.0

01
4

0
.0

1
9
1

0
.0

6
4
9

10
0

10
0

-6
0

0
0

0
0
.0

7
3
8

-0
.1

2
5
3

0
.7

4
5
3

-0
.0

0
1
1

-0
.0

8
1
8

0
.0

6
1
6

10
0

10
0

-3
0

0
0

0
0
.0

8
7
3

-0
.0

7
8
7

0
.8

1
0
1

0
.0

02
3

-0
.1

5
7
3

0
.0

3
8
4

10
0

10
0

0
0

0
0

0
.0

9
0
3

0
0
.8

1
9
9

-0
-0

.1
6
7

-0

470

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

10
0

10
0

30
0

0
0

0
.0

8
7
3

0
.0

7
8
7

0
.8

1
0
1

-0
.0

02
3

-0
.1

5
7
3

-0
.0

3
8
4

10
0

10
0

60
0

0
0

0
.0

7
3
8

0
.1

2
5
3

0
.7

4
5
3

0
.0

0
1
1

-0
.0

8
1
8

-0
.0

6
1
6

10
0

10
0

90
0

0
0

0
.0

6
6
7

0
.1

3
5
6

0
.6

6
4
7

-0
.0

01
4

0
.0

1
9
1

-0
.0

6
4
9

10
2

0
20

-9
0

0
0

0
0
.0

9
9
3

-0
.0

7
4
9

0
.6

7
6
9

-0
.0

5
1

0
.0

2
1
1

0
.0

3
1
7

10
2

0
20

-6
0

0
0

0
0
.1

0
4

-0
.0

7
1
4

0
.7

1
9
4

-0
.0

4
8
6

-0
.0

2
8
4

0
.0

3
1
7

10
2

0
20

-3
0

0
0

0
0
.1

0
4
6

-0
.0

3
3
7

0
.7

3
1
4

-0
.0

4
3
4

-0
.0

4
2
9

0
.0

1
4
5

10
2

0
20

0
0

0
0

0
.0

9
7
8

-0
.0

0
3
7

0
.6

8
9
4

-0
.0

4
2
6

0
.0

0
2
8

-0
.0

0
0
1

10
2

0
20

30
0

0
0

0
.0

9
1
7

-0
.0

1
1
7

0
.6

6
6

-0
.0

4
6
2

0
.0

2
4
3

0
.0

0
2
2

10
2

0
20

60
0

0
0

0
.0

8
4
3

-0
.0

1
4
9

0
.6

7
7
1

-0
.0

4
0
.0

1
1
8

0
.0

0
2

10
2

0
20

90
0

0
0

0
.0

9
9
8

-0
.0

7
4
9

0
.6

7
6
8

-0
.0

5
1

0
.0

2
0
9

0
.0

3
1
7

10
4

0
20

-9
0

0
0

0
0
.1

0
2

-0
.1

1
2
4

0
.6

9
0
4

-0
.0

5
7
4

0
.0

1
6
8

0
.0

5
1

10
4

0
20

-6
0

0
0

0
0
.1

1
0
7

-0
.1

0
2
5

0
.7

5
0
7

-0
.0

5
1
3

-0
.0

5
2
3

0
.0

4
7
5

10
4

0
20

-3
0

0
0

0
0
.1

0
9
9

-0
.0

4
0
4

0
.7

5
7
7

-0
.0

4
7
2

-0
.0

6
2
2

0
.0

1
9

10
4

0
20

0
0

0
0

0
.0

9
8
3

-0
.0

0
2

0
.6

8
8
9

-0
.0

4
6
2

0
.0

1
4
3

0

10
4

0
20

30
0

0
0

0
.0

8
9

-0
.0

2
5
7

0
.6

4
9
5

-0
.0

4
9
6

0
.0

5
4
4

0
.0

0
9
2

10
4

0
20

60
0

0
0

0
.0

9
0
7

-0
.0

7
1
6

0
.6

4
7
5

-0
.0

4
9
6

0
.0

6
1
1

0
.0

2
8
8

10
4

0
20

90
0

0
0

0
.1

0
2
7

-0
.1

1
2
4

0
.6

9
0
1

-0
.0

5
7
4

0
.0

1
6
8

0
.0

5
1

10
6

0
20

-9
0

0
0

0
0
.1

0
7
3

-0
.1

4
3
6

0
.7

0
2

-0
.0

5
8
9

0
.0

1
3
2

0
.0

6
6
9

10
6

0
20

-6
0

0
0

0
0
.1

1
8
9

-0
.1

3
7
6

0
.7

8
3
3

-0
.0

5
4
8

-0
.0

7
9
9

0
.0

6
5
2

10
6

0
20

-3
0

0
0

0
0
.1

1
5
5

-0
.0

4
6
9

0
.7

8
2
4

-0
.0

5
0
9

-0
.0

8
2

0
.0

2
3
6

471

T
ab

le
D

.2
:

T
ru

n
ca

te
d

ae
ro

d
y
n

am
ic

d
at

ab
as

e
of

th
e

B
IR

E
ai

rc
ra

ft
(c

on
ti

n
u

ed
).

α
β

δ
a

δ
e

δ
B

p
q

r
C

D
C

S
C

L
C

`
C

m
C

n

10
6

0
20

0
0

0
0

0
.0

9
8
8

-0
.0

0
0
3

0
.6

8
7
9

-0
.0

4
9
8

0
.0

2
4
2

0
.0

0
0
2

10
6

0
20

30
0

0
0

0
.0

8
6
3

-0
.0

3
9
4

0
.6

3
4
1

-0
.0

5
2
9

0
.0

8
0
9

0
.0

1
6
2

10
6

0
20

60
0

0
0

0
.0

9
5
9

-0
.1

1
6
9

0
.6

2
8
3

-0
.0

5
8
2

0
.0

9
5
6

0
.0

5
1
3

10
6

0
20

90
0

0
0

0
.1

0
8
2

-0
.1

4
3
6

0
.7

0
2

-0
.0

5
8
8

0
.0

1
2
9

0
.0

6
7

472

APPENDIX E

CURRICULUM VITAE

CHRISTIAN R. BOLANDER
Utah State University, Logan, Utah | 385.321.4350 | christian.bolander@aggiemail.usu.edu

LinkedInLinkedInLinkedInLinkedInLinkedInLinkedInLinkedInLinkedInLinkedInLinkedInLinkedInLinkedInLinkedInLinkedInLinkedInLinkedInLinkedIn | ResearchGateResearchGateResearchGateResearchGateResearchGateResearchGateResearchGateResearchGateResearchGateResearchGateResearchGateResearchGateResearchGateResearchGateResearchGateResearchGateResearchGate | Google ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle Scholar

Education

Ph.D. Utah State University Mechanical Engineering Est. May 2023
B.S. Utah State University Mechanical and Aerospace Engineering May 2018

Professional Positions

Engineering Math Resource Center Director Utah State University Jul. 2022 - Present
Assistant Professor of Practice Utah State University Jul. 2022 - Present

Research Assistant Utah State University Aerolab May 2017 - Jul. 2022
Engineering Tutor Center Manager Utah State University Aug. 2017 - May 2018

Systems Engineering Intern Hill Air Force Base May 2017 - Dec. 2017

Notable Projects
USU Engineering Math Resource Center

• Started a novel engineering-based math learning center on the USU campus.
• Developed online content focused on introducing and reviewing math content with students in an engineering

context.

Bio-inspired Rotating Empennage
• Performed aerodynamic analysis on a bio-inspired empennage design for fighter aircraft to improve efficiency

and control authority.
• Analyzed aerodynamics of a fighter aircraft using both high-fidelity (CFD) and low-fidelity (lifting-line) aero-

dynamic tools.

