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Abstract

Background: The intrinsic bendability of DNA plays an important role with relevance for myriad of essential cellular
mechanisms. The flexibility of a DNA fragment can be experimentally and computationally examined by its
propensity for cyclization, quantified by the Jacobson-Stockmayer J factor. In this study, we use a well-established
coarse-grained three-dimensional model of DNA and seven distinct sets of experimentally and computationally
derived conformational parameters of the double helix to evaluate the role of structural parameters in calculating
DNA cyclization.

Results: We calculate the cyclization rates of 86 DNA sequences with previously measured J factors and lengths
between 57 and 325 bp as well as of 20,000 randomly generated DNA sequences with lengths between 350 and
4000 bp. Our comparison with experimental data is complemented with analysis of simulated data.

Conclusions: Our data demonstrate that all sets of parameters yield very similar results for longer DNA fragments,
regardless of the nucleotide sequence, which are in agreement with experimental measurements. However, for
DNA fragments shorter than 100 bp, all sets of parameters performed poorly yielding results with several orders of
magnitude difference from the experimental measurements. Our data show that DNA cyclization rates calculated
using conformational parameters based on nucleosome packaging data are most similar to the experimental
measurements. Overall, our study provides a comprehensive large-scale assessment of the role of structural
parameters in calculating DNA cyclization rates.

Background
From a physical perspective the DNA molecule is a long
polymer chain [1, 2]. The inherent sequence specific
flexibility of this biopolymer is essential for its ability to
support tissue-specific cellular functionality [3, 4], by
permitting it to alter its conformation, e.g., for binding
of transcription factors to DNA [5–9]. Due to the semi-
flexibility of the double helix it has typically been mod-
eled as an elastic rod with mechanical properties well
described by the wormlike chain model (WLC) [10].
In the basic WLC model, the conformational proper-

ties of double-stranded DNA depend solely on its per-
sistence length, which is approximately 150 base pairs
(bp) [11, 12]. Within this model, any DNA loops and
sharp bends shorter than the persistent length are ener-
getically costly and the probability for their spontaneous
creation is negligibly small [13]. Therefore, the basic

WLC model predicts that the probability for cyclization,
quantified in terms of the Jacobson-Stockmayer J factor
[14, 15], for a contact to occur between two ends of a
DNA polymer shorter that 150 bp is vanishingly small.
This prediction is in contrast to various in vitro [16] and
in vivo [17] observations. A multitude of different exper-
iments (for example, measurements using ligase proteins
[16], small angle x-ray scattering coupled with atomic
force microscopy [18], etc.) have provided evidence for
significantly larger cyclization probabilities (J factors)
than the ones predicted by the basic WLC model. While
there have been some arguments about details in the
earlier experiments [19], a recent study based on single-
molecule fluorescence resonance has also demonstrated
a high cyclization of short DNA fragments (shorter than
70 bp) on a single-molecule level [20].
Evidently, the basic WLC model consistently describes

the cyclization of long DNA fragments, while it is gener-
ally unable to accurately evaluate the cyclization of
ultra-short DNA fragments [20–22]. This is perhaps
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unsurprising given that the basic WLC model examines
DNA as a uniform biopolymer, while ignoring both its
three-dimensional (3D) molecular structure and its nu-
cleotide sequence; both of which may significantly affect
the cyclization rate. For example, by ignoring the 3D na-
ture of DNA, the basic WLC model does not account
for the requirement of proper torsional orientation of
DNA fragments and cannot describe the experimentally
observed oscillations of DNA cyclization rates that re-
sults from the natural 10 base pair torsional period of
the molecule [23]. Additionally, previous experimental
studies have shown that periodic stretches of consecu-
tive adenine-thymine base pairs demonstrate curved
equilibrium conformations [24]. These periodic DNA se-
quences possess natural sequence dependent static
bending (also known as intrinsic curvature), which is
not taken into account by the basic WLC model and can
lead to a higher cyclization rate [25, 26].
Accounting for the three-dimensional structure and

