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A Sine-Summation Algorithm for the Prediction of Ship Deck Motion

Christian R. Bolander and Douglas F. Hunsaker
Utah State University

Department of Mechanical and Aerospace Engineering
Logan, Utah U.S.A

Abstract— Landing a fixed-wing aircraft on a moving aircraft
carrier is a risky and inefficient process. Having an accurate
prediction of ship deck motion decreases the risk posed to
both the pilot and the aircraft and increases the efficiency
of landing maneuvers. The present work proposes the use
of a sine-summation algorithm to predict future ship motion.
The algorithm decomposes recorded ship acceleration data into
its characteristic harmonic parameters using a fast Fourier
transform. The harmonic parameters are then used in a
summation of sine waves to create a fit for the acceleration
data, which is projected into future time intervals to predict
ship motion. An aircraft carrier can supply the prediction made
by the algorithm to an autopilot, which then decides to land or
make another attempt. Included in this work is a brief overview
of ship motion with six degrees of freedom and a description
of the method. The results generated by the algorithm are
presented for a specific ship motion dataset to provide a point of
comparison between the proposed method and other common
methods used. The proposed method appears to be accurate in
comparison to similar prediction methods, while reducing the
computational cost required to make a prediction.

NOMENCLATURE

AR Autoregressive.
ARMAX Moving average autoregressive.
BFGS Broyden-Fletcher-Goldfarb-Shanno.
DDG Guided missile destroyer type vessel.
ELM Extreme learning machine.
FFT Fast Fourier transform.
LAMP Large Amplitude Motions Program.
MCA Minor component analysis.
NSWCCD Naval Surface Warfare Center Caderock

Division.
ONR Office of Naval Research.
RLS Recursive least squares.
RMSE Root mean square error.
SCONE Systematic characterization of the naval

environment.
WNN Wavelet neural network.
A Amplitude.
c Actual value.
ĉ Predicted value.
fNyquist Nyquist frequency.
fs Sampling frequency.
FS Net surface force vector.
I Inertia tensor.
m Mass.
MS Net moment vector about the body-fixed

origin.

N Total number of data points.
Pxx Power spectral density.
SA Amplitude spectrum.
SP Phase spectrum.
t Time.
Tmin Shortest wave period.
V Translational velocity vector.
W Weight vector.
X Ship deck surge coordinate.
Y Ship deck sway coordinate.
Z Ship deck heave coordinate.
z Constant offset.
∆t Time sample interval.
δt Time step.
θ Ship deck pitch coordinate.
λ Damping coefficient.
φ Ship deck roll coordinate.
φ0 Phase shift.
ψ Ship deck yaw coordinate.
ω Frequency.
ωmax Highest frequency used in the sine-

summation.
ω Rotational velocity vector.

I. INTRODUCTION

The prediction of ship deck motion is of interest to military
pilots due to the difficulty of landing aircraft on a moving
ship deck [1] [2]. In making a landing attempt, the pilot
guides the aircraft in-line with the aircraft carrier. As the
aircraft descends to contact the carrier, the motion of the
ship deck can quickly change the distance between the
deck and the landing gear of the aircraft, causing premature
engagement of the landing gear or decreasing the amount of
runway available to the pilot.

The consequences of an abrupt landing of the aircraft can
be significant. The sudden motion of the ship deck can cause
increased wear to landing gear, necessitate multiple landing
attempts, and even result in the loss of an aircraft. In addition
to the material costs of such a landing, this situation also
poses a safety risk to pilots. An accurate prediction of the
motion of the ship would mitigate some of the risk associated
with landing on an aircraft carrier. A pilot would be able to
avoid an undesirable landing and increase the efficiency of
landing maneuvers by knowing if the landing is favorable in
advance. Understanding the landing conditions requires an



accurate prediction of how the aircraft carrier will move in
the future.

The challenge with making such predictions comes from
what can appear to be random ship deck movement [3] [4].
Ship deck motion is a combination of two phenomena: the
harmonic forces generated by ocean waves and the dynamic
response of the ship [5]. These phenomena combine to
produce the final motion of the ship deck.

Ocean waves are divided into two main categories: sea and
swell [5]. Sea is defined as a train of waves driven mostly
by the local wind conditions. Swell refers to the remnants of
a wave that has propagated out of the area where it was
generated [5]. Swell has longer wavelengths and a more
predictable height than sea. Surface waves are a combination
of both sea and swell, both of which are in constant flux,
and therefore can potentially consist of an infinite number
of harmonic waves.

The contribution of the dynamic response of the ship to the
resultant ship deck motion is derived explicitly by Journee
and Pinkster’s work [6]. A ship structure contributes its own
dynamic components to the ocean wave, the combination of
which creates the resultant waveform measured by sensors
on the ship as shown in Fig. 1 and Fig. 2. Though the motion
caused by the combination of the response of the ship and
ocean can be complex, the total response can be expressed
as a summation of sine waves with various coordinate
directions, amplitudes, phase angles, and frequencies [2] [3].

Fig. 1. Three-dimensional representation of ship deck motion.

Many approaches have been taken to predict ship deck
motion. In the past, a great deal of emphasis was placed
on using time-series analysis to predict ship motion. Such
methods include autoregressive (AR) [7] [8] [9] and moving
average autoregressive (ARMAX) [8], as well as Kalman
filters [4] [9] [10] [11] [12], Wiener filters [7] [13], and
the Volterra model [10]. Time-series analyses are still used
commonly today; however, most modern approaches utilize

Fig. 2. Two-dimensional representation of ship deck motion.

neural networks to make predictions. Some of the methods
that use neural networks include minor component analysis
(MCA) [7] [14] [15] [16], extreme learning machines (ELM)
[17] [18], and the wavelet neural network (WNN) [19].
The results of many of these methods will be compared to
the proposed method, which employs a form of time-series
forecasting, in Section IV.

This paper outlines the use of a sine-summation method
to predict ship motion. The algorithm fits a summation of
sine waves to original dataset and projects the summation
into future time intervals. Acceleration data collected aboard
current aircraft carriers can be used in conjunction with the
proposed method to make predictions onboard the vessel.
The prediction can then be transmitted to the aircraft in
advance of a landing attempt to indicate the suitability of
landing within the projected time frame. An autopilot could
then use the prediction based on original dataset to determine
if an ideal landing speed and descent trajectory exists in the
next several seconds, and the decision could be made to touch
down immediately or make another attempt later.

II. SHIP MOTION

An understanding of the basic physics of ship deck motion
is fundamental to the concepts employed in the proposed
prediction method. A ship is a system with at least six
degrees of freedom, including translational and rotational
components as shown in Fig. 3. Here we use a coordinate
system such that the X-axis points out the front, or bow of
the ship, the Y-axis points out the left, or port side of the
ship, and the Z-axis points out the top of the ship. Movement
in the translational (X, Y, and Z) directions are defined as
surge, sway, and heave respectively. Rotation about the X,
Y, and Z axes are defined as roll, φ, pitch, θ, and yaw, ψ,
respectively. The positive directions of rotation are defined
via the right-hand rule as shown in Fig. 3.

In terms of the body-fixed coordinate system shown in Fig.
3, and assuming the ship motion can be described with rigid-
body displacement, Newton’s second law can be written in
vector notation as

FS + W =
d

dt
(mV) + ω × (mV) (1)



Fig. 3. Accepted ship motion model with six degrees of freedom.

and
MS =

d

dt
([I]ω) + ω × ([I]ω) . (2)

The translational, rigid-body motion of the ship is gov-
erned by (1) and the rotational, rigid-body motion of the ship
is governed by (2). These two equations together express the
complete rigid-body motion of the ship in all six degrees of
freedom.

Each degree of freedom in ship motion can be character-
ized as a spring-mass-damper system subject to a harmonic
forcing function [3] [13]. For any arbitrary degree of freedom
x, the differential equation of motion for a spring-mass-
damper can be written as

m
d2x

dt2
+ c

dx

dt
+ kx = F sin (ωt) (3)

if the harmonic forcing function is composed of a single sine
wave.

Due to the coupling between the degrees of freedom in
the system, (3) does not explicitly characterize each degree
of freedom individually. The coupling effects between each
degree of freedom can be considered part of the forcing
function on the right-hand side of (3) or as a disturbance
to the system.

Solving (3) for the position as a function of time and
assuming that the elastic modes of the ship contribute little
to the motion of the ship, yields

x(t) = C1e
λ1t + C2e

λ2t +Af
F

k
sin (ωt− φ0) . (4)

The first two terms on the right-hand side correspond to the
motion of the ship governed by its own dynamic response.
The last term is the contribution of the ocean waves and cou-
pling effects from other degrees of freedom to the resultant
ship deck motion.