Compressible Fluid Flow Instructor
• Developed a course to teach undergraduate students in their junior or senior year the fundamentals of compress-

ible fluid flow and supersonic aerodynamic analysis.
• Nominated for Graduate Student Instructor of the Year by students in first semester of teaching.

Sonic Boom Loudness Mitigation
• Implemented a procedure to estimate the human-perceived loudness of a sonic boom using pressure information

from an aircraft.
• The resulting code, PyLdB, is open-source and has been used by researchers in academia, including researchers

at Texas A & M University and the U.S. Department of Transportation, to analyze sonic boom mitigation.
• Analyzed the effect of aircraft shape-deformation actuation technology on sonic boom loudness using mid-

fidelity (3D panel methods) aerodynamic tools.

Ship Deck Motion Prediction
• Designed a methodology for predicting ship deck motion in 6 degrees of freedom using simulated acceleration

data and signal analysis techniques.

Folding One-Step Rod Cutter Design
• Designed and analyzed loads on a hydraulic mechanism to lift and store two 6,000 lb. bean harvesters for

transportation on a tractor.
• Prototype in development at Pickett Equipment for production.

Publications

1. Bolander, C. R., Kohler, A. J., Hunsaker, D. F., Myszka, D., and Joo, J. J., ”Static Trim of a Bio-Inspired
Rotating Empennage for a Fighter Aircraft,” AIAA Scitech Forum, January 2023, DOI:
10.2514/6.2023-0624

2. Kohler A. J., Bolander, C. R., Hunsaker, D. F., Joo, J. J., ”Linearized Rigid-Body Static and Dynamic Stability
of an Aircraft with a Bio-Inspired Rotating Empennage,” AIAA Scitech Forum, January 2023, DOI:
10.2514/6.2023-0621

473

3. Harvey, C. Gamble, L. L., Bolander, C. R., Hunsaker, D. F., Joo, J. J., and Inman, D. J., ”A review of avian-
inspired morphing for UAV flight control,” Progress in Aerospace Sciences 132, July 2022, DOI:
10.1016/j.paerosci.2022.100825

4. Ives, C., Myszka, D. H., Joo, J. J., Bolander, C. R., and Hunsaker, D. F., ”Attainable Moment Set and Actuation
Time of a Bio-Inspired Rotating Empennage,” AIAA Scitech Forum, January 2022, DOI: 10.2514/6.2022-1670

5. Bolander, C. R., Hunsaker, D. F., Myszka, D., and Joo, J. J., ”Attainable Moment Set and Actuation Time of a
Bio-Inspired Rotating Empennage,” AIAA Scitech Forum, January 2022, DOI: 10.2514/6.2022-1670

6. Bolander, C. R., and Hunsaker, D. F., ”Near-field Pressure Signature Splicing for Low-Fidelity Design Space
Exploration of Supersonic Aircraft,” AIAA Scitech Forum, January 2020, DOI: 10.2514/6.2020-0789

7. Carpenter, F. L., Cizmas, P., Bolander, C. R., Giblette, T. N., and Hunsaker, D. F., ”A Multi-Fidelity Prediction
of Aerodynamic and Sonic Boom Characteristics of the JAXA Wing Body,” AIAA Aviation 2019 Forum, June
2019, DOI: 10.2514/6.2019-3237

8. Bolander, C. R., Hunsaker, D. F., Shen, H., and Carpenter, F. L., “Procedure for the Calculation of the Perceived
Loudness of Sonic Booms,” AIAA Scitech Forum, January 2019, DOI: 10.2514/6.2019-2091

9. Bolander, C., and Hunsaker, D. F., “A Sine-Summation Algorithm for the Prediction of Ship Deck Motion,”
OCEANS 2018 MTS/IEEE Charleston, October 2018, DOI: 10.1109/OCEANS.2018.8604888

Awards
Graduated Magna Cum Laude

3.89 GPA
Seely-Hinckley Scholarship

1 of 8 selected from Utah State University graduate student body
NSF Graduate Research Fellowship Program Honorable Mention

