370 research outputs found

    Transformations between the theoretical and observational planes in the HST-NICMOS and WFPC2 photometric systems

    Get PDF
    Color-temperature relations and bolometric corrections in the HST-NICMOS F1110W, F160W and F222M and in the WFPC2 F439W, F555W and F814W photometric systems, using two different sets of model atmospheres, have been derived. This database of homogeneous, self-consistent transformations between the theoretical and observational planes also allows combinations of visual and infrared quantities, without any further transformation between the two different photometric systems. The behavior of the inferred quantities with varying the stellar parameters, the adopted model atmospheres and the instrumental configurations are investigated. Suitable relations to transform colors and bolometric corrections from HST to ground-based photometric systems are also provided.Comment: 22 pages, 14 figure

    Revised metallicity classes for low-mass stars: dwarfs (dM), subdwarfs (sdM), extreme subdwarfs (esdM), and ultra subdwarfs (usdM)

    Full text link
    The current classification system of M stars on the main sequence distinguishes three metallicity classes (dwarfs - dM, subdwarfs - sdM, and extreme subdwarfs - esdM). The spectroscopic definition of these classes is based on the relative strength of prominent CaH and TiO molecular absorption bands near 7000A, as quantified by three spectroscopic indices (CaH2, CaH3, and TiO5). We re-examine this classification system in light of our ongoing spectroscopic survey of stars with proper motion \mu > 0.45 "/yr, which has increased the census of spectroscopically identified metal-poor M stars to over 400 objects. Kinematic separation of disk dwarfs and halo subdwarfs suggest deficiencies in the current classification system. Observations of common proper motion doubles indicates that the current dM/sdM and sdM/esdM boundaries in the [TiO5,CaH2+CaH3] index plane do not follow iso-metallicity contours, leaving some binaries inappropriately classified as dM+sdM or sdM+esdM. We propose a revision of the classification system based on an empirical calibration of the TiO/CaH ratio for stars of near solar metallicity. We introduce the parameter \zeta_{TiO/CaH} which quantifies the weakening of the TiO bandstrength due to metallicity effect, with values ranging from \zeta_{TiO/CaH}=1 for stars of near-solar metallicity to \zeta_{TiO/CaH}~0 for the most metal-poor (and TiO depleted) subdwarfs. We redefine the metallicity classes based on the value of the parameter \zeta_{TiO/CaH}; and refine the scheme by introducing an additional class of ultra subdwarfs (usdM). We introduce sequences of sdM, esdM, and usdM stars to be used as formal classification standards.Comment: 15 pages, accepted for publication in the Astrophysical Journa

    NICMOS Observations of the Pre-Main-Sequence Planetary Debris System HD 98800

    Get PDF
    Spectral energy distributions (SEDs) from 0.4 to 4.7 microns are presented for the two principal stellar components of HD~98800, A and B. The third major component, an extensive planetary debris system (PDS), emits > 20% of the luminosity of star B in a blackbody SED at 164 +/- 5K extending from mid-IR to millimeter-wavelengths. At 0.95 microns a preliminary upper limit of < 0.06 is obtained for the ratio of reflected light to the total from star B. This result limits the albedo of the PDS to < 0.3. Values are presented for the temperature, luminosity, and radius of each major systemic component. Remarkable similarities are found between the PDS and the interplanetary debris system around the Sun as it could have appeared a few million years after its formation.Comment: LaTeX, 9 pages with 1 encapsulated postscript figure and one specially formatted Table which is rendered as a postscript file and included as a figure. Accepted for publication in Astrophysical Journal Letter

    Membership, lithium, and metallicity in the young open clusters IC 2602 and IC 2391: enlarging the sample

    Get PDF
    We present lithium abundances for ~50 X-ray selected candidate members of the 30-50 Myr old open clusters IC 2602 and IC 2391. These data enlarge and extend to cooler temperatures previous Li surveys of these clusters by Stauffer et al. (1989) and Randich et al. (1997). We also give for the first time an estimate of the metallicity of the two clusters which turns out to be close to solar. Radial velocity measurements together with Halpha chromospheric emission and the presence/absence of other spectroscopic features are used to ascertain the membership status for the sample stars not yet confirmed as cluster members; rotational velocities have also been determined for all sample stars. Stars more massive than ~1 Mo in both clusters show no sign of significant Li depletion, while lower mass stars are all lithium depleted, with the amount of Li depletion increasing to cooler temperatures. We confirm that the late G and early K stars in IC 2602 present a star-to-star scatter in Li abundances similar to, but not as large as the one in the Pleiades. A scatter is also seen among late-K and M dwarfs. Unlike in the Pleiades and Alpha Per clusters, the scatter among early-K stars in IC 2602 shows only marginal correlation with rotation. Our data suggest that the drop-off of lithium towards lower masses may start at an earlier color in IC 2391 than in IC 2602, but larger cluster samples are needed to confirm this result. In addition, whereas G and early K stars in the two clusters are, on average, more Li rich than their counterparts in the Pleiades, a fraction of the coolest stars, in particular in IC 2391, are as depleted as as the lowest-Li Pleiades stars of the same mass. If they continue depleting Li on their way to the main sequence, they are expected to be more Li depleted than the Pleiades at the age of the latter cluster.Comment: to appear in A&

    Are Proxima and Alpha Centauri Gravitationally Bound?

    Get PDF
    Using the most recent kinematic and radial velocity data in the literature, we calculate the binding energy of Proxima Centauri relative to the center of mass of the Alpha Centauri system. When we adopt the centroids of the observed data, we find that the three stars constitute a bound system, albeit with a semi-major axis that is on order the same size as Alpha Centauri AB's Hill radius in the galactic potential. We carry out a Monte Carlo simulation under the assumption that the errors in the observed quantities are uncorrelated. In this simulation, 44% of the trial systems are bound, and systems on the 1-3 sigma tail of the radial velocity distribution can have Proxima currently located near the apastron position of its orbit. Our analysis shows that a further, very significant improvement in the characterization of the system can be gained by obtaining a more accurate measurement of the radial velocity of Proxima Centauri.Comment: 10 pages total, 4 pages of text, 1 page of references, 3 figures, and 2 tables This article will be published in The Astronomical Journa

    CG J1720-67.8: A Detailed Analysis of Optical and Infrared Properties of a New Ultracompact Group of Galaxies

    Get PDF
    We present here optical spectroscopy and BVRJHK(s) photometry of the recently discovered ultra-compact group of galaxies CG J1720-67.8. This work represents a considerable extension of the preliminary results we presented in a previous paper. Despite the complicated morphology of the group, a quantitative morphological classification of the three brightest members of the group is attempted based on photometric analysis. We find that one galaxy is consistent with a morphological type S0, while the other two are most probably late-type spirals that are already losing their identity due tothe interaction process. Information on the star formation activity and dust content derived from both spectroscopic data and optical and near-infrared colors are complemented with a reconstruction of far-infrared (FIR) maps from IRAS raw data. Enhanced star formation activity is revealed in all the group's members, including the early-type galaxy and the extended tidal tail, along which several tidal dwarf galaxy candidates are identified. The metallicity of the gaseous component is investigated and photoionization models are applied to the three main galaxies of the group, while a detailed study of the tidal dwarf candidates will appear in a companion paper. Subsolar metal abundances are found for all the three galaxies, the highest values being shown by the early-type galaxy (Z ~ 0.5 Zsolar).Comment: Accepted for publication in The Astrophysical Journa

    The Low End of the Initial Mass Function in Young LMC Clusters: I. The Case of R136

    Get PDF
    We report the result of a study in which we have used very deep broadband V and I WFPC2 images of the R136 cluster in the Large Magellanic Cloud from the HST archive, to sample the luminosity function below the detection limit of 2.8 Mo previously reached. In these new deeper images, we detect stars down to a limiting magnitude of m_F555W = 24.7 (~ 1 magnitude deeper than previous works), and identify a population of red stars evenly distributed in the surrounding of the R136 cluster. A comparison of our color-magnitude diagram with recentely computed evolutionary tracks indicates that these red objects are pre-main sequence stars in the mass range 0.6 - 3 Mo. We construct the initial mass function (IMF) in the 1.35 - 6.5 Mo range and find that, after correcting for incompleteness, the IMF shows a definite flattening below ~ 2 Mo. We discuss the implications of this result for the R136 cluster and for our understanding of starburst galaxies formation and evolution in general.Comment: 29 pages, 6 tables, 11 figures included + 3 external files, accepted for publication by Ap.

    Photometric Identification of Type Ia Supernovae at Moderate Redshift

    Full text link
    Large photometric surveys with the aim of identifying many Type Ia supernovae (SNe) at moderate redshift are challenged in separating these SNe from other SN types. We are motivated to identify Type Ia SNe based only on broadband photometric information, since spectroscopic determination of the SN type, the traditional method, requires significant amounts of time on large telescopes. We consider the possible observables provided by a large synoptic photometry survey. We examine the optical colors and magnitudes of many SN types from z=0.1 to z=1.0, using space-based ultraviolet spectra and ground-based optical spectra to simulate the photometry. We also discuss the evolution of colors over the SN outburst and the use of host galaxy characteristics to aid in the identification of Type Ia SNe. We consider magnitudes in both the SDSS photometric system and in a proposed filter system with logarithmically spaced bandpasses. We find that photometric information in four bands covering the entire optical spectrum appears capable of providing identification of Type Ia SNe based on their colors at a single observed epoch soon after maximum light, even without independent estimates of the SN redshift. Very blue filters are extremely helpful, as at moderate redshift they sample the restframe ultraviolet spectrum where the SN types are very different. We emphasize the need for further observations of SNe in the restframe ultraviolet to fully characterize, refine, and improve this method of SN type identification.Comment: AASTeX, 37 pages with 12 figures, being resubmitted to A.J. Figures 3, 4 and 9 updated, minor typos correcte

    Chemical Evolution of the Galactic Bulge as Derived from High-Resolution Infrared Spectroscopy of K and M Red Giants

    Get PDF
    We present chemical abundances in K and M red-giant members of the Galactic bulge derived from high-resolution infrared spectra obtained with the Phoenix spectrograph on Gemini-South. The elements studied are carbon, nitrogen, oxygen, sodium, titanium, and iron. The evolution of C and N abundances in the studied red-giants show that their oxygen abundances represent the original values with which the stars were born. Oxygen is a superior element for probing the timescale of bulge chemical enrichment via [O/Fe] versus [Fe/H]. The [O/Fe]-[Fe/H] relation in the bulge does not follow the disk relation, with [O/Fe] values falling above those of the disk. Titanium also behaves similarly to oxygen with respect to iron. Based on these elevated values of [O/Fe] and [Ti/Fe] extending to large Fe abundances, it is suggested that the bulge underwent a more rapid chemical enrichment than the halo. In addition, there are declines in both [O/Fe] and [Ti/Fe] in those bulge targets with the largest Fe abundances, signifying another source affecting chemical evolution: perhaps Supernovae of Type Ia. Sodium abundances increase dramatically in the bulge with increasing metallicity, possibly reflecting the metallicity dependant yields from supernovae of Type II, although Na contamination from H-burning in intermediate mass stars cannot be ruled out.Comment: ApJ in pres
    • …
    corecore