sequence dependent static bending of DNA allows a bet-
ter representation of the true elastic nature of the double
helix [27]. As a first approximation, the static bending
(although statistical in its nature) can be considered as
an equilibrium property of each DNA fragment [28]. To
calculate more realistically cyclization properties of
DNA, a coarse-grained Monte Carlo approach incorpor-
ating the three-dimensional structure and intrinsic
curvature of DNA was proposed by Levenet, Crothers,
and Zhang [29, 30] and by Czapla, Swigon, and Olson
(referred to as the CSO model in the text) [31]. In ac-
cordance with the Cambridge convention for DNA con-
formation [32], this approach describes the relative
orientation and displacement of successive DNA base
pairs by six helicoidal structural parameters: helix twist
angle, roll angle, tilt angle, shift displacement, slide dis-
placement, and rise displacement. To account for ther-
mal fluctuations, these conformational parameters are
considered to be given by normal distributions with spe-
cific expectations values and standard deviations. The
expectation values define the static bending, while the
standard deviations define the flexibility and depend on
DNA’s elastic moduli. Thus, in the CSO model, the
curvature of a DNA fragment depends both on the nu-
cleotide sequence of the fragment and the expectation
values of these conformational parameters. Further, each
(random) configuration of a DNA fragment depends on
the deviations from the expectation values (caused by
fluctuations), which are governed by the DNA elastic
moduli (see Methods for more details).
Previous work using the CSO model [31] has demon-

strated that taking into account the three-dimensional
structure and intrinsic curvature of a short DNA fragment
allows better estimates of its cyclization that are more
compatible with the measurements from experimental

studies [16]. These previous applications of the CSO
model relied on expectation values of the conformational
parameters that are generated by considering DNA as ei-
ther a homogenous ideally straight fragment or a periodic
curved fragment. Importantly, based on the idea that the
physicochemical properties of DNA play an important
role in protein-DNA interaction [33–35], and this ap-
proach recently shed light on the interplay between DNA
flexibility and protein binding [7, 36].
In this study, we evaluate the role of static bending in

computationally determined DNA cyclization rates by
applying the CSO model with several sets of expectation
values of the conformational parameters. These sets of
values were obtained from different experimental studies
and/or computational analyses (Table 1). It should be
noted that previous studies [37, 38] have performed
some comparison between computationally predicted
and experimentally measured cyclization factors. The
focus of these early studies was on 11 sequences with
lengths between 150 and 160 bp, whereas, here we
examine approximately eight times more experimentally
measured sequences with lengths between 57 and
325 bp as well as of 20,000 randomly generated DNA se-
quences with lengths between 350 and 4000 bp. More
specifically, we first validate our implementation of the
CSO model by comparing it to previous analyses using
the artificial expectation values for both ideally straight
and curved DNA fragments [31]. Next, we curated the
literature for different sets of conformational parameters
as well as for DNA sequences with experimentally mea-
sured cyclization rates. In total, we curated seven dis-
tinct sets of conformational parameters as well as 86
DNA sequences with experimentally measured
cyclization factors and lengths between 57 and 325 bp.
For each set of conformational parameters, we calculated
the cyclization rates of the 86 curated DNA sequences
and compared the in silico obtained cyclization rates
with the experimental measurements. Our analyses show
that DNA cyclization rates calculated using conform-
ational parameters based on nucleosome packaging data
[39, 40] are most similar to the experimental measure-
ments. Our results also demonstrate that none of the ex-
amined sets of conformational parameters accurately
describe cyclization of DNA fragments with lengths less
than 100 bp. Lastly, we calculated the cyclization of
20,000 randomly generated DNA sequences with lengths
between 350 and 4000 bp using each of the seven dis-
tinct sets of conformational parameters. Our data dem-
onstrate that, for these 20,000 random sequences, all
sets of parameters yield very similar results comparable
to the experimentally measured cyclization rates. In
summary, this study provides a comprehensive examin-
ation of the role of static bending, represented by vari-
ous sets of experimentally measured or calculated
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structural parameters, in computationally estimating
DNA cyclization.

Results and discussion
We developed a computational implementation of the
original CSO model and perform large amounts of simu-
lations (generating a total of ~1018 chain representa-
tions). To verify our implementation, we first used two
sets of artificial expectation values for the DNA con-
formational parameters given in the original CSO paper:
(i) the set of parameters in which DNA is assumed to be
a homogenous and ideally straight sequence and (ii) the
set of parameters in which DNA is assumed to be a peri-
odic curved sequence. These two sets of parameters
were used in a previous study [31] to estimate the
cyclization rates for DNA fragments with various
lengths. Similarly to the original application of the CSO
model, we assumed that the fluctuations of the tilt and
roll angles are exactly the same (i.e., isotropic bending)
and for the root-mean-square fluctuations we used the
value of 4.84°, which corresponds to a persistence length
of ~147 bp. Furthermore, we used the previously pro-
posed value of 4.09° for the root-mean-square fluctua-
tions in the helix twist, which corresponds to a global
twisting constant compatible with previously mea-
sured equilibrium topoisomer distributions of DNA
mini-circles [41, 42]. Most theoretical and experimen-
tal studies report DNA cyclization of a given se-
quence in terms of the Jacobson-Stockmayer J factor,
which represent the ratio of the equilibrium constants
for cyclization to the bimolecular association of a lin-
ear molecule [14]. The J factor reflects the efficiency
of fragment cyclization and it can be experimentally
measured as well as computationally calculated using
various methodologies (Methods).

The model of a straight homogenous DNA sequence
corresponds essentially to a straight elastic rod. In this
case we use for equilibrium helix twist of 34.28° while
the equilibrium rise displacement is set at 3.40 Å for all
possible dinucleotides (Additional file 1: Table S1). All
other conformational parameters (angles as well as dis-
placements) are set to zero. Using our implementation
of the CSO model, we simulated DNA fragments with
lengths between 110 and 400 base pairs based on the
conformational parameters of the straight model. Our
simulations yielded J factors that matched the previously
reported values [31] (Additional file 2: Figure S1).
In the model of curved DNA, the molecule is con-

sidered to possess a sequence that naturally curves
the molecule to a nearly circular configuration for
150 bp long fragments. This model introduces se-
quence dependence as it considers two distinct, al-
beit artificial, types of nucleotides: X and Z. For this
model, conformational parameters are considered
based on dinucleotides (Additional file 1: Table S2).
The XX and XZ base steps have a helix twist of
36.00° (effectively resulting in one complete turn per
10 base pairs) and roll and tilt angles of zero de-
grees. In contrast, ZZ and ZX base steps have a
slightly lower helix twist of 35.57°, roll angle of
7.41°, and tilt angle of 0.00°. The conformational dis-
placements for all dinucleotides are the same as in
the straight model (Additional file 1: Table S2).
Using our implementation of the CSO model, we
simulated DNA fragments with lengths between 70
and 180 base pairs based on the conformational pa-
rameters of the curved model. Similarly to the
straight model, our simulations yielded J factors that
were the same as the ones previously reported in ref.
[31] (Additional file 3: Figure S2).

Table 1 List of used sets of structural parameters

Parameter set
name

Reference Derivation approach Number of
nucleotides

Tilt Roll Twist Shift Slide Rise

SET1 (Zhou et al., 2013) [43] All-atom Monte Carlo simulations Pentanucleotides No Yes Yes No No No

SET2 (Gabrielian and Pongor, 1996)
[45]

Computationally combining SET3 and
SET4

Trinucleotides No Yes No No No No

SET3 (Brukner et al., 1995) [44] Endonuclease experiments Trinucleotides No Yes No No No No

SET4 (Goodsell and Dickerson,
1994) [40]

Nucleosome positioning Trinucleotides No Yes No No No No

SET5 (Ulyanov and James, 1995)
[46]

NMR spectroscopy Dinucleotides Yes Yes Yes Yes Yes Yes

SET6 (Rachofsky et al., 2001) [47] Computational analysis of X-ray
crystallography

Dinucleotides Yes Yes Yes Yes Yes Yes

SET7 (Olson et al., 1998) [48] Computational analysis of X-ray
crystallography

Dinucleotides Yes Yes Yes Yes Yes Yes

Reference information, derivation approach, and number of nucleotides are provided for each set of parameters. Additionally, the table denotes with “Yes” which
of the six types of parameters is provided in the respective references. “No” is equivalent to using a default value for all nucleotide combinations. Default values:
tilt = 0.00°; helix twist = 34.30°; shift = 0.00 Å; slide = 0.00 Å; rise = 3.40 Å. The exact values for each set of parameters are provided in Additional file 1: Tables S3
through S9 respectively for SET1 through SET7
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Curation of DNA conformational parameters
We examined the literature to curate previously re-
ported DNA conformational\structural parameters. In
total, we were able to identify seven distinct sets of pa-
rameters generated by various experimental methodolo-
gies and/or theoretical approaches. For simplicity, we
have termed these sets of parameters SET1 through
SET7 and provided summary information about each set
of parameters in Table 1. Furthermore, the actual values
of these sets of parameters are provided also as Add-
itional file 1: Tables S3–S9. Briefly, SET1 provides con-
formational parameters for each pentanucleotide
sequence, which were calculated by leveraging all-atom
Monte Carlo simulations and further validated by X-ray
crystallography, NMR spectroscopy, and hydroxyl radical
cleavage data combined with statistical analysis and mo-
lecular dynamics simulations [43]. SET2, SET3, and
SET4 provide conformational parameters for each trinu-
cleotide sequence. The conformational parameters in
SET4 are derived based on nucleosome packaging data
[39, 40], while the ones in SET3 are based on endonucle-
ase experimental data [44]. SET2 was previously gener-
ated as a combination of the two other trinucleotide sets
of conformational parameters [45]. SET5, SET6, and
SET7 provide equilibrium structural parameters for each
dinucleotide sequence and were generated, respectively,
by NMR spectroscopy [46], and two different computa-
tional analysis of X-ray crystallography [47, 48]. It should
be noted that for some sets of parameters only some of
the six parameters types were available (Table 1). For ex-
ample, for SET4, information was provided only for the
roll angles between dinucleotides but not for any other
parameter. In such cases, we used as default values the
following conformational parameters: tilt = 0.00°; helix
twist = 34.30°; shift = 0.00 Å; slide = 0.00 Å; rise = 3.40 Å.

Curation of DNA sequences with experimentally
measured cyclization factors
Experimentally measuring the J factor of a DNA frag-
ment is complicated and time-consuming process that
requires significant efforts even for a single sequence.
Thus, it is not surprising that the amount of available
DNA fragments with experimentally characterized J fac-
tors is limited. Overall, our curation of DNA sequences
resulted in identifying 86 DNA sequences previously re-
ported in [6, 20, 21, 49, 50]. While we were able to iden-
tify additional studies that have experimentally
characterized J factors of DNA fragments, these reports
lacked details needed for our analysis. Most commonly,
the exact DNA nucleotide sequence of the reported
DNA fragments was not given. Fragments without exact
information about their DNA nucleotide sequences were
excluded from our analyses as such fragments can be
only examined using sequence independent parameter

sets (for example, when DNA is considered as homoge-
nously straight or ideally curved) and such examinations
have already been performed by others [31]. To facilitate
future examination of DNA J factors, we have provided
all curated information (including DNA sequences and
experimentally measured J factors) as Additional file 1:
Table S10.

Comparing experimentally measured J factors with in
silico calculations
We applied our implementation of the CSO model to
each of the DNA fragments with experimentally mea-
sured J factors. For each DNA sequence, we independ-
ently performed simulations with each of the seven sets
of curated conformational\structural parameters and cal-
culated the respective J factors (Fig. 1). In all simulations
we used 4.84° for root-mean-square fluctuations in both
tilt and roll angles, while 4.09° is used for the root-
mean-square fluctuations of helix twist. The in silico cal-
culated J factors for each sequence are provided in Add-
itional file 1: Table S10. Visual comparison reveals an
overlap between in silico calculated J factors and their
experimental counterparts when examining sequences
with lengths longer than 100 bp, for most sets of con-
formational parameters (Fig. 1). In contrast, regardless
of the used set of conformational parameters, the in
silico calculated J factors for sequences with lengths less
than 100 bp were, for almost all examined sequences, or-
ders of magnitude lower than the experimental measure-
ments (Fig. 1).
To quantify the differences between in silico calculated

J factors and the experimental measurements, we calcu-
lated the percentage of sequences for which their com-
putationally estimated J factors are within a particular
absolute distance from their actual experimentally mea-
sured J factors (Fig. 2). For example, for SET4, 51 % of
examined sequences have in silico calculated J factors
within an order of magnitude from the respective experi-
mental measurements (Fig. 2a). Comparing the percent-
age operator curves for all examined sequences reveals
that two sets of conformational parameters yield results
most similar to the experimental measurements: SET4
and SET5. Stratifying the DNA fragments based on their
lengths (Fig. 2b and c) reveals that SET4 outperforms all
other sets of conformational parameters for sequences
longer than 100 bp (Fig. 2b). Both SET4 and SET5 yield
similar results and, hence, computational J factors most
similar to the experimental measurements for sequences
shorter than 100 bp (Fig. 2c).
Interestingly, our analysis reveals a significant discrep-

ancy in the ability of the CSO model to accurately esti-
mate J factors for sequences with lengths less than
100 bp even for the best performing set of equilibrium
parameters (Fig. 2b and c). For SET4, 89 % of the in
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silico calculated J factors where within an order of mag-
nitude of their experimental measurements for se-
quences longer than 100 bp (Fig. 2c). This percentage
drops to 24 % for sequences shorter than 100 bp
(Fig. 2b). These results emphasize the need for develop-
ing more elaborate models that can better explain
cyclization of ultra-short DNA fragments.
Lastly, for some sequences longer than 200 bp, calcu-

lating J factors with different sets of conformational pa-
rameters yields significantly different results. For
example, the estimated J factor of sequence CA_325bp
(a DNA segment with a length of 325 bp) calculated
using SET5 is almost 30 times higher when compared to
the J factor of the same sequence calculated using SET6
(Additional file 1: Table S10). This fact demonstrates
that the choice of conformational parameters can affect
strongly the calculation of a J factor even for longer

sequences. Further, using simulated nucleotide sequence
data, we will explore the dependence between sets of
conformational parameters and computationally estimat-
ing a J factor of sequences longer than 350 bp.

Evaluating J factors of randomly generated DNA
fragments longer than 350 bp
Our curated set of DNA fragments with experimentally
characterized J factors did not contain any sequences
longer than 350 bp. To address this limitation, we gener-
ated 20,000 random sequences with lengths between 350
and 4000 bp. These sequences were divided into groups
of 1000 sequences (i.e., 1000 random sequences each
with length of 350 bp; 1000 random sequences each with
length of 400 bp; …; 1000 random sequences each with
length of 4000 bp). We calculated the J factors for all

Fig. 1 Comparison between computationally estimated J factors and experimentally derived J factors. A panel is provided for each of the seven
sets of curated structural parameters (Table 1). In each panel, the computationally estimated J factors of 86 DNA fragments are plotted using filled
squares with a color reflecting the set of structural parameters that was used to derive them. In all panels, the experimentally measured J factors
for the same 86 DNA sequences are shown as red circles. All horizontal axes are depicted using the same scale and reflect the length of the
plotted DNA fragments. Similarly, all vertical axes are shown using identical logarithmic scales and reflect the values of either computationally
estimated or experimentally derived J factors. The black line in all panels reflects J factors estimated based on the model of straight DNA. For
clarity, computationally estimated J factors with values lower than 10−15 are shown as 10−15
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20,000 random sequences using each of the seven sets of
curated conformational parameters.
Comparing the differences between the J factors of

straight homogeneous DNA sequences calculated with
different sets of parameters revealed that the CSO model
yields very similar results for each of the seven sets of
conformational\structural parameters (Fig. 3a). The only
exception is SET5 (Fig. 3a). The discrepancy in perform-
ance for SET5 is consistent with the previous observa-
tion that this set of parameters performs poorly for
longer DNA fragments (Fig. 2b and c). Nevertheless, our
results demonstrate that for sequences longer than
350 bp the in silico derived J factors are mostly inde-
pendent of the choice of conformational parameters and
that these J factors are consistent with the results ob-
tained with the parameters for straight DNA.
Examining the distributions of J factors calculated

using SET7 (note that other sets of equilibrium parame-
ters yield very similar results for long sequences, with
the exception of SET5) reveals that, even for the 1000
random sequences each with length of 350 bp, all in
silico calculated J factors are within an order of magni-
tude of one another (Fig. 3b). Furthermore, longer ran-
dom sequences have very similar J factors close to
experimental observations (Fig. 3c) [21], indicating that

the nucleotide structure of a DNA fragment plays a less
significant role for estimating the cyclization factors of
longer DNA sequences (Fig. 3b and c). Our examination
of 20,000 randomly generated sequences with different
lengths revealed that J factors of long DNA fragments,
estimated using the CSO model, are generally independ-
ent of the choice of conformational parameters or from
the nucleotide structure (Fig. 3c). For such sequences,
using the conformational parameters of straight DNA al-
lows accurate evaluation of fragment cyclization rate.