2019 Cohort
Tau Beta Pi Fellowship

$10,000 Award
Service

Chief Advisor, Tau Beta Pi Engineering Honor Society, UT Gamma Chapter, Aug 2022 - Present
VP of Professional Development, Tau Beta Pi Engineering Honor Society, May 2018 - August 2019
President, Tau Beta Pi Engineering Honor Society, August 2017 - May 2018

474

	Aerodynamic Implications of a Bio‐Inspired Rotating Empennage Design for Control of a Fighter Aircraft
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	LITERATURE REVIEW
	Longitudinal and Lateral Degrees of Freedom
	Avian Tail Morphology
	The Role of the Tail in Avian Flight Control
	Longitudinal Stability and Control
	Lateral Stability and Control

	Control of Aircraft Using a Rotating Tail
	Longitudinal Stability and Control
	Lateral Control and Stability

	DESCRIPTION OF THE BASELINE AIRCRAFT AND ITS BIRE VARIANT
	Description of the Baseline Aircraft
	Description of the BIRE Variant
	FORMULATING AN AERODYNAMIC MODEL FOR THE BASELINE AND BIRE AIRCRAFT
	Aerodynamic Forces and Moments
	Nondimensional Forces and Moments
	Coordinate Systems
	Compressibility Corrections

	A Description of the Aerodynamic Models
	A Linear Aerodynamic Model
	A Non-Linear Aerodynamic Model

	EVALUATION OF THE AERODYNAMIC COEFFICIENTS
	Airfoil Aerodynamics
	Linear Aerodynamic Model
	Non-Linear Aerodynamic Model
	Grid Resolution Study
	Baseline Aircraft
	BIRE Aircraft Coefficients

	SIX-DEGREE-OF-FREEDOM STATIC TRIM
	Flight Conditions
	Procedure for Finding the Trim State at a Given Flight Condition
	Thrust Model
	Specifying Aircraft Orientation
	Steady, Coordinated Turn
	Steady-Heading Sideslip
	Trim Algorithm
	Solving For the States of the Aerodynamic Model
	Example Trim Cases

	Shifting the Center of Gravity
	Static Trim Analysis
	Steady, Coordinated Turn Analysis
	Steady-Heading Sideslip Analysis
	Tail Strike Analysis

	ATTAINABLE MOMENT SET ANALYSIS
	Moment Set Generation
	Attainable Moment Set Comparison
	A Comparison Between Yaw Control and Drag

	A LINEARIZED CONTROL SYSTEM ANALYSIS
	Linearizing the Equations of Motion
	Constructing the Linearized A Matrix
	Aerodynamic Force and Moment State Derivatives
	Example Case

	Constructing the Linearized Control Matrix
	Aerodynamic Force and Moment Control Derivatives
	Example Case

	Analyzing Controllability of the BIRE System
	Disturbance Rejection Analysis
	Gust Model
	Baseline LQR Design
	BIRE LQR Design
	Simulation

	SUMMARY AND CONCLUSIONS
	REFERENCES
	APPENDICES

	LINEAR AERODYNAMIC MODEL BUILDUP
	Longitudinal Force and Moment Coefficients
	Lateral Force and Moment Coefficients

	MACHUPX FILES
	Baseline Aircraft Input File
	Baseline Aircraft Airplane File
	BIRE Aircraft Input File
	BIRE Aircraft Airplane File
	Example BIRE Rotated Tail Airplane File (dB Equals 10 Degrees)
	Other JSON Files

	SOURCE CODE
	Analysis of the Aircraft Geometry
	Aerodynamic Model Definition
	Aerodynamic Model Coefficient Evaluation
	Static Trim Analysis
	Attainable Moment Set Analysis
	Linearized Controller Analysis
	AERODYNAMIC DATABASES
	Baseline Aerodynamic Database
	BIRE Aerodynamic Database
	CURRICULUM VITAE

