We consider the space of linear maps from a coassociative coalgebra C into a
Lie algebra L. Unless C has a cocommutative coproduct, the usual symmetry
properties of the induced bracket on Hom(C,L) fail to hold. We define the
concept of twisted domain (TD) algebras in order to recover the symmetries and
also construct a modified Chevalley-Eilenberg complex in order to define the
cohomology of such algebras