Conclusions
In this study, we applied the CSO model [31] to perform
a large-scale examination of the effect that different
structural/conformation parameters have on estimating J
factors of DNA sequences with different lengths. We ap-
plied our implementation of the CSO model to 86 DNA
fragments with experimentally characterized J factors,
with lengths between 57 and 325 bp, as well as to 20,000
in silico generated random sequences, with lengths be-
tween 350 and 4000 bp. Our analysis demonstrates that
SET4 provides results most similar to the experimental
measurements. Nevertheless, we show that even this set
of parameters performs poorly for DNA fragments
shorter than 100 bp. The analysis of J factors calculated

Fig. 2 Evaluating seven sets of curated structural parameters for accurately estimating experimental J factors. Each of the three panels contains seven
different curves with colors corresponding to the respective set of structural parameters. The y-axes reflect the orders of magnitude difference between
experimentally measured and computationally derived J factors. The x-axes correspond to the percentage of sequences for a given order of magnitude
difference. (a) Curves based on all examined DNA sequences; (b) Curves based on DNA sequences with lengths longer than 100 bp; (c) Curves based
on DNA sequences with lengths shorter than or equal to 100 bp
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for the in silico generated DNA sequences indicates that
for sequences longer than 350 bp the choice of struc-
tural parameters and the nucleotide sequence of a DNA
fragment makes little difference in estimating the
cyclization of that fragment.
The superior performance of the CSO model with

SET4 over the other sets of parameters is somewhat un-
expected. This parameter set is based on an examination
of nucleosome positioning performed almost 30 years
ago [39, 40] and it only provides information about one
of the six structural parameters, viz., the roll angle
(Table 1; Additional file 1: Table S6). In contrast, some
of the other sets of parameters were generated using
more recent experimental/theoretical approaches and
provide information about all six helicoidal structural
parameters (Table 1). One plausible, albeit speculative,
explanation of SET4’s performance is that the intrinsic
bending propensities of the curated sequences closely re-
semble the ones of nucleosome sequences, thus, allow-
ing for SET4 to best describe the cyclization of the
examined DNA fragments.

Our analyses also revealed significant differences (up
to six orders of magnitude) between experimentally
measured and theoretically estimated J factors for some
of the examined short sequences regardless of the set of
parameters. One possible reason for this observation is
that none of the parameter sets is sufficiently accurate
for describing such sequences. A more likely explanation
is that the CSO model fails to capture the salient physics
at the short segment lengths and needs to be further
elaborated to accurately describe the cyclization of such
sequences. In support of the latter explanation, it was
previously suggested that (especially for fragments
shorter than 70 bp) there is a need to consider a kink-
able WLC [22, 51] and/or melt-able WLC [4, 52, 53]
models. Future studies will be needed to evaluate the
performance of such models in regards to a large collec-
tion of DNA fragments with experimentally measured J
factors.
Finally, there are a number of confounding factors that

might be affecting our analyses and subsequent results.
Our examination relies on seven curated sets of