The dynamic response of the ship contained in the first two
terms can be solved as a general eigenproblem. A purely real
eigenvalue is not oscillatory and yields an exponential motion
that will converge to equilibrium if negative and diverge if
positive. A complex pair of eigenvalues yields oscillatory
motion where damping is based on the real component of the
eigenvalue. The resultant motion will be damped if the real

component is negative, undamped if it is zero, and divergent
if it is positive. If a purely real eigenvalue is equal to zero,
the motion is described as simple rigid-body displacement.

While the eigenvalues give information on damping and
frequency, the resultant components of the eigenvectors give
the relative amplitudes and phase shifts contributed by each
degree of freedom. Using the information given by the
eigenvalues and eigenvectors, the first two terms in (4) fully
define the dynamic response of the ship when subjected to
a forcing function.

The last term in (4) describes the contribution of the
harmonic force of the ocean and coupling effects on the
resultant ship motion. As both the dynamic response of the
ship and the forcing function of the ocean can be harmonic,
they can be described as a summation of sine waves [3]
[5] [20]. More information on the physical significance
of each term in (4) can be found in the theory of ship
hydromechanics [5].

The underlying idea emphasized in this brief overview of
the physics of ship motion is the nature of each term in (4).
The first two terms describe the ship’s dynamic contributions
to the resultant ship motion, while the last term describes
the contribution of the harmonic force of the ocean waves.
Assuming that the dynamic motion of the ship is oscillatory
or that the forcing function is much greater than the first
two terms, the resultant motion can be represented by a
combination of the dynamic motion of the ship and the
forcing function of the ocean.

III. SINE-SUMMATION PREDICTION METHOD

As stated in Section II, ship motion can be approximated
by a summation of harmonic waves. A simple, harmonic
wave is made up of five components: amplitude, frequency,
phase shift, damping coefficient, and constant offset, which
can be written as

Ae−λt sin (ωt+ φ0) + z. (5)

Due to the relatively small effect that damping has over a
short period of time on a large, slow-moving vessel such as
a guided missile destroyer (DDG), the damping factor can
be ignored [3] [5] and (5) can be rewritten as

A sin (ωt+ φ0) + z. (6)

If an infinite number of sine waves were used, the past
ship motion data could be described exactly; however, at
some point the number of sine waves must be truncated.
The proposed method constructs a sine wave summation
iteratively by adding a single sine wave per iteration and
minimizing the root mean square error (RMSE) between the
past ship motion data and the sine summation approximation.
There are two distinct components present in the method: a
start-up procedure and a real-time algorithm. The proposed
method requires a dataset containing time and motion data
for a single degree of freedom and the range of data over
which the fit will be made. What follows is a description of
the start-up procedure of the proposed prediction method.



Step I. Determining Harmonic Components

Before outlining the steps used in the proposed algorithm,
it is necessary to establish a clear nomenclature for the data
being used. There are four datasets that will be referred to
throughout the rest of this work: these are the original dataset
(or simply the dataset), the actual ship motion data, the
prediction, and the sine-summation fit. The original dataset
and the actual ship motion data are both found using the
ship’s sensors. The original data is data that the ship has
gathered in the past, and the actual motion is that which is
obtained after the algorithm starts. The sine-summation fit is
a fit of the original dataset made by the algorithm, while the
prediction represents the prediction of the actual ship motion
generated by the algorithm.

The first iteration of the method attempts to fit the original
dataset using a single sine wave. To accomplish this, ap-
proximations for an amplitude, frequency, phase angle, and
constant offset are needed. A fast Fourier transform (FFT) is
performed on the dataset, which divides the acceleration data
into its frequency components according to their influence.
The power spectrum is then calculated as

Pxx = |FFT 2| δt2, (7)

where δt is the time step in the dataset [21]. In addition
to frequency information, the output of the FFT is used
to find information about the relative amplitude and phase
shift associated with each frequency component. This is
accomplished using

SA =

√
2

√
real [FFT ]

2
+ imag [FFT ]

2

N
(8)

for the amplitude spectrum, and

SP = arctan

(
imag [FFT ]

real [FFT ]

)
(9)

for the phase spectrum [21]. Each spectrum is found over
the same frequency domain, and can therefore link the most
influential frequency with a corresponding amplitude and
phase angle. The phase angles given by the phase spectrum
represent the phase shift relative to the start of the time
domain, and take values from −π to π.

The most influential frequency is chosen along with the
corresponding amplitude and phase shift to be used as initial
guesses for the harmonic parameters of the first sine wave.
The amplitude spectrum for the original dataset, which was
found using the FFT, contains only positive values. Due
to the inclusion of a phase shift, φ0, there is no need to
accommodate a negative amplitude, as the wave can simply
be shifted accordingly. An estimate for the constant offset is
determined by taking the average value of the dataset being
analyzed.

