652 research outputs found

    Slip-velocity of large neutrally-buoyant particles in turbulent flows

    Full text link
    We discuss possible definitions for a stochastic slip velocity that describes the relative motion between large particles and a turbulent flow. This definition is necessary because the slip velocity used in the standard drag model fails when particle size falls within the inertial subrange of ambient turbulence. We propose two definitions, selected in part due to their simplicity: they do not require filtration of the fluid phase velocity field, nor do they require the construction of conditional averages on particle locations. A key benefit of this simplicity is that the stochastic slip velocity proposed here can be calculated equally well for laboratory, field, and numerical experiments. The stochastic slip velocity allows the definition of a Reynolds number that should indicate whether large particles in turbulent flow behave (a) as passive tracers; (b) as a linear filter of the velocity field; or (c) as a nonlinear filter to the velocity field. We calculate the value of stochastic slip for ellipsoidal and spherical particles (the size of the Taylor microscale) measured in laboratory homogeneous isotropic turbulence. The resulting Reynolds number is significantly higher than 1 for both particle shapes, and velocity statistics show that particle motion is a complex non-linear function of the fluid velocity. We further investigate the nonlinear relationship by comparing the probability distribution of fluctuating velocities for particle and fluid phases

    Experimental evidence of delocalized states in random dimer superlattices

    Get PDF
    We study the electronic properties of GaAs-AlGaAs superlattices with intentional correlated disorder by means of photoluminescence and vertical dc resistance. The results are compared to those obtained in ordered and uncorrelated disordered superlattices. We report the first experimental evidence that spatial correlations inhibit localization of states in disordered low-dimensional systems, as our previous theoretical calculations suggested, in contrast to the earlier belief that all eigenstates are localized.Comment: 4 pages, 5 figures. Physical Review Letters (in press

    Single-/Few-Layer Graphene as Long-Lasting Electrocatalyst for Hydrogen Evolution Reaction

    Get PDF
    The development of carbonaceous materials electro-catalytically active for water splitting reactions could overcome multiple disadvantages of metallic catalysts, including high cost, low selectivity, poor durability, and susceptibility to evolved gas. General guidelines to design carbon-based hydrogen evolution reaction (HER) electrocatalysts still remain a topic of debate. Here, we identify single-/few-layer graphene flakes with defective edges (SLG/FLG-DE), produced by hydrogen peroxide-assisted cosolvent liquid phase exfoliation, as durable and efficient HER electrocatalysts. The SLG/FLG-DE display overpotentials at 10 mA cm(-2) of 55 and 85 mV in 0.5 M H2SO4 and 1 M KOH solutions, respectively, as well as a durable HER activity over 200 h

    Actual performance of mechanical ventilators in ICU: a multicentric quality control study.

    Get PDF
    Even if the performance of a given ventilator has been evaluated in the laboratory under very well controlled conditions, inappropriate maintenance and lack of long-term stability and accuracy of the ventilator sensors may lead to ventilation errors in actual clinical practice. The aim of this study was to evaluate the actual performances of ventilators during clinical routines. A resistance (7.69 cmH(2)O/L/s) - elastance (100 mL/cmH(2)O) test lung equipped with pressure, flow, and oxygen concentration sensors was connected to the Y-piece of all the mechanical ventilators available for patients in four intensive care units (ICUs; n = 66). Ventilators were set to volume-controlled ventilation with tidal volume = 600 mL, respiratory rate = 20 breaths/minute, positive end-expiratory pressure (PEEP) = 8 cmH(2)O, and oxygen fraction = 0.5. The signals from the sensors were recorded to compute the ventilation parameters. The average ± standard deviation and range (min-max) of the ventilatory parameters were the following: inspired tidal volume = 607 ± 36 (530-723) mL, expired tidal volume = 608 ± 36 (530-728) mL, peak pressure = 20.8 ± 2.3 (17.2-25.9) cmH(2)O, respiratory rate = 20.09 ± 0.35 (19.5-21.6) breaths/minute, PEEP = 8.43 ± 0.57 (7.26-10.8) cmH(2)O, oxygen fraction = 0.49 ± 0.014 (0.41-0.53). The more error-prone parameters were the ones related to the measure of flow. In several cases, the actual delivered mechanical ventilation was considerably different from the set one, suggesting the need for improving quality control procedures for these machines

    Electronic structure and vertical transport in random dimer GaAs-Al_xGa_(1-x)As superlattices

    Get PDF
    We report a systematic study of several GaAs-AlxGa1-xAs semiconductor superlattices grown by molecular-beam epitaxy specifically designed to explore the existence of extended states in random dimer superlattices. We have confirmed our previous results [V. Bellani et al., Phys. Rev. Lett. 82, 2159 (1999)] with much additional evidence that allows us to lay claim to a clear-cut experimental verification of the presence of extended states in random dimer superlattices due to the short-range correlations (dimers) that inhibit the localization effects of the disorder

    Методическая работа в дошкольной образовательной организации как условие повышения информационно-коммуникационной компетентности педагогов

    Get PDF
    Тема работы актуальна. В ВКР представлены условия, способствующие развитию компонентов ИКК педагогов. Работа имеет практическую значимост

    Integrated transcriptome analysis of mouse spermatogenesis

    Full text link
    corecore