1,328 research outputs found

    Precise Estimation of Cosmological Parameters Using a More Accurate Likelihood Function

    Full text link
    The estimation of cosmological parameters from a given data set requires a construction of a likelihood function which, in general, has a complicated functional form. We adopt a Gaussian copula and constructed a copula likelihood function for the convergence power spectrum from a weak lensing survey. We show that the parameter estimation based on the Gaussian likelihood erroneously introduces a systematic shift in the confidence region, in particular for a parameter of the dark energy equation of state w. Thus, the copula likelihood should be used in future cosmological observations.Comment: 5 pages, 3 figures. Maches version published by the Physical Review Letter

    An information theoretic approach to statistical dependence: copula information

    Full text link
    We discuss the connection between information and copula theories by showing that a copula can be employed to decompose the information content of a multivariate distribution into marginal and dependence components, with the latter quantified by the mutual information. We define the information excess as a measure of deviation from a maximum entropy distribution. The idea of marginal invariant dependence measures is also discussed and used to show that empirical linear correlation underestimates the amplitude of the actual correlation in the case of non-Gaussian marginals. The mutual information is shown to provide an upper bound for the asymptotic empirical log-likelihood of a copula. An analytical expression for the information excess of T-copulas is provided, allowing for simple model identification within this family. We illustrate the framework in a financial data set.Comment: to appear in Europhysics Letter

    Evolution of the Dependence of Residual Lifetimes

    Get PDF
    We investigate the dependence properties of a vector of residual lifetimes by means of the copula associated with the conditional distribution function. In particular, the evolution of positive dependence properties (like quadrant dependence and total positivity) are analyzed and expressions for the evolution of measures of association are given

    Distorted Copulas: Constructions and Tail Dependence

    Get PDF
    Given a copula C, we examine under which conditions on an order isomorphism ψ of [0, 1] the distortion C ψ: [0, 1]2 → [0, 1], C ψ(x, y) = ψ{C[ψ−1(x), ψ−1(y)]} is again a copula. In particular, when the copula C is totally positive of order 2, we give a sufficient condition on ψ that ensures that any distortion of C by means of ψ is again a copula. The presented results allow us to introduce in a more flexible way families of copulas exhibiting different behavior in the tails

    Strong Approximation of Empirical Copula Processes by Gaussian Processes

    Full text link
    We provide the strong approximation of empirical copula processes by a Gaussian process. In addition we establish a strong approximation of the smoothed empirical copula processes and a law of iterated logarithm

    Implied volatility of basket options at extreme strikes

    Full text link
    In the paper, we characterize the asymptotic behavior of the implied volatility of a basket call option at large and small strikes in a variety of settings with increasing generality. First, we obtain an asymptotic formula with an error bound for the left wing of the implied volatility, under the assumption that the dynamics of asset prices are described by the multidimensional Black-Scholes model. Next, we find the leading term of asymptotics of the implied volatility in the case where the asset prices follow the multidimensional Black-Scholes model with time change by an independent increasing stochastic process. Finally, we deal with a general situation in which the dependence between the assets is described by a given copula function. In this setting, we obtain a model-free tail-wing formula that links the implied volatility to a special characteristic of the copula called the weak lower tail dependence function

    Testing the Gaussian Copula Hypothesis for Financial Assets Dependences

    Full text link
    Using one of the key property of copulas that they remain invariant under an arbitrary monotonous change of variable, we investigate the null hypothesis that the dependence between financial assets can be modeled by the Gaussian copula. We find that most pairs of currencies and pairs of major stocks are compatible with the Gaussian copula hypothesis, while this hypothesis can be rejected for the dependence between pairs of commodities (metals). Notwithstanding the apparent qualification of the Gaussian copula hypothesis for most of the currencies and the stocks, a non-Gaussian copula, such as the Student's copula, cannot be rejected if it has sufficiently many ``degrees of freedom''. As a consequence, it may be very dangerous to embrace blindly the Gaussian copula hypothesis, especially when the correlation coefficient between the pair of asset is too high as the tail dependence neglected by the Gaussian copula can be as large as 0.6, i.e., three out five extreme events which occur in unison are missed.Comment: Latex document of 43 pages including 14 eps figure

    Polariton Condensation and Lasing

    Full text link
    The similarities and differences between polariton condensation in microcavities and standard lasing in a semiconductor cavity structure are reviewed. The recent experiments on "photon condensation" are also reviewed.Comment: 23 pages, 6 figures; Based on the book chapter in Exciton Polaritons in Microcavities, (Springer Series in Solid State Sciences vol. 172), V. Timofeev and D. Sanvitto, eds., (Springer, 2012

    The Bivariate Normal Copula

    Full text link
    We collect well known and less known facts about the bivariate normal distribution and translate them into copula language. In addition, we prove a very general formula for the bivariate normal copula, we compute Gini's gamma, and we provide improved bounds and approximations on the diagonal.Comment: 24 page
    corecore