Step II. Down-sample the Dataset

To reduce the computational complexity of the optimiza-
tion that will be described in Step III, the original dataset
is down-sampled using the shortest wave period as a bench-
mark. The shortest wave period can be found by extracting
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Fig. 4. Effect of down-sampling with four data points per minimum period
on a dataset.

from the power spectrum the highest frequency component
the will be used in the sine-summation fit and calculating
the period using

Tmin =
2π

ωmax
. (10)

If the number of sine waves that will be used to create the
sine-summation fit is given as n, then the set of highest n
frequencies will be found according to their influence, and
the highest frequency (i.e. that with the lowest influence)
from that set will be taken as ωmax. The algorithm may
also be run until adding another sine wave to the sine-
summation fit doesn’t appreciably change the RMSE of the
fit. In this case, the Nyquist frequency can be calculated
using the sampling frequency, fs, with

fNyquist =
fs
2
. (11)

The Nyquist frequency can then be taken as ωmax after being
converted to units of rad

s .
The dataset is down-sampled by taking four data points for

every minimum period as shown in Fig. 4. This allows the
frequency components present in the dataset to be preserved
while improving the speed of the algorithm and cutting down
on computational time. Taking four data points provides a
conservative approach to down-sampling, since theoretically
only two data points are needed for every minimum period.
Four data points are kept to ensure that even high frequency
datasets are accurately characterized after down-sampling.

Step III. RMSE Optimization of the Sine Summation

The optimization of the sine wave is accomplished by
adjusting the harmonic parameters in (6) to minimize the
RMSE. The RMSE is calculated as

RMSE =

√∑N
1 (ĉ− c)2
N

, (12)

where ĉ represents the value of the sine-summation fit
and c represents the value of the dataset. The Broyden-



Fletcher-Goldfarb-Shanno (BFGS) [22] [23] [24] [25] gra-
dient descent method is used to minimize the RMSE. Other
optimization routines were available in the Python libraries
used, including the Nelder-Mead Simplex method [26],
the Newton-Conjugate-Gradient algorithm, and the Least
Squares method.

The Simplex algorithm was the simplest method, but
increased the computational time significantly. The Newton-
Conjugate-Gradient algorithm and the Least Squares method
require a Jacobian or Hessian to optimize the RMSE, which
is very costly to perform in subsequent iterations when
many parameters need to be optimized. Due to the increased
computational complexity of these other methods, the BFGS
method was determined to be an appropriate optimization
method for this application. The optimization routines de-
scribed are readily accessible in existing Python libraries, but
other options may be available depending on the language.

Step IV. Sum the Sine Waves and Calculate the Fit Error

The optimized harmonic parameters found in Step III were
stored so that they could be used as the initial guesses for
the next iteration of the start-up procedure. As additional sine
waves are added to the sine-summation fit, they are summed
together to form the fit of the original dataset.

The optimized sine wave from the first iteration is sub-
tracted from the original dataset to find the error of the
fit, which is used by the FFT in the next iteration. The fit
error retains all the frequency information of the original
dataset, excluding the frequencies that have been extracted.
Hence, future iterations of the start-up procedure have to
analyze only the most prominent frequencies that have not
been previously analyzed.

While the initial guesses for the harmonic parameters
are obtained using an FFT on the fit error of the previous
iteration, the optimization minimizes the RMSE between the
fit and the original dataset, not the fit error. Each iteration
adds three additional harmonic parameters (composing a full
sine wave without a constant offset) to be optimized. The
harmonic parameters from previous iterations were already
optimized, so they change very little in future iterations.

Steps I through IV can be repeated until the RMSE
between the sine-summation fit and the original dataset
change by less than a threshold value or until a predetermined
number of sine waves had been generated. The final form of
the sine-summation approximation is

f(t) =

N∑
n=1

An sin (ωn + φ0n) + z. (13)

Figure 5 shows an example of Steps I - IV of the start-up
procedure progressing through three iterations. If only one
sine wave is used to fit the original data shown in Fig. 5, the
resultant RMSE would be 0.464 ft

s2 . With two sine waves,
the RMSE falls to 0.363 ft

s2 and with three sine waves the
RMSE is 0.280 ft

s2 . As more sine waves are added, a better
approximation of the original dataset is made. This can be
seen in Fig. 6, where 14 sine waves were used in the fit.
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Fig. 5. The sine-summation process using three sine waves to fit a dataset.

