201 research outputs found

    Calibration of NOMAD on ESA's ExoMars Trace Gas Orbiter: Part 2 – The Limb, Nadir and Occultation (LNO) channel

    Get PDF
    This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).The Nadir and Occultation for MArs Discovery (NOMAD) instrument is a 3-channel spectrometer suite on the ESA ExoMars Trace Gas Orbiter. Since April 2018, when the nominal science mission began, it has been measuring the constituents of the Martian atmosphere. NOMAD contains three separate spectrometers, two of which operate in the infrared: the Solar Occultation (SO) channel makes only solar occultation observations, and therefore has the best resolving power (∼20,000) and a wider spectral region covering 2.2–4.3 ​μm. The Limb, Nadir and Occultation (LNO) channel covers the 2.2–3.8 ​μm spectral region and can operate in limb, nadir or solar occultation pointing modes. The Ultraviolet–VISible (UVIS) channel operates in the UV–visible region, from 200 to 650 ​nm, and can measure in limb, nadir or solar occultation modes like LNO. The LNO channel has a lower resolving power (∼10,000) than the SO channel, but is still typically an order of magnitude better than previous instruments orbiting Mars. The channel primarily operates in nadir-viewing mode, pointing directly down to the surface to measure the narrow atmospheric molecular absorption lines, clouds and surface features in the reflected sunlight. From the depth and position of the observed atmospheric absorption lines, the constituents of the Martian atmosphere and their column densities can be derived, leading to new insights into the processes that govern their distribution and transport. Surface properties can also be derived from nadir observations by observing the shape of the spectral continuum. Many calibration measurements were made prior to launch, on the voyage to Mars, and continue to be made in-flight during the science phase of the mission. This work, part 2, addresses the aspects of the LNO channel calibration that are not covered elsewhere, namely: the LNO ground calibration setup, the LNO occultation and nadir boresight pointing vectors, LNO detector characterisation and nadir/limb illumination pattern, instrument temperature effects, and finally the radiometric calibration of the LNO channel. An accompanying paper, part 1 (Thomas et al., 2021, this issue), addresses similar aspects for SO, the other infrared channel in NOMAD. A further accompanying paper (Cruz-Mermy et al., 2021, this issue) investigated the LNO radiometric calibration in more detail, approaching the work from a theoretical perspective. The two calibrations agree with each other to within 3%, validating each calibration method. © 2022 The Authors. Published by Elsevier Ltd.This project acknowledges funding by the Belgian Science Policy Office (BELSPO), with the financial and contractual coordination by the ESA Prodex Office (PEA 4000103401, 4000121493), by Spanish Ministry of Science and Innovation (MCIU) and by European funds under grants PGC2018-101836-B-I00 and ESP2017-87143-R (MINECO/FEDER), as well as by the UK Space Agency through grants ST/V002295/1, ST/V005332/1 and ST/S00145X/1 and ST/R001405/1 and Italian Space Agency through grant 2018-2-HH.0. This work was supported by the Belgian Fonds de la Recherche Scientifique – FNRS under grant number 30442502 (ET_HOME). The IAA/CSIC team acknowledges financial support from the State Agency for Research of the Spanish MCIU through the ‘Center of Excellence Severo Ochoa’ award for the Instituto de Astrofísica de Andalucía (SEV-2017-0709). SR thanks BELSPO for the FED-tWIN funding (Prf-2019-077 - RT-MOLEXO)

    SINBAD flight software, the on board software of NOMAD in ExoMars 2016

    Get PDF
    The Spacecraft INterface and control Board for NomAD (SINBAD) is an electronic interface designed by the Instituto de Astroffisica de Andalucfia (IAA-CSIC). It is part of the Nadir and Occultation for MArs Discovery instrument (NOMAD) on board in the ESAs ExoMars Trace Gas Orbiter mission. This mission was launched in March 2016. The SINBAD Flight Software (SFS) is the software embedded in SINBAD. It is in charge of managing the interfaces, devices, data, observing sequences, patching and contingencies of NOMAD. It is presented in this paper the most remarkable aspects of the SFS design, likewise the main problems and lessons learned during the software development process

    SINBAD electronic models of the interface and control system for the NOMAD spectrometer on board of ESA ExoMars Trace Gas Orbiter mission

