128 research outputs found

    An Analysis of the Impact of European Union and United States Dairy Policies on EU-U.S. Trade in Milk Protein Concentrate

    Get PDF
    During 1996-2000, U.S. imports of milk protein concentrate (MPC) increased rapidly. At the same time, Commodity Credit Corporation (CCC) stocks of non-fat dry milk (NFDM) went from nothing to more than 500 million pounds. Consequently, U.S. milk producers attributed low milk prices and dairy farmer income during this period to the increased imports of MPC. U.S. milk producers were especially concerned with MPC imports for two reasons. First, MPC between 40 and 90 percent protein had been classified in subheading 0404.90.10 of the Harmonized Tariff Schedule of the United States (HTS). Thus, MPC was not subject to the tariff-rate quotas applied to many other dairy products. Second, MPC produced in the European Union (EU) and exported to the United States was eligible for production and export subsidies. Along with the high U.S. internal milk protein prices maintained by the Dairy Price Support Program, and volatile world prices of NFDM, these policies created economic rents for trade in MPC between the European Union and the United States. To test the relationship between these policies and U.S. imports of MPC, these economic rents, which were not directly observable, were estimated by combing a set of identifiable variables: (1) the CCC purchase price, (2) the EU export refund, (3) EU casein production aid, and (4) the world price of NFDM as expressed by the Western Europe export price. A vector autoregression model was then estimated using monthly U.S. imports of MPC and the estimate of economic rents. This estimation showed that nearly 40 percent of the variability in U.S. MPC imports was attributable to the estimate of economic rents. These results demonstrate that U.S. and EU policies can not be analyzed in isolation when evaluating the impact of dairy policies on U.S. MPC imports.Agricultural and Food Policy, International Relations/Trade,

    Serum Ammonia and Folate Levels: Opportunities for High Value Care

    Get PDF
    High value care encompasses a variety of principles including ordering tests with high diagnostic yield, while reducing low value practice

    A depolarization and attenuation experiment using the COMSTAR and CTS satellites

    Get PDF
    Monthly and annual percent-of-time data on ground rain fall rate and attenuation on satellite downlinks at 11.7 GHz, 19.04 GHz, and 28.56 GHz is presented. Equal probability values of attenuation and rain rate are compared for monthly, quarterly, half-year periods and for the entire year. Regression equations relating cross polarization isolation to the logarithm of attenuation are also presented

    Record low Antarctic sea ice cover in February 2022

    Get PDF
    On 25 February 2022 Antarctic sea ice extent (SIE) dropped to a satellite-era record low level of 1.92 × 106 km2, 0.92 × 106 km2 below the long-term mean. The area of sea ice was also at a record low level of 1.24 × 106 km2. Although no individual sector was at a record low, at the minimum there were negative sea ice anomalies in all sectors of the Southern Ocean, with the largest in the Ross (contributing 46%) and Weddell Seas (26%). The Amundsen Sea Low had a record low depth in October/November 2021, with a series of very deep depressions giving strong offshore winds. These accelerated ice loss during the melt season, creating a 1.00 × 106 km2 coastal polynya in the Ross Sea. In the northern Weddell Sea, westerly winds of record strength led to ice export from the region

    Is Nitric Oxide Decrease Observed with Naphthoquinones in LPS Stimulated RAW 264.7 Macrophages a Beneficial Property?

    Get PDF
    The search of new anti-inflammatory drugs has been a current preoccupation, due to the need of effective drugs, with less adverse reactions than those used nowadays. Several naphthoquinones (plumbagin, naphthazarin, juglone, menadione, diosquinone and 1,4-naphthoquinone), plus p-hydroquinone and p-benzoquinone were evaluated for their ability to cause a reduction of nitric oxide (NO) production, when RAW 264.7 macrophages were stimulated with lipopolysaccharide (LPS). Dexamethasone was used as positive control. Among the tested compounds, diosquinone was the only one that caused a NO reduction with statistical importance and without cytotoxicity: an IC25 of 1.09±0.24 µM was found, with 38.25±6.50% (p<0.001) NO reduction at 1.5 µM. In order to elucidate if this NO decrease resulted from the interference of diosquinone with cellular defence mechanisms against LPS or to its conversion into peroxynitrite, by reaction with superoxide radical formed by naphthoquinones redox cycling, 3-nitrotyrosine and superoxide determination was also performed. None of these parameters showed significant changes relative to control. Furthermore, diosquinone caused a decrease in the pro-inflammatory cytokines: tumour necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6). Therefore, according to the results obtained, diosquinone, studied for its anti-inflammatory potential for the first time herein, has beneficial effects in inflammation control. This study enlightens the mechanisms of action of naphthoquinones in inflammatory models, by checking for the first time the contribution of oxidative stress generated by naphthoquinones to NO reduction

    Polymorphisms in immunoregulatory genes and the risk of histologic chorioamnionitis in Caucasoid women: a case control study