Step V. Project the Sine Summation

Once the given number of sine waves has been generated
using Steps I through IV, the sine-summation fit is projected
into the future by some time interval. This prediction is then
compared to the actual ship motion to compute the RMSE.
The RMSE of the prediction is reported in both dimensional
and nondimensional forms. The dimensional form of the
RMSE is used to more easily make comparisons between
different prediction methods, which often express results in
terms of a dimensional RMSE value. The nondimensional
RMSE normalizes the RMSE values for more accurate
comparisons when dealing with high-amplitude datasets. The
proposed algorithm normalizes the prediction RMSE by the
maximum value in the original dataset to nondimensionalize
the RMSE.
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Fig. 6. The final sine-summation fit of the original data using 14 sine
waves.

Real-Time Implementation

As mentioned previously, real-time capabilities have been
developed for the proposed algorithm. After running the
start-up procedure with a given number of sine waves over
a specific dataset, the final amplitudes, frequencies, phase
shifts and offset are stored along with the amount of time
taken to perform the analysis. This computational time is
then used to shift the original dataset, which allows the
algorithm to stay updated with the data collected in real-time
by the sensors on the ship.

After shifting the data, Step III is performed again with all
the harmonic parameters from the first analysis used as initial
guesses. The maximum number of iterations performed by
the optimization routine is drastically reduced during the
analysis over the shifted dataset, since relatively few data
points are added to the dataset. In a practical case, the start-
up procedure could be initiated several minutes before the
aircraft attempts to land and transition into the real-time
updates to provide more timely predictions for the pilot.

IV. EXAMPLE RESULTS

The proposed algorithm was tested using the systematic
characterization of the naval environment (SCONE) data
produced by Alan Schwartz under funding from the Office of
Naval Research (ONR) [27]. The SCONE dataset represents
surface combatant and carrier hullforms, specifically a DDG-
51 type ship. Simulated deck motion from the Large Ampli-
tude Motions Program (LAMP) code [28] is tabulated for all
six degrees of freedom in ship deck motion. Each degree of
freedom contains information on the displacement, velocity
and acceleration of the ship. The SCONE datasets are also
characterized by the magnitude of heave and roll rates, with
“low”, “moderate”, and “high” specifications, representing
varying sea states that a ship may experience.

For each heave or roll rate specification, five simulations
were recorded with random wave phases. Each dataset
contains a 30-minute time history at a sampling rate of
20 Hz. The predictions simulate over the time-domain and

0 10 20 30 40 50

Time (s)

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

A
cc

el
er

at
io

n
(f

t/
s2

)

Original Data

Down-sampled Data

Fig. 7. Heave data down-sampled at four points per minimum period.
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Fig. 8. The sine-summation fit of the heave dataset using five sine waves.

incorporate wave forcing and hydrostatic restoring forces.
The SCONE dataset is open to the public, and any interested
readers should refer to the Acknowledgments Section for
distribution information.

An example of the proposed algorithm applied to a specific
dataset will be explored in this section by first showing the
start-up procedure. Heave data from the first wave phase
specification of a low amplitude SCONE dataset was used. A
sampling interval of 50 s was used with a prediction interval
of 10 s. The down-sampled dataset, sine-summation fit, and
prediction are shown in Fig. 7, Fig. 8, and Fig. 9 respectively.
The nondimensional RMSE for this prediction was 0.660 and
it took 0.88 s to generate the prediction using the start-up
procedure.

The RMSE of any prediction is a multi-dimensional op-
timization problem that depends on the application. Several
of these dimensions will be explored here. First, the nondi-
mensional RMSE for the sine-summation fit was recorded as
a function of the number of sine waves used. This data is
shown in Fig. 10 for different sampling intervals, ∆t, from
50 s to 125 s. It can be seen that the general trend of the fit



50 52 54 56 58 60

Time (s)

−2

−1

0

1

2

A
cc

el
er

at
io

n
(f

t/
s2

)

Actual Ship Motion

Prediction

Fig. 9. Motion prediction over 10 s for the heave dataset.
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Fig. 10. The fit RMSE as a function of the number of sine waves used in
the fit for various sampling intervals.

RMSE in Fig. 10 indicates that increasing the number of sine
waves in the sine-summation fit reduces the RMSE, thereby
providing a better approximation of the original data.

