1,328 research outputs found
Precise Estimation of Cosmological Parameters Using a More Accurate Likelihood Function
The estimation of cosmological parameters from a given data set requires a
construction of a likelihood function which, in general, has a complicated
functional form. We adopt a Gaussian copula and constructed a copula likelihood
function for the convergence power spectrum from a weak lensing survey. We show
that the parameter estimation based on the Gaussian likelihood erroneously
introduces a systematic shift in the confidence region, in particular for a
parameter of the dark energy equation of state w. Thus, the copula likelihood
should be used in future cosmological observations.Comment: 5 pages, 3 figures. Maches version published by the Physical Review
Letter
An information theoretic approach to statistical dependence: copula information
We discuss the connection between information and copula theories by showing
that a copula can be employed to decompose the information content of a
multivariate distribution into marginal and dependence components, with the
latter quantified by the mutual information. We define the information excess
as a measure of deviation from a maximum entropy distribution. The idea of
marginal invariant dependence measures is also discussed and used to show that
empirical linear correlation underestimates the amplitude of the actual
correlation in the case of non-Gaussian marginals. The mutual information is
shown to provide an upper bound for the asymptotic empirical log-likelihood of
a copula. An analytical expression for the information excess of T-copulas is
provided, allowing for simple model identification within this family. We
illustrate the framework in a financial data set.Comment: to appear in Europhysics Letter
Evolution of the Dependence of Residual Lifetimes
We investigate the dependence properties of a vector of residual lifetimes by means of the copula associated with the conditional distribution function. In particular, the evolution of positive dependence properties (like quadrant dependence and total positivity) are analyzed and expressions for the evolution of measures of association are given
Regret analysis for performance metrics in multi-label classification: the case of Hamming and subset zero-one loss
Distorted Copulas: Constructions and Tail Dependence
Given a copula C, we examine under which conditions on an order isomorphism ψ of [0, 1] the distortion C ψ: [0, 1]2 → [0, 1], C ψ(x, y) = ψ{C[ψ−1(x), ψ−1(y)]} is again a copula. In particular, when the copula C is totally positive of order 2, we give a sufficient condition on ψ that ensures that any distortion of C by means of ψ is again a copula. The presented results allow us to introduce in a more flexible way families of copulas exhibiting different behavior in the tails
Strong Approximation of Empirical Copula Processes by Gaussian Processes
We provide the strong approximation of empirical copula processes by a
Gaussian process. In addition we establish a strong approximation of the
smoothed empirical copula processes and a law of iterated logarithm
Implied volatility of basket options at extreme strikes
In the paper, we characterize the asymptotic behavior of the implied
volatility of a basket call option at large and small strikes in a variety of
settings with increasing generality. First, we obtain an asymptotic formula
with an error bound for the left wing of the implied volatility, under the
assumption that the dynamics of asset prices are described by the
multidimensional Black-Scholes model. Next, we find the leading term of
asymptotics of the implied volatility in the case where the asset prices follow
the multidimensional Black-Scholes model with time change by an independent
increasing stochastic process. Finally, we deal with a general situation in
which the dependence between the assets is described by a given copula
function. In this setting, we obtain a model-free tail-wing formula that links
the implied volatility to a special characteristic of the copula called the
weak lower tail dependence function
Testing the Gaussian Copula Hypothesis for Financial Assets Dependences
Using one of the key property of copulas that they remain invariant under an
arbitrary monotonous change of variable, we investigate the null hypothesis
that the dependence between financial assets can be modeled by the Gaussian
copula. We find that most pairs of currencies and pairs of major stocks are
compatible with the Gaussian copula hypothesis, while this hypothesis can be
rejected for the dependence between pairs of commodities (metals).
Notwithstanding the apparent qualification of the Gaussian copula hypothesis
for most of the currencies and the stocks, a non-Gaussian copula, such as the
Student's copula, cannot be rejected if it has sufficiently many ``degrees of
freedom''. As a consequence, it may be very dangerous to embrace blindly the
Gaussian copula hypothesis, especially when the correlation coefficient between
the pair of asset is too high as the tail dependence neglected by the Gaussian
copula can be as large as 0.6, i.e., three out five extreme events which occur
in unison are missed.Comment: Latex document of 43 pages including 14 eps figure
Polariton Condensation and Lasing
The similarities and differences between polariton condensation in
microcavities and standard lasing in a semiconductor cavity structure are
reviewed. The recent experiments on "photon condensation" are also reviewed.Comment: 23 pages, 6 figures; Based on the book chapter in Exciton Polaritons
in Microcavities, (Springer Series in Solid State Sciences vol. 172), V.
Timofeev and D. Sanvitto, eds., (Springer, 2012
The Bivariate Normal Copula
We collect well known and less known facts about the bivariate normal
distribution and translate them into copula language. In addition, we prove a
very general formula for the bivariate normal copula, we compute Gini's gamma,
and we provide improved bounds and approximations on the diagonal.Comment: 24 page
- …
