69 research outputs found

    The Rutgers Master II-new design force-feedback glove

    Full text link

    Grids of stellar models with rotation IV. Models from 1.7 to 120 M-circle dot at a metallicity Z=0.0004

    Get PDF
    The effects of rotation on stellar evolution are particularly important at low metallicity, when mass loss by stellar winds diminishes and the surface enrichment due to rotational mixing becomes relatively more pronounced than at high metallicities. Here we investigate the impact of rotation and metallicity on stellar evolution. Using similar physics as in our previous large grids of models at Z = 0.002 and Z = 0.014, we compute stellar evolution models with the Geneva code for rotating and nonrotating stars with initial masses (Mini) between 1.7 and 120 M⊙ and Z = 0.0004 (1/35 solar). This is comparable to the metallicities of the most metal poor galaxies observed so far, such as I Zw 18. Concerning massive stars, both rotating and nonrotating models spend most of their core-helium burning phase with an effective temperature higher than 8000 K. Stars become red supergiants only at the end of their lifetimes, and few red supergiants are expected. Our models predict very few to no classical Wolf–Rayet stars as a results of weak stellar winds at low metallicity. The most massive stars end their lifetimes as luminous blue supergiants or luminous blue variables, a feature that is not predicted by models with higher initial metallicities. Interestingly, due to the behavior of the intermediate convective zone, the mass domain of stars producing pair-instability supernovae is smaller at Z = 0.0004 than at Z = 0.002. We find that during the main sequence (MS) phase, the ratio between nitrogen and carbon abundances (N/C) remains unchanged for nonrotating models. However, N/C increases by factors of 10–20 in rotating models at the end of the MS. Cepheids coming from stars with Mini >  4 − 6 M⊙ are beyond the core helium burning phase and spend little time in the instability strip. Since they would evolve towards cooler effective temperatures, these Cepheids should show an increase of the pulsation period as a function of age

    Mental health at different stages of cancer survival: a natural language processing study of Reddit posts

    Get PDF
    IntroductionThe purpose of this study was to use text-based social media content analysis from cancer-specific subreddits to evaluate depression and anxiety-loaded content. Natural language processing, automatic, and lexicon-based methods were employed to perform sentiment analysis and identify depression and anxiety-loaded content.MethodsData was collected from 187 Reddit users who had received a cancer diagnosis, were currently undergoing treatment, or had completed treatment. Participants were split according to survivorship status into short-term, transition, and long-term cancer survivors. A total of 72524 posts were analyzed across the three cancer survivor groups.ResultsThe results showed that short-term cancer survivors had significantly more depression-loaded posts and more anxiety-loaded words than long-term survivors, with no significant differences relative to the transition period. The topic analysis showed that long-term survivors, more than other stages of survivorship, have resources to share their experiences with suicidal ideation and mental health issues while providing support to their survivor community.DiscussionThe results indicate that Reddit texts seem to be an indicator of when the stressor is active and mental health issues are triggered. This sets the stage for Reddit to become a platform for screening and first-hand intervention delivery. Special attention should be dedicated to short-term survivors

    DNA dynamics play a role as a basal transcription factor in the positioning and regulation of gene transcription initiation

    Get PDF
    We assess the role of DNA breathing dynamics as a determinant of promoter strength and transcription start site (TSS) location. We compare DNA Langevin dynamic profiles of representative gene promoters, calculated with the extended non-linear PBD model of DNA with experimental data on transcription factor binding and transcriptional activity. Our results demonstrate that DNA dynamic activity at the TSS can be suppressed by mutations that do not affect basal transcription factor binding–DNA contacts. We use this effect to establish the separate contributions of transcription factor binding and DNA dynamics to transcriptional activity. Our results argue against a purely ‘transcription factor-centric’ view of transcription initiation, suggesting that both DNA dynamics and transcription factor binding are necessary conditions for transcription initiation

    Mammalian Stem Cells Reprogramming in Response to Terahertz Radiation

    Get PDF
    We report that extended exposure to broad-spectrum terahertz radiation results in specific changes in cellular functions that are closely related to DNA-directed gene transcription. Our gene chip survey of gene expression shows that whereas 89% of the protein coding genes in mouse stem cells do not respond to the applied terahertz radiation, certain genes are activated, while other are repressed. RT-PCR experiments with selected gene probes corresponding to transcripts in the three groups of genes detail the gene specific effect. The response was not only gene specific but also irradiation conditions dependent. Our findings suggest that the applied terahertz irradiation accelerates cell differentiation toward adipose phenotype by activating the transcription factor peroxisome proliferator-activated receptor gamma (PPARG). Finally, our molecular dynamics computer simulations indicate that the local breathing dynamics of the PPARG promoter DNA coincides with the gene specific response to the THz radiation. We propose that THz radiation is a potential tool for cellular reprogramming

    DNA Dynamics Is Likely to Be a Factor in the Genomic Nucleotide Repeats Expansions Related to Diseases