Keeping the number of sine waves constant at 10, Fig. 11
shows the nondimensional RMSE as a function of the length
of the prediction interval. As the prediction interval increases,
the prediction RMSE value also increases. This indicates that
the algorithm’s ability to accurately predict the ship motion
decreases the farther into the future that the prediction is
made. Figure 11 also indicates that the prediction RMSE is
lower for the smaller sampling interval than for the larger
intervals. This is likely because the data closer to real-time
has more of an impact on the motion of the ship than the
older data.

Table I shows the minimum dimensional prediction RMSE
for each of the six degrees of freedom using a sampling
interval of 50 s of original data and a 15 s prediction interval.
The number of sine waves used to make the sine-summation
fit and the corresponding nondimensional RMSE values are
also included. In each of these cases up to 10 sine waves
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Fig. 11. RMSE as a function of prediction time for various sampling
intervals.

were allowed in the fit, and the prediction RMSE was taken
for each case.

TABLE I
MINIMUM PREDICTION RMSE

Sine Dimensional Nondimensional
Waves RMSE RMSE

Surge 6 0.07731 ft/s2 0.46856
Sway 4 0.35107 ft/s2 0.36044
Heave 5 0.92698 ft/s2 0.42328
Roll 4 0.31880 deg/s2 0.33522
Pitch 5 0.33103 deg/s2 0.57471
Yaw 2 0.06950 deg/s2 0.40407

As shown in Table I, the number of sine waves used to
make the best prediction with this specific dataset is no
greater than 6. This is likely due to the relatively short
sampling interval over which the sine-summation fit was
made. In addition, while the dimensional RMSE values in
Table I may indicate a better prediction for one dataset over
another, the nondimensional RMSE values show that each of
the predictions have very similar error values.

The proposed method has prediction errors of similar
magnitude as the results of other methods. No information
was found on the datasets were being used by each of the
other methods, meaning a direct comparison is impossible;
however, the trends examined are still valuable. It should
be mentioned that since the reported errors are dimensional
RMSE values, the dataset on which the prediction is being
made will affect these comparisons greatly.

Zhao calculates a minimum RMSE of 0.0538 m for a 5
s prediction using an MCA algorithm [7]. Over the same
dataset and time interval, Zhao reported an RMSE of 0.1207
m using an AR algorithm, 0.1248 m using the Wiener
prediction method, and 0.5287 m using a three-layer neural
network. The hybrid AR method produced an RMSE of just
under 0.15 deg on pitch data with a 5 s prediction.

In Yang’s work, a recursive least squares (RLS) method
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Fig. 12. Computation time for the start-up procedure using a 50 s sampling
interval on the original data.

was employed to make 5 and 10 s predictions using pitch
data [12]. The RLS method had an RMSE of 0.06548 deg
for the 5 s prediction and 0.1339 deg for the 10 s prediction.
Utilizing a WNN, Horn generated an RMSE of 0.3727 deg
for a 3 s prediction for the yaw direction [14].

Keke [8] and Xiuyan [10] used an ARMAX and a
combination forecasting method [29] [30] respectively to
make their predictions. The results were presented using a
mean absolute percentage error. This form of error takes the
absolute value of the error and normalizes by the actual
value. This artificially inflates the error values when the
dataset crosses zero, making it impractical to use with the
given SCONE dataset.

When compared to the results in Table I, the other methods
seem to generate similar RMSE values as the proposed
method. It is difficult to accurately compare the results from
these different methods, since the RMSE is dependent on
fitting a specific dataset and the dataset in the references
discussed are not explicitly stated; however, the general
magnitudes of the RMSE values reported give an indication
that the proposed method can generate similarly low-RMSE
predictions.

One of the biggest benefits of using proposed approach
to ship motion prediction is its reduced computational time.
In Zhao’s comparative study it was shown that the MCA
algorithm took 40.9 s to train and predict using 400 s of
original data and making a prediction 20 s [7]. In the same
study, the AR algorithm, Wiener prediction, and the neural
network mentioned before took 53.4 s, 1054 s, and 3470 s
respectively to train and predict.

For a dataset with a 50 s sampling interval, the proposed
method produces computational times as shown in Fig. 12
using the start-up procedure. Using a 400 s sampling interval,
matching that used in the MCA algorithm used by Zhao, the
proposed algorithm takes 4.39 s to fit 15 sine waves and
make a 20 s prediction.

Figure 13 shows the computational time for the real-
time application compared to the time taken for the start-
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Fig. 13. Computation time for the real-time and start-up procedures of a
50 s sampling interval of original data.

up procedure. Both the real-time and start-up scenarios were
performed over a 50 s time interval. These computational
times were found using an Intel Core i7-4790 CPU with
a processing speed of 3.60GHz. When using the real-time
application, the computational times are drastically reduced
when compared to the start-up procedure and show improved
prediction times when compared to the other methods.