Fig. 3 Evaluating J factors of in silico generated DNA fragments. a Seven different curves with colors corresponding to the respective set of
structural parameters are shown. Each curve reflects the analysis of 20,000 random sequences with lengths between 350 and 4000 bp. The y-axis
reflects the orders of magnitude difference between computationally derived J factors and the straight DNA model. The x-axis corresponds to the
percentage of sequences for a given order of magnitude difference. b Distributions of J factors for 15,000 random sequences calculated using
SET7 with lengths between 350 and 1050 bp. The plot is stratified for the different DNA fragment lengths. Red lines reflect median values, while
the blue box shows the 25 and 75 % quantiles. c Average J factors for 20,000 simulated sequences and seven sets of structural parameters are
plotted as squares in colors corresponding to the respective set of structural parameters. J factors calculated based on the straight DNA model
[31] are shown as black circles and ones based on DNA persistent length [55] are depicted as a dotted line. Lastly, red dots are used to display ten
experimentally measured J factors for long DNA sequences as reported in [21]
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parameters. For each set of parameters, the (sequence-
dependent) mean values of the six types of helical struc-
tural/conformational parameters were used for estimating
cyclization of DNA fragments. These experimentally and
computationally derived values demonstrate large standard
deviations (for example, see ref. [48]). This heterogeneity
was ignored by our analysis and the mean values, given in
the corresponding articles, were assumed to be both repre-
sentative and generalizable. Nevertheless, assuming the
bona fide nature of the experimentally measured J factors
as well as the mean values of the curated structural param-
eters, this study provides a comprehensive large-scale
evaluation of the role of structural parameters in calculating
DNA cyclization rates.

Methods
Theoretical framework underlying the CSO model
In the CSO model [31], each random configuration of a
DNA segment depends on its sequence via the equilib-
rium (minimum energy) values of the conformational pa-
rameters, helix twist angle, roll angle, tilt angle, shift
displacement, slide displacement, and rise displacement,
Θ0 = (θk1

0 ; θk2
0 ; θk3

0 ; θk4
0 ; θk5

0 ; θk6
0 ) for each (kth) base pair de-

fined in relation to the previous (k-1)th base pair. The de-
viations from these equilibrium values is caused by
thermal fluctuations and controlled by the elastic moduli,
fij
k (where, fij

k are the elements of the symmetric 6 × 6 elas-
tic force matrix F, normalized to the thermal energy, βF).
The energy of each base pair, in harmonic approximation
depends only on the deviations, ΔΘ, from the expect-
ation values of the parameters. The total energy of a
DNA sequence is the sum of the energies over all, N,
base pairs of the sequence.
In the CSO model, the energy for each consecutive

base pairs, (k-1, k), in harmonic approximation, is given
by:

Gk Θ; F ;Θ0
� � ¼ 1

2

X6
i¼1

X6
j¼1

f kij θki−θ
0
ki

� �

� θkj−θ0kj
� �

≡
1
2

X6
i¼1

X6
j¼1

f kijΔθkiΔθkj

Thus, for each generated random DNA configuration
the total energy is simply the sum of the energies over
all consecutive base pairs:

G Θ; F ;Θ0
� � ¼ XN

k¼1

Gk Θ; F ;Θ0
� �

¼ 1
2

XN
k¼1

X6
i¼1

X6
j¼1

f kijΔθkiΔθkj:

Therefore, the probability, P, for each set of consecu-
tive base pairs (k-1, k) to be in a given configuration,

defined by the structural parameters Θ, is related to the
temperature, T, by the Boltzmann factor via:

Pk Θð Þee−Gk Θ;F ;Θ0ð Þ
kT ≡e

−β
2

X6
i¼1

X6
j¼1

f kijΔθkiΔθkj

;

where β ¼ 1
kT , and k is the Boltzmann constant. Further,

if one performs diagonalization of the force-constant
matrix F and rewrites the energy for each consecutive
base pairs in terms of a diagonal matrix D and normal
variables ω, Gk ¼ 1

2Ω
TDΩ , the probability for a given

configuration becomes

Pk Θð Þ ¼
Y6
i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πβDii

p e−
β
2Diiω2

k

Thus, we can represent the probability as a product of
independent terms and normal variables that describe
the changes of the parameters on the directions of the
principal axes of deformation.

