456 research outputs found

    Consistent Interactions between Gauge Fields and Local BRST Cohomology : The Example of Yang-Mills Models

    Full text link
    Recent results on the cohomological reformulation of the problem of consistent interactions between gauge fields are illustrated in the case of the Yang-Mills models. By evaluating the local BRST cohomology through descent equation techniques, it is shown (i) that there is a unique local, Poincar\'e invariant cubic vertex for free gauge vector fields which preserves the number of gauge symmetries to first order in the coupling constant; and (ii) that consistency to second order in the coupling constant requires the structure constants appearing in the cubic vertex to fulfill the Jacobi identity. The known uniqueness of the Yang-Mills coupling is therefore rederived through cohomological arguments.Comment: 6 pages in LaTeX, ULB-PMIF/930

    The sh Lie structure of Poisson brackets in field theory

    Get PDF
    A general construction of an sh Lie algebra from a homological resolution of a Lie algebra is given. It is applied to the space of local functionals equipped with a Poisson bracket, induced by a bracket for local functions along the lines suggested by Gel'fand, Dickey and Dorfman. In this way, higher order maps are constructed which combine to form an sh Lie algebra on the graded differential algebra of horizontal forms. The same construction applies for graded brackets in field theory such as the Batalin-Fradkin-Vilkovisky bracket of the Hamiltonian BRST theory or the Batalin-Vilkovisky antibracket.Comment: 24 pages Latex fil

    Higher Derivative Chern--Simons Extensions

    Get PDF
    We study the higher-derivative extensions of the D=3 Abelian Chern--Simons topological invariant that would appear in a perturbative effective action's momentum expansion. The leading, third-derivative, extension I_ECS turns out to be unique. It remains parity-odd but depends only on the field strength, hence no longer carries large gauge information, nor is it topological because metric dependence accompanies the additional covariant derivatives, whose positions are seen to be fixed by gauge invariance. Viewed as an independent action, I_ECS requires the field strength to obey the wave equation. The more interesting model, adjoining I_ECS to the Maxwell action, describes a pair of excitations. One is massless, the other a massive ghost, as we exhibit both via the propagator and by performing the Hamiltonian decomposition. We also present this model's total stress tensor and energy. Other actions involving I_ECS are also noted.Comment: 3 typos fixed. 5 page

    Surface charges and dynamical Killing tensors for higher spin gauge fields in constant curvature spaces

    Full text link
    In the context of massless higher spin gauge fields in constant curvature spaces, we compute the surface charges which generalize the electric charge for spin one, the color charges in Yang-Mills theories and the energy-momentum and angular momentum for asymptotically flat gravitational fields. We show that there is a one-to-one map from surface charges onto divergence free Killing tensors. These Killing tensors are computed by relating them to a cohomology group of the first quantized BRST model underlying the Fronsdal action.Comment: 21 pages Latex file, references and comment adde

    Comments on the Equivalence between Chern-Simons Theory and Topological Massive Yang-Mills Theory in 3D

    Get PDF
    The classical formal equivalence upon a redefinition of the gauge connection between Chern-Simons theory and topological massive Yang-Mills theory in three-dimensional Euclidean space-time is analyzed at the quantum level within the BRST formulation of the Equivalence Theorem. The parameter controlling the change in the gauge connection is the inverse λ\lambda of the topological mass. The BRST differential associated with the gauge connection redefinition is derived and the corresponding Slavnov-Taylor (ST) identities are proven to be anomaly-free. The Green functions of local operators constructed only from the (λ\lambda-dependent) transformed gauge connection, as well as those of BRST invariant operators, are shown to be independent of the parameter λ\lambda, as a consequence of the validity of the ST identities. The relevance of the antighost-ghost fields, needed to take into account at the quantum level the Jacobian of the change in the gauge connection, is analyzed. Their role in the identification of the physical states of the model within conventional perturbative gauge theory is discussed.Comment: 19 pages, LATEX, to appear in Journal of High Energy Physic

    First order parent formulation for generic gauge field theories

    Full text link
    We show how a generic gauge field theory described by a BRST differential can systematically be reformulated as a first order parent system whose spacetime part is determined by the de Rham differential. In the spirit of Vasiliev's unfolded approach, this is done by extending the original space of fields so as to include their derivatives as new independent fields together with associated form fields. Through the inclusion of the antifield dependent part of the BRST differential, the parent formulation can be used both for on and off-shell formulations. For diffeomorphism invariant models, the parent formulation can be reformulated as an AKSZ-type sigma model. Several examples, such as the relativistic particle, parametrized theories, Yang-Mills theory, general relativity and the two dimensional sigma model are worked out in details.Comment: 36 pages, additional sections and minor correction

    Anomaly freedom in Seiberg-Witten noncommutative gauge theories

    Get PDF
    We show that noncommutative gauge theories with arbitrary compact gauge group defined by means of the Seiberg-Witten map have the same one-loop anomalies as their commutative counterparts. This is done in two steps. By explicitly calculating the \epsilon^{\m_1\m_2\m_3\m_4} part of the renormalized effective action, we first find the would-be one-loop anomaly of the theory to all orders in the noncommutativity parameter \theta^{\m\n}. And secondly we isolate in the would-be anomaly radiative corrections which are not BRS trivial. This gives as the only true anomaly occurring in the theory the standard Bardeen anomaly of commutative spacetime, which is set to zero by the usual anomaly cancellation condition.Comment: LaTeX 2e, no macros, no figures, 32 A4 page

    Algebra Structures on Hom(C,L)

    Get PDF
    We consider the space of linear maps from a coassociative coalgebra C into a Lie algebra L. Unless C has a cocommutative coproduct, the usual symmetry properties of the induced bracket on Hom(C,L) fail to hold. We define the concept of twisted domain (TD) algebras in order to recover the symmetries and also construct a modified Chevalley-Eilenberg complex in order to define the cohomology of such algebras

    Local BRST cohomology in the antifield formalism: II. Application to Yang-Mills theory

    Full text link
    Yang-Mills models with compact gauge group coupled to matter fields are considered. The general tools developed in a companion paper are applied to compute the local cohomology of the BRST differential ss modulo the exterior spacetime derivative dd for all values of the ghost number, in the space of polynomials in the fields, the ghosts, the antifields (=sources for the BRST variations) and their derivatives. New solutions to the consistency conditions sa+db=0sa+db=0 depending non trivially on the antifields are exhibited. For a semi-simple gauge group, however, these new solutions arise only at ghost number two or higher. Thus at ghost number zero or one, the inclusion of the antifields does not bring in new solutions to the consistency condition sa+db=0sa+db=0 besides the already known ones. The analysis does not use power counting and is purely cohomological. It can be easily extended to more general actions containing higher derivatives of the curvature, or Chern-Simons terms.Comment: 30 pages Latex file, ULB-TH-94/07, NIKHEF-H 94-1

    Parent formulation at the Lagrangian level

    Full text link
    The recently proposed first-order parent formalism at the level of equations of motion is specialized to the case of Lagrangian systems. It is shown that for diffeomorphism-invariant theories the parent formulation takes the form of an AKSZ-type sigma model. The proposed formulation can be also seen as a Lagrangian version of the BV-BRST extension of the Vasiliev unfolded approach. We also discuss its possible interpretation as a multidimensional generalization of the Hamiltonian BFV--BRST formalism. The general construction is illustrated by examples of (parametrized) mechanics, relativistic particle, Yang--Mills theory, and gravity.Comment: 26 pages, discussion of the truncation extended, typos corrected, references adde
    • …
    corecore