The RMSE of the subsequent real-time updates do not
vary significantly from those reported by the initial iteration
when applied over a short period of time. It is important to
emphasize that these computational times could be reduced
by an order of magnitude if written in a compiled language.
Python was used for readability and ease-of-use, but it
requires significantly more time to perform the calculations
in the proposed algorithm than a compiled language.

Information for the computational time of other methods
was scarce. However, the results of the sine wave summation
algorithm are promising, and indicate that computational
time of the algorithm is low, and therefore well-suited to
making timely deck motion predictions for pilots.

V. CONCLUSION

Landing a fixed-wing aircraft on an aircraft carrier is a
challenging process for pilots. This challenge has neces-
sitated research into accurate ship motion prediction. An
overview of the physics of ship motion was used to give
context to the proposed sine-summation prediction method. It
was shown that the motion of a ship subjected to the forcing
function produced by ocean waves is a simple summation of
sine waves.

The sine-summation method was shown to have two
components, a start-up procedure and a real-time algorithm.
The start-up procedure utilized an FFT to extract harmonic
properties from ship motion data. A sine wave that charac-
terized a portion of the dataset was then created using the
harmonic parameters found by the FFT. A gradient-descent
optimization was performed, which minimized the RMSE
between the sine wave and the original dataset. This process



was repeated until a summation of sine waves had been
created to approximate the signal. The final summation was
projected into the future as a prediction of future ship motion
that could be compared to actual future data.

The real-time application of the method was also reported,
which maintained the RMSE benefits of the iterative ap-
proach while requiring less computational time than the start-
up procedure. An up-front computational cost was required
by the real-time application in the form of the start-up
procedure, but represents the method most likely to be used
on-board an aircraft carrier.

Additional research into the application of the proposed
method could help to increase the accuracy of the predic-
tions. The iterative solution proposed in this work is not
necessarily the most efficient way to extract the harmonic
components present in a given dataset. Further analysis into
the most efficient way to extract these components could
remove the need to perform the minimization of the RMSE
during the start-up procedure.

In addition, there seems to be a significant correlation
between the accuracy of the prediction and the dataset being
analyzed. Ultimately, the proposed method would need to
be robust across a large range of datasets. A great deal of
research could be done to further understand the correlation
between RMSE and the dataset used and adapt the algorithm
to further increase the accuracy of the prediction. Finally, the
results outlined in Section IV are in no way comprehensive,
and could be expanded to understand the interactions be-
tween sampling interval, the number of sine waves in a fit,
and the prediction time interval with regards to prediction
RMSE.

The proposed sine-summation algorithm was shown to be
comparable to the other methods currently being used to
predict ship motion. The algorithm has a low computational
complexity and produces RMSE values that are on the same
order of magnitude as those presented in other methods. In
addition, the real-time capabilities of the proposed algorithm
allow an even greater decrease in computational time. As
it stands, the concept of sine-summation prediction method
has been verified as a potential solution to the ship motion
prediction problem.
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[4] S. Küchler, T. Mahl, J. Neupert, K. Schneider, and O. Sawodny,
“Active control for an offshore crane using prediction of the vessel’s
motion,” IEEE/ASME Transactions on Mechatronics, vol. 16, no. 2,
pp. 297–309, 2011.

[5] J. Falnes, Ocean Waves and Oscillating Systems: Linear Interactions
Including Wave-Energy Extraction, 1st ed. Norwegian University
of Science and Technology, Trondheim: Cambridge University Press,
Apr. 2002.

[6] J. Journee and J. Pinkster, “Introduction in ship hydromechanics,” Delft
University of Technology, p. 8, 2002.

[7] X. Zhao, R. Xu, and C. Kwan, “Ship-motion prediction: algorithms
and simulation results,” in Acoustics, Speech, and Signal Processing,
2004. Proceedings.(ICASSP’04). IEEE International Conference on,
vol. 5. IEEE, 2004, pp. V–125.

[8] L. Keke, C. Nong, and L. Qing, “Research and simulation on the car-
rier deck motion adaptive prediction for ACLS design,” in Guidance,
Navigation and Control Conference (CGNCC), 2014 IEEE Chinese.
IEEE, 2014, pp. 1341–1345.

[9] I. R. Yumori, “Real time prediction of ship response to ocean waves
using time series analysis,” in OCEANS 81. IEEE, 1981, pp. 1082–
1089.