    Get PDF
    BACKGROUND: Chorioamnionitis is a common underlying cause of preterm birth (PTB). It is hypothesised that polymorphisms in immunoregulatory genes influence the host response to infection and subsequent preterm birth. The relationship between histologic chorioamnionitis and 22 single nucleotide polymorphisms in 11 immunoregulatory genes was examined in a case-control study. METHODS: Placentas of 181 Caucasoid women with spontaneous PTB prior to 35 weeks were examined for histologic chorioamnionitis. Polymorphisms in genes IL1A, IL1B, IL1RN, IL1R1, tumour necrosis factor (TNF), IL4, IL6, IL10, transforming growth factor beta-1 (TGFB1), Fas (TNFRSF6), and mannose-binding lectin (MBL2) were genotyped by polymerase chain reaction and sequence specific primers. Multivariable logistic regression including demographic and genetic variables and Kaplan-Meier survival analyses of genotype frequencies and pregnancy outcome were performed. RESULTS: Sixty-nine (34%) women had histologic evidence of acute chorioamnionitis. Carriage of the IL10-1082A/-819T/592A (ATA) haplotype [Multivariable Odds ratio (MOR) 1.9, P = 0.05] and MBL2 codon 54Asp allele (MOR 2.0, P = 0.04), were positively associated with chorioamnionitis, while the TNFRSF6-1377A/-670G (AG) haplotype (MOR 0.4, P = 0.03) and homozygosity for TGFB1-800G/509T (GT) haplotype (MOR 0.2, P = 0.04) were negatively associated. CONCLUSION: These findings demonstrate that polymorphisms in immunoregulatory genes IL10, MBL2, TNFRSF6 and TGFB1 may influence susceptibility to chorioamnionitis

    A physical map of Brassica oleracea shows complexity of chromosomal changes following recursive paleopolyploidizations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evolution of the Brassica species has been recursively affected by polyploidy events, and comparison to their relative, <it>Arabidopsis thaliana</it>, provides means to explore their genomic complexity.</p> <p>Results</p> <p>A genome-wide physical map of a rapid-cycling strain of <it>B. oleracea </it>was constructed by integrating high-information-content fingerprinting (HICF) of Bacterial Artificial Chromosome (BAC) clones with hybridization to sequence-tagged probes. Using 2907 contigs of two or more BACs, we performed several lines of comparative genomic analysis. Interspecific DNA synteny is much better preserved in euchromatin than heterochromatin, showing the qualitative difference in evolution of these respective genomic domains. About 67% of contigs can be aligned to the Arabidopsis genome, with 96.5% corresponding to euchromatic regions, and 3.5% (shown to contain repetitive sequences) to pericentromeric regions. Overgo probe hybridization data showed that contigs aligned to Arabidopsis euchromatin contain ~80% of low-copy-number genes, while genes with high copy number are much more frequently associated with pericentromeric regions. We identified 39 interchromosomal breakpoints during the diversification of <it>B. oleracea </it>and <it>Arabidopsis thaliana</it>, a relatively high level of genomic change since their divergence. Comparison of the <it>B. oleracea </it>physical map with Arabidopsis and other available eudicot genomes showed appreciable 'shadowing' produced by more ancient polyploidies, resulting in a web of relatedness among contigs which increased genomic complexity.</p> <p>Conclusions</p> <p>A high-resolution genetically-anchored physical map sheds light on Brassica genome organization and advances positional cloning of specific genes, and may help to validate genome sequence assembly and alignment to chromosomes.</p> <p>All the physical mapping data is freely shared at a WebFPC site (<url>http://lulu.pgml.uga.edu/fpc/WebAGCoL/brassica/WebFPC/</url>; Temporarily password-protected: account: pgml; password: 123qwe123.</p

    Host genetic signatures of susceptibility to fungal disease

    Get PDF
    Our relative inability to predict the development of fungal disease and its clinical outcome raises fundamental questions about its actual pathogenesis. Several clinical risk factors are described to predispose to fungal disease, particularly in immunocompromised and severely ill patients. However, these alone do not entirely explain why, under comparable clinical conditions, only some patients develop infection. Recent clinical and epidemiological studies have reported an expanding number of monogenic defects and common polymorphisms associated with fungal disease. By directly implicating genetic variation in the functional regulation of immune mediators and interacting pathways, these studies have provided critical insights into the human immunobiology of fungal disease. Most of the common genetic defects reported were described or suggested to impair fungal recognition by the innate immune system. Here, we review common genetic variation in pattern recognition receptors and its impact on the immune response against the two major fungal pathogens Candida albicans and Aspergillus fumigatus. In addition, we discuss potential strategies and opportunities for the clinical translation of genetic information in the field of medical mycology. These approaches are expected to transfigure current clinical practice by unleashing an unprecedented ability to personalize prophylaxis, therapy and monitoring for fungal disease.This work was supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000013), the Fundação para a Ciência e Tecnologia (FCT) (IF/00735/2014 to AC, and SFRH/BPD/96176/2013 to CC), the Institut Mérieux (Mérieux Research Grant 2017 to CC), and the European Society of Clinical Microbiology and Infectious Diseases (ESCMID Research Grant 2017 to AC)
    corecore