In silico estimation of J factors using the CSO model
Monte Carlo simulations have been the preferred
method for estimating the propensity for DNA
cyclization within the CSO model. The calculations sam-
ple the configuration space of the chains by generating
series of DNA sequences with random structural param-
eters, distributed normally with given expectation values
and standard deviations. It should be noted that calculat-
ing the J factor of a short DNA segment is computation-
ally very expensive since such J factors are usually
between 10−8 and 10−14, thus requiring large Monte
Carlo sampling (usually between 1012 and 1016 DNA
configurations). To make the simulations feasible we
utilize the half-chain sampling enhancement technique
proposed by Alexandrowicz [54]. Following earlier works
[29–31] the J factor can be presented, as a product of
probabilities describing the contribution of the spatial
configuration:

J ¼ 4π
NA

W r≈0ð ÞΓr cosγ≈1ð ÞΦr; cosγ ϕ≈0ð Þ

Here, W(r ≈ 0) is the probability for a DNA segment to
be circular, i.e., to posses the end-to-end distance r ≈ 0.
In practice, a threshold of 30 Å was used as previously
done in [31]. The factor Γr(cosγ ≈ 1) is the conditional
probability that the normal of the first and last base
pairs are (almost) aligned when the ends of the frag-
ments coincide, i.e., the cosine of the net bending angle
is ≈ 1. In practice, a threshold of cosγ > 0.86 was used
when r ≈ 0 as previously done in [31]. The term
Φr, cosγ(ϕ ≈ 0) is the conditional probability that the first
and last base pairs coincide, i.e., the helix twist angle is
approximately zero. In practice, a threshold of cosϕ >
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0.86 was applied when both r ≈ 0 and the first and the
last base pairs are coplanar, i.e., cosγ ≈ 1. The factor 4π

NA
,

where NA is the Avogadro’s number, is the normaliza-
tions associated with the uniformly distributed probabil-
ity density of bimolecular association.

Experimentally estimating the J factor of a DNA sequence
Experimentally, the cyclization propensity of a DNA
fragment is characterized by the ratio of the equilibrium
constants for cyclization versus bimolecular association
of a linear DNA molecule [14]. This ratio is usually re-
ferred to as the J factor of a DNA segment and experi-
mentally measured by the formula:

J ¼ 2M0 lim
t→0

C tð Þ
D tð Þ ;

here M0 is the starting (t = 0) concentration of initial
DNA fragments, C(t) is the concentration of the mono-
meric (fixed by ligation) circular species, and D(t) is the
concentration of the dimeric species (i.e., bimolecular re-
action via the sticky ends of the initial fragments).

Curating conformational parameters and experimentally
measured J factors
Curation was performed by examined the previously
published literature and all curated data is provided in
the Additional file 1: Table S10. Curating experimentally
derived J factors was focused on studies where both the
experimental measurements and the DNA fragments’
nucleotide sequences were provided. Curating conform-
ational parameters focused only on sequence dependent
(i.e., dinucleotides, trinucleotides, etc.) of at least one of
the six types of helicoidal structural parameters. It
should be noted that for certain studies, which did not
provide numeric values for some of their measurements
but rather plotted their data, we digitalized the provided
figures to extract the necessary information.

Computational implementation of the CSO model and
generation of random sequences
A novel computational implementation of the hitherto
described model was developed and validated (see Re-
sults). For simplicity, an illustrative working MATLAB
implementation of the code is provided for the model of
straight DNA in Additional file 4. For each DNA frag-
ment, the code was run until the error for calculating
the J factor was less than 5 % or until 5 × 1015 chains
were generated for that fragment. Fragments that had no
circular configurations after calculating 5 × 1015 trajec-
tories are reported with a J factor of 10−15.
Distinct random DNA sequences were generated as-

suming equal probability for each DNA nucleotide.

Additional files

Additional file 1: Table S1. Structural parameters for the straight
homogenous DNA model. Table S2: Structural parameters for the curved
DNA model. Table S3: Structural parameters for SET1. Table S4:
Structural parameters for SET2. Table S5: Structural parameters for SET3.
Table S6: Structural parameters for SET4. Table S7: Structural parameters
for SET5. Table S8: Structural parameters for SET6. Table S9: Structural
parameters for SET7. Table S10: Sequences with experimentally
measured and computational calculated J factors. (XLSX 127 kb)

Additional file 2: Figure S1. Validation of the CSO implementation
using the model of a straight homogenous DNA sequence. (PDF 178 kb)

Additional file 3: Figure S2. Validation of the CSO implementation
using the model of a curved DNA sequence. (PDF 194 kb)

Additional file 4: Illustrative working MATLAB implementation of
the code for the model of straight DNA. (PDF 214 kb)
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