    Get PDF
    Trinucleotide repeats sequences (TRS) represent a common type of genomic DNA motif whose expansion is associated with a large number of human diseases. The driving molecular mechanisms of the TRS ongoing dynamic expansion across generations and within tissues and its influence on genomic DNA functions are not well understood. Here we report results for a novel and notable collective breathing behavior of genomic DNA of tandem TRS, leading to propensity for large local DNA transient openings at physiological temperature. Our Langevin molecular dynamics (LMD) and Markov Chain Monte Carlo (MCMC) simulations demonstrate that the patterns of openings of various TRSs depend specifically on their length. The collective propensity for DNA strand separation of repeated sequences serves as a precursor for outsized intermediate bubble states independently of the G/C-content. We report that repeats have the potential to interfere with the binding of transcription factors to their consensus sequence by altered DNA breathing dynamics in proximity of the binding sites. These observations might influence ongoing attempts to use LMD and MCMC simulations for TRS–related modeling of genomic DNA functionality in elucidating the common denominators of the dynamic TRS expansion mutation with potential therapeutic applications

    Toward a Detailed Description of the Thermally Induced Dynamics of the Core Promoter

    Get PDF
    Establishing the general and promoter-specific mechanistic features of gene transcription initiation requires improved understanding of the sequence-dependent structural/dynamic features of promoter DNA. Experimental data suggest that a spontaneous dsDNA strand separation at the transcriptional start site is likely to be a requirement for transcription initiation in several promoters. Here, we use Langevin molecular dynamic simulations based on the Peyrard-Bishop-Dauxois nonlinear model of DNA (PBD LMD) to analyze the strand separation (bubble) dynamics of 80-bp-long promoter DNA sequences. We derive three dynamic criteria, bubble probability, bubble lifetime, and average strand separation, to characterize bubble formation at the transcriptional start sites of eight mammalian gene promoters. We observe that the most stable dsDNA openings do not necessarily coincide with the most probable openings and the highest average strand displacement, underscoring the advantages of proper molecular dynamic simulations. The dynamic profiles of the tested mammalian promoters differ significantly in overall profile and bubble probability, but the transcriptional start site is often distinguished by large (longer than 10 bp) and long-lived transient openings in the double helix. In support of these results are our experimental transcription data demonstrating that an artificial bubble-containing DNA template is transcribed bidirectionally by human RNA polymerase alone in the absence of any other transcription factors

    A Rare Functional Noncoding Variant at the GWAS-Implicated MIR137/MIR2682 Locus Might Confer Risk to Schizophrenia and Bipolar Disorder

    Get PDF
    Schizophrenia (SZ) genome-wide association studies (GWASs) have identified common risk variants in >100 susceptibility loci; however, the contribution of rare variants at these loci remains largely unexplored. One of the strongly associated loci spans MIR137 (miR137) and MIR2682 (miR2682), two microRNA genes important for neuronal function. We sequenced ∼6.9 kb MIR137/MIR2682 and upstream regulatory sequences in 2,610 SZ cases and 2,611 controls of European ancestry. We identified 133 rare variants with minor allele frequency (MAF) <0.5%. The rare variant burden in promoters and enhancers, but not insulators, was associated with SZ (p = 0.021 for MAF < 0.5%, p = 0.003 for MAF < 0.1%). A rare enhancer SNP, 1:g.98515539A>T, presented exclusively in 11 SZ cases (nominal p = 4.8 × 10−4). We further identified its risk allele T in 2 of 2,434 additional SZ cases, 11 of 4,339 bipolar (BP) cases, and 3 of 3,572 SZ/BP study controls and 1,688 population controls; yielding combined p values of 0.0007, 0.0013, and 0.0001 for SZ, BP, and SZ/BP, respectively. The risk allele T of 1:g.98515539A>T reduced enhancer activity of its flanking sequence by >50% in human neuroblastoma cells, predicting lower expression of MIR137/MIR2682. Both empirical and computational analyses showed weaker transcription factor (YY1) binding by the risk allele. Chromatin conformation capture (3C) assay further indicated that 1:g.98515539A>T influenced MIR137/MIR2682, but not the nearby DPYD or LOC729987. Our results suggest that rare noncoding risk variants are associated with SZ and BP at MIR137/MIR2682 locus, with risk alleles decreasing MIR137/MIR2682 expression

    The genomic and epigenomic evolutionary history of papillary renal cell carcinomas

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2019-09-11, accepted 2020-05-10, registration 2020-05-12, pub-electronic 2020-06-18, online 2020-06-18, collection 2020-12Publication status: PublishedFunder: This work was supported by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHSAbstract: Intratumor heterogeneity (ITH) and tumor evolution have been well described for clear cell renal cell carcinomas (ccRCC), but they are less studied for other kidney cancer subtypes. Here we investigate ITH and clonal evolution of papillary renal cell carcinoma (pRCC) and rarer kidney cancer subtypes, integrating whole-genome sequencing and DNA methylation data. In 29 tumors, up to 10 samples from the center to the periphery of each tumor, and metastatic samples in 2 cases, enable phylogenetic analysis of spatial features of clonal expansion, which shows congruent patterns of genomic and epigenomic evolution. In contrast to previous studies of ccRCC, in pRCC, driver gene mutations and most arm-level somatic copy number alterations (SCNAs) are clonal. These findings suggest that a single biopsy would be sufficient to identify the important genetic drivers and that targeting large-scale SCNAs may improve pRCC treatment, which is currently poor. While type 1 pRCC displays near absence of structural variants (SVs), the more aggressive type 2 pRCC and the rarer subtypes have numerous SVs, which should be pursued for prognostic significance
    corecore