[10] P. Xiuyan, Z. Biao, and R. Lihong, “Ship motion prediction of
combination forecasting model based on adaptive variable weight,” in
2015 34th Chinese Control Conference (CCC), Jul. 2015, pp. 4015–
4019.

[11] M. Sidar and B. Doolin, “On the feasibility of real-time prediction
of aircraft carrier motion at sea,” IEEE Transactions on Automatic
Control, vol. 28, no. 3, pp. 350–356, 1983.

[12] X. Yang, H. Pota, M. Garratt, and V. Ugrinovskii, “Ship Motion Pre-
diction for Maritime Flight Operations,” IFAC Proceedings Volumes,
vol. 41, no. 2, pp. 12 407–12 412, 2008.

[13] P. Kaplan, “A Study of Prediction Techniques for Aircraft Carrier
Motions at Sea,” Journal of Hydronautics, vol. 3, no. 3, pp. 121–131,
1969. [Online]. Available: https://doi.org/10.2514/3.62814

[14] J. F. Horn, J. Yang, C. He, D. Lee, and J. K. Tritschler, “Autonomous
ship approach and landing using dynamic inversion control with deck
motion prediction,” 2015.

[15] F.-L. Luo, R. Unbehauen, and A. Cichocki, “A Minor Component
Analysis Algorithm,” Neural Networks, vol. 10, no. 2, pp. 291–297,
Mar. 1997.

[16] D. Peng and Z. Yi, “A new algorithm for sequential minor compo-
nent analysis,” International Journal of Computational Intelligence
Research, 2006.

[17] X. Liu, Q. Wang, Y. Huang, Q. Song, and L. Zhao, “A prediction
method for deck motion of aircraft carrier based on particle swarm
optimization and kernel extreme learning machine,” Sens Mater,
vol. 29, no. 9, pp. 1291–1303, 2017.

[18] J.-C. Yin, Z.-J. Zou, F. Xu, and N.-N. Wang, “Online ship roll
motion prediction based on grey sequential extreme learning machine,”
Neurocomputing, vol. 129, pp. 168–174, 2014.

[19] W. Zhang and Z. Liu, “Real-time ship motion prediction based on
time delay wavelet neural network,” Journal of Applied Mathematics,
vol. 2014, 2014.

[20] C. Eckart, “Internal waves in the ocean,” The Physics of Fluids, vol. 4,
no. 7, pp. 791–799, 1961.

[21] S. L. Marple Jr., Digital Spectral Analysis with Applications, ser.
Prentice-Hall Signal Processing Series. New Jersey: Prentice-Hall,
Inc., 1987.

[22] C. G. Broyden, “The convergence of a class of double-rank minimiza-
tion algorithms 1. general considerations,” IMA Journal of Applied
Mathematics, vol. 6, no. 1, pp. 76–90, 1970.

[23] R. Fletcher, “A new approach to variable metric algorithms,” The
computer journal, vol. 13, no. 3, pp. 317–322, 1970.

[24] D. Goldfarb, “A family of variable-metric methods derived by vari-
ational means,” Mathematics of computation, vol. 24, no. 109, pp.
23–26, 1970.



[25] D. F. Shanno, “Conditioning of quasi-newton methods for function
minimization,” Mathematics of computation, vol. 24, no. 111, pp. 647–
656, 1970.

[26] J. A. Nelder and R. Mead, “A simplex method for function minimiza-
tion,” The computer journal, vol. 7, no. 4, pp. 308–313, 1965.

[27] A. Schwartz, “Systematic characterization of the naval
environment (scone) - standard deck motion data
for a generic surface combatant,” 2015. [On-
line]. Available: http://www.navalengineers.org/Symposia/Past-
Symposia/Launch-and-Recovery-2016/Program/Schwartz

[28] A. Chinn, “LAMP: Large Amplitude Motion Program,” NRC
Institute for Ocean Technology; National Research Council
Canada, St. John’s, NL, Technical Report 6017, 2004. [Online].
Available: http://nparc.nrc-cnrc.gc.ca/eng/view/object/?id=86a32151-
e965-4e98-81e4-6bd098a0fc4b

[29] T. Basar and I. S. IEEE, Control Theory: Twenty-Five Seminal Papers
(1932-1981). IEEE Press New York, 2001.

[30] W. J. Rugh, Nonlinear system theory. Johns Hopkins University Press
Baltimore, 1981.


	A Sine-Summation Algorithm for the Prediction of Ship Deck Motion
	Recommended Citation

	tmp.1580326843.pdf.oEOBO

