
Evolution of the dependence of
residual lifetimes

Fabrizio Durante1 and Rachele Foschi2

Abstract We investigate the dependence properties of a vector of residual
lifetimes by means of the copula associated with the conditional distribution
function. In particular, the evolution of positive dependence properties (like
quadrant dependence and total positivity) are analyzed and expressions for
the evolution of measures of association are given.

1 Introduction

In the present note, we are interested in multivariate stochastic models re-
lated to a system composed by several components, whose behaviour can be
represented by a random vector X = (X1, X2, . . . , Xd) defined on a suitable
probability space and taking values in Rd+. Specifically, each Xi is a continu-
ous and positive random variable having the meaning of lifetime. For instance,
in reliability theory, Xi’s represent the lifetimes of certain disposals working
in the same system; in credit risk, Xi’s may represent the times-to-default of
some companies. Regardless of their specific interpretation, it has been long
recognized that the behaviour of X depends on both the individual behaviour
of each component and the dependence structure of X as interpreted by its
copula C (see [10] and the references therein).

Here we are interested in the evolution of the dependence structure when
one knows that all the components of X have survived up to time τ > 0. For
such a situation, the following facts can be revealed:

Free University of Bozen-Bolzano, School of Economics and Management, Bolzano (Italy),
e-mail: fabrizio.durante@unibz.it · IMT Advanced Studies, Lucca (Italy), e-mail:

rachele.foschi@imtlucca.it

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IMT Institutional Repository

https://core.ac.uk/display/12097173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Fabrizio Durante and Rachele Foschi

• the evolution of the dependence has “no jumps”, in the sense that it evolves
smoothly and does not admit drastic changes (as it would be in presence
of exogenous shocks);

• the evolution of the dependence is stable with respect to misspecification,
in the sense that “small” errors in selecting the dependence structure at
time τ = 0 do not amplify;

• some “weak” positive dependence among the components of X may dis-
appear when τ increases. Contrarily, a “stronger” positive dependence is
preserved at any time τ .

In the following, we clarify how these facts can be described rigorously in
terms of copulas and present some additional results, especially concerning
association measures, and relevant examples.

2 Copulas of residual lifetimes

For sake of simplicity, we treat only the case d = 2 (most of the considerations
can be easily extended to the general case). Thus, let us consider a pair
(X1, X2) of lifetimes whose copula is given by C. We denote by C the class
of bivariate copulas.

As known (see [4]), the dependence properties of the family of distribution
functions (Fτ )τ≥0 of

[X1 − τ,X2 − τ | X1 > τ,X2 > τ ]

can be described by means of a suitable copula process (Cτ )τ>0. Moreover, it
is convenient to reparametrize the latter copula process in terms of a param-
eter t ∈ (0, 1], obtaining the process (Ct)t∈(0,1]. In other words, C1 represents
the dependence structure of Fτ when τ = 0 and, as t tends to 0, Ct represents
the limiting dependence structure of Fτ as τ tends to ∞.

The following result allows us to derive some analytical properties of the
copula process (Ct)t∈(0,1].

Proposition 1 ([4]). For every t ∈ (0, 1], Ct is completely described by the
restriction of the copula C to [0, t]2. Specifically, one has

Ct(u, v) =
C(h−1t (uht(t)), k

−1
t (vkt(t)))

C(t, t)
, (1)

where ht(u) = C(u, t) and kt(u) = C(t, u) for all t ∈ [0, 1].

Formally, the transformation (1) can be described in terms of the following
mapping:

Ψ : (0, 1]× C → C , Ψ(t, C) = Ct.

Such a Ψ has the following features:
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• Let C ∈ C . The mapping Ψ(·, C) : (0, 1]→ C , t 7→ Ct, is continuous, i.e.,
Ct converges uniformly to Ct0 when t tends to t0. Roughly speaking, the
evolution of the dependence has no jumps (see [4]).

• Let t ∈ (0, 1]. The mapping Ψ(t, ·) : C → C is continuous with respect to
the L∞–norm. In other words, if the copulas C and C ′ are sufficiently close
each other (with respect to a suitable norm), then, for any t, Ct and C ′t
are sufficiently close each other (see [1]). Roughly speaking, the evolution
of the dependence is stable with respect to misspecification of C1.

Moreover, notice that Ψ can be interpreted as the action of a suitable semi–
group ((0, 1], ∗) on C . In particular, for all t, s ∈ (0, 1], we have (Ct)s =
Ψ(s, Ct) = Ct∗s (see [8, 9]).

It can be easily seen that the limit of Ct, as t tends to 0, may not exists.
To this end, it is enough to consider a special kind of ordinal sum of copulas
or a copula with fractal support (see, for instance, [1, Remark 3.3]). However,
when such a limit exists, it follows that the limiting copula is invariant under
the transformation defined in Eq. (1). For example, the independence copula
Π(u, v) = uv and the comonotone copula M(u, v) = min(u, v) are invariant;
moreover copulas belonging to the Clayton family of copulas {CClθ },

CClθ (u, v) =
(
max

(
0, u−θ + v−θ − 1

))−1/θ
, θ ≥ −1, θ 6= 0, (2)

are invariant (for more details, see [5, 6]).

3 Dependence of residual lifetimes

Now, suppose that C ∈ C satisfies some positive dependence property. Our
aim is to investigate whether the positive dependence is preserved by the
process (Ct)t∈(0,1]. First we introduce some definitions (see, e.g., [11]).

Definition 1. Let C ∈ C .

• C is PQD (positive quadrant dependent) if and only if C(u, v) ≥ uv for
all u, v ∈ [0, 1].

• C is TP2 (totally positive of order 2) if and only if for all u, u′, v, v′ in
[0, 1], u ≤ u′, v ≤ v′,

C(u, v)C(u′, v′) ≥ C(u, v′)C(u′, v). (3)

• C is PLR (positively likelihood ratio dependent) if and only if it is abso-
lutely continuous and its density satisfies (3).

Notice that PLR implies TP2; moreover, if C is TP2, then C is PQD. The
following result also holds.
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Proposition 2 ([4]). Let C ∈ C .

• If C is TP2, then Ct is TP2 for all t ∈ (0, 1].
• If C is PLR, then Ct is PLR for all t ∈ (0, 1].

If C is PQD, instead, Ct may not be PQD for some t (see e.g. [4, Ex-
ample 10]). In order to guarantee that positive quadrant dependence of C is
preserved by any Ct, we need some stronger conditions, as specified in the
following result.

Proposition 3 ([4]). Let C ∈ C . Then Ct is PQD for all t ∈ Λ ⊆ (0, 1] if
and only if, for all u, v, t ∈ Λ, u, v ≤ t,

C(u, v)C(t, t) ≥ C(u, t)C(t, v). (4)

In particular, C is said to be hyper-PQD if C satisfies (4) for Λ = (0, 1].
Another way to look at the dependence evolution of the process (Ct)t∈(0,1]

consists in introducing a suitable way to compare the copulas at different
times. To this end, we consider the following definitions.

Definition 2. Let C1, C2 ∈ C . C1 is smaller than C2 in the PQD order
(written C1 �PQD C2) if C1(u, v) ≤ C2(u, v) for all u, v ∈ [0, 1].

Definition 3. Let C ∈ C . Then (Ct)t∈(0,1] is increasing (in the PQD order)
if Ct′ �PQD Ct′′ for any t′ < t′′.

The following example shows that, regardless of the specific positive de-
pendence of C ∈ C , the dependence may evolve in different ways.

Example 1. