316 research outputs found

    Deflections in Magnet Fringe Fields

    Get PDF
    A transverse multipole expansion is derived, including the longitudinal components necessarily present in regions of varying magnetic field profile. It can be used for exact numerical orbit following through the fringe field regions of magnets whose end designs introduce no extraneous components, {\it i.e.} fields not required to be present by Maxwell's equations. Analytic evaluations of the deflections are obtained in various approximations. Mainly emphasized is a ``straight-line approximation'', in which particle orbits are treated as straight lines through the fringe field regions. This approximation leads to a readily-evaluated figure of merit, the ratio of r.m.s. end deflection to nominal body deflection, that can be used to determine whether or not a fringe field can be neglected. Deflections in ``critical'' cases (e.g. near intersection regions) are analysed in the same approximation.Comment: To be published in Physical Review

    Tumor response assessment on imaging following immunotherapy.

    Get PDF
    In recent years, various systemic immunotherapies have been developed for cancer treatment, such as monoclonal antibodies (mABs) directed against immune checkpoints (immune checkpoint inhibitors, ICIs), oncolytic viruses, cytokines, cancer vaccines, and adoptive cell transfer. While being estimated to be eligible in 38.5% of patients with metastatic solid or hematological tumors, ICIs, in particular, demonstrate durable disease control across many oncologic diseases (e.g., in melanoma, lung, bladder, renal, head, and neck cancers) and overall survival benefits. Due to their unique mechanisms of action based on T-cell activation, response to immunotherapies is characterized by different patterns, such as progression prior to treatment response (pseudoprogression), hyperprogression, and dissociated responses following treatment. Because these features are not encountered in the Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST 1.1), which is the standard for response assessment in oncology, new criteria were defined for immunotherapies. The most important changes in these new morphologic criteria are, firstly, the requirement for confirmatory imaging examinations in case of progression, and secondly, the appearance of new lesions is not necessarily considered a progressive disease. Until today, five morphologic (immune-related response criteria (irRC), immune-related RECIST (irRECIST), immune RECIST (iRECIST), immune-modified RECIST (imRECIST), and intra-tumoral RECIST (itRECIST)) criteria have been developed to accurately assess changes in target lesion sizes, taking into account the specific response patterns after immunotherapy. In addition to morphologic response criteria, 2-deoxy-2-[ <sup>18</sup> F]fluoro-D-glucose positron emission tomography/computed tomography ( <sup>18</sup> F-FDG-PET/CT) is a promising option for metabolic response assessment and four metabolic criteria are used (PET/CT Criteria for Early Prediction of Response to Immune Checkpoint Inhibitor Therapy (PECRIT), PET Response Evaluation Criteria for Immunotherapy (PERCIMT), immunotherapy-modified PET Response Criteria in Solid Tumors (imPERCIST5), and immune PERCIST (iPERCIST)). Besides, there is evidence that parameters on <sup>18</sup> F-FDG-PET/CT, such as the standardized uptake value (SUV)max and several radiotracers, e.g., directed against PD-L1, may be potential imaging biomarkers of response. Moreover, the emerge of human intratumoral immunotherapy (HIT-IT), characterized by the direct injection of immunostimulatory agents into a tumor lesion, has given new importance to imaging assessment. This article reviews the specific imaging patterns of tumor response and progression and available imaging response criteria following immunotherapy

    Propagation of Large Uncertainty Sets in Orbital Dynamics by Automatic Domain Splitting

    Get PDF
    Current approaches to uncertainty propagation in astrodynamics mainly refer to linearized models or Monte Carlo simulations. Naive linear methods fail in nonlinear dynamics, whereas Monte Carlo simulations tend to be computationally intensive. Differential algebra has already proven to be an efficient compromise by replacing thousands of pointwise integrations of Monte Carlo runs with the fast evaluation of the arbitrary order Taylor expansion of the flow of the dynamics. However, the current implementation of the DA-based high-order uncertainty propagator fails when the non-linearities of the dynamics prohibit good convergence of the Taylor expansion in one or more directions. We solve this issue by introducing automatic domain splitting. During propagation, the polynomial expansion of the current state is split into two polynomials whenever its truncation error reaches a predefined threshold. The resulting set of polynomials accurately tracks uncertainties, even in highly nonlinear dynamics. The method is tested on the propagation of (99942) Apophis post-encounter motion

    Detecting chaos in particle accelerators through the frequency map analysis method

    Full text link
    The motion of beams in particle accelerators is dominated by a plethora of non-linear effects which can enhance chaotic motion and limit their performance. The application of advanced non-linear dynamics methods for detecting and correcting these effects and thereby increasing the region of beam stability plays an essential role during the accelerator design phase but also their operation. After describing the nature of non-linear effects and their impact on performance parameters of different particle accelerator categories, the theory of non-linear particle motion is outlined. The recent developments on the methods employed for the analysis of chaotic beam motion are detailed. In particular, the ability of the frequency map analysis method to detect chaotic motion and guide the correction of non-linear effects is demonstrated in particle tracking simulations but also experimental data.Comment: Submitted for publication in Chaos, Focus Issue: Chaos Detection Methods and Predictabilit

    Field reconstruction in large aperture quadrupole magnets

    Get PDF
    A technique to interpolate complex three-dimensional field distributions such as those produced by large magnets is presented. It is based on a modified charge density method where the elementary sources of the magnetic field are image charges with Gaussian shape placed on a three-dimensional surface. The strengths of the charges are found as the solution of a best-fit problem, whose special features are discussed in detail. The method is tested against the measured field of the MAGNEX large acceptance quadrupole, showing a high level of accuracy together with an effective compensation of the effect of the experimental errors present in the data. In addition the model field is in general analytical and Maxwellian. As a consequence, the reliability of the presented technique to the challenging problem of trajectory reconstruction in modern large acceptance spectrometers is demonstrated

    Guaranteed optimal reachability control of reaction-diffusion equations using one-sided Lipschitz constants and model reduction

    Full text link
    We show that, for any spatially discretized system of reaction-diffusion, the approximate solution given by the explicit Euler time-discretization scheme converges to the exact time-continuous solution, provided that diffusion coefficient be sufficiently large. By "sufficiently large", we mean that the diffusion coefficient value makes the one-sided Lipschitz constant of the reaction-diffusion system negative. We apply this result to solve a finite horizon control problem for a 1D reaction-diffusion example. We also explain how to perform model reduction in order to improve the efficiency of the method

    A Comparison of Polarization Observables in Electron Scattering from the Proton and Deuteron

    Full text link
    Recoil proton polarization observables were measured for both the p(e\vec {\rm e},ep^\prime\vec{\rm p}\,) and d(e\vec {\rm e},ep)^\prime\vec{\rm p}\,)n reactions at two values of Q2^2 using a newly commissioned proton Focal Plane Polarimeter at the M.I.T.-Bates Linear Accelerator Center. The hydrogen and deuterium spin-dependent observables DD_{\ell\ell} and DtD_{{\ell}t}, the induced polarization PnP_n and the form factor ratio GEp/GMpG^p_E/G^p_M were measured under identical kinematics. The deuterium and hydrogen results are in good agreement with each other and with the plane-wave impulse approximation (PWIA).Comment: 9 pages, 1 figure; accepted by Phys. Rev. Let

    Polarization Transfer in the 4He(e,e'p)3H Reaction at Q^2 = 0.8 and 1.3 (GeV/c)^2

    Full text link
    Proton recoil polarization was measured in the quasielastic 4He(e,e'p)3H reaction at Q^2 = 0.8 (GeV/c)^2 and 1.3 (GeV/c)^2 with unprecedented precision. The polarization-transfer coefficients are found to differ from those of the 1H(e,e' p) reaction, contradicting a relativistic distorted-wave approximation, and favoring either the inclusion of medium-modified proton form factors predicted by the quark-meson coupling model or a spin-dependent charge-exchange final-state interaction. For the first time, the polarization-transfer ratio is studied as a function of the virtuality of the proton
    corecore