    Get PDF
    NOMAD is a spectrometer suite: UV-visible-IR spectral ranges. NOMAD is part of the payload of ESA ExoMars Trace Gas Orbiter Mission. SINBAD boards are in charge of the communication and management of the power and control between the spacecraft and the instrument channels. SINBAD development took four years, while the entire development and test required five years, a very short time to develop an instrument devoted to a space mission. The hardware of SINBAD is shown in the attached poster: developed boards, prototype boards and final models. The models were delivered to the ESA in order to testing and integration with the spacecraft

    NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 2—design, manufacturing, and testing of the ultraviolet and visible channel

    Get PDF
    NOMAD is a spectrometer suite on board the ESA/Roscosmos ExoMars Trace Gas Orbiter, which launched in March 2016. NOMAD consists of two infrared channels and one ultraviolet and visible channel, allowing the instrument to perform observations quasi-constantly, by taking nadir measurements at the day- and night-side, and during solar occultations. Here, in part 2 of a linked study, we describe the design, manufacturing, and testing of the ultraviolet and visible spectrometer channel called UVIS. We focus upon the optical design and working principle where two telescopes are coupled to a single grating spectrometer using a selector mechanism

    Ventilatory drive and the apnea-hypopnea index in six-to-twelve year old children

    Get PDF
    BACKGROUND: We tested the hypothesis that ventilatory drive in hypoxia and hypercapnia is inversely correlated with the number of hypopneas and obstructive apneas per hour of sleep (obstructive apnea hypopnea index, OAHI) in children. METHODS: Fifty children, 6 to 12 years of age were studied. Participants had an in-home unattended polysomnogram to compute the OAHI. We subsequently estimated ventilatory drive in normoxia, at two levels of isocapnic hypoxia, and at three levels of hyperoxic hypercapnia in each subject. Experiments were done during wakefulness, and the mouth occlusion pressure measured 0.1 seconds after inspiratory onset (P(0.1)) was measured in all conditions. The slope of the relation between P(0.1 )and the partial pressure of end-tidal O(2 )or CO(2 )(P(ET)O(2 )and P(ET)CO(2)) served as the index of hypoxic or hypercapnic ventilatory drive. RESULTS: Hypoxic ventilatory drive correlated inversely with OAHI (r = -0.31, P = 0.041), but the hypercapnic ventilatory drive did not (r = -0.19, P = 0.27). We also found that the resting P(ET)CO(2 )was significantly and positively correlated with the OAHI, suggesting that high OAHI values were associated with resting CO(2 )retention. CONCLUSIONS: In awake children the OAHI correlates inversely with the hypoxic ventilatory drive and positively with the resting P(ET)CO(2). Whether or not diminished hypoxic drive or resting CO(2 )retention while awake can explain the severity of sleep-disordered breathing in this population is uncertain, but a reduced hypoxic ventilatory drive and resting CO(2 )retention are associated with sleep-disordered breathing in 6–12 year old children

    Expected Performances of the NOMAD/ExoMars instrument

    Get PDF
    NOMAD (Nadir and Occultation for MArs Discovery) is one of the four instruments on board the ExoMars Trace Gas Orbiter, scheduled for launch in March 2016. It consists of a suite of three high-resolution spectrometers – SO (Solar Occultation), LNO (Limb, Nadir and Occultation) and UVIS (Ultraviolet and Visible Spectrometer). Based upon the characteristics of the channels and the values of Signal-to-Noise Ratio obtained from radiometric models discussed in [Vandaele et al., Optics Express, 2015] and [Thomas et al., Optics Express, 2015], the expected performances of the instrument in terms of sensitivity to detection have been investigated. The analysis led to the determination of detection limits for 18 molecules, namely CO, H2O, HDO, C2H2, C2H4, C2H6, H2CO, CH4, SO2, H2S, HCl, HCN, HO2, NH3, N2O, NO2, OCS, O3. NOMAD should have the ability to measure methane concentrations <25 parts per trillion (ppt) in solar occultation mode, and 11 parts per billion in nadir mode. Occultation detections as low as 10 ppt could be made if spectra are averaged [Drummond et al., Planetary Space and Science, 2011]. Results have been obtained for all three channels in nadir and in solar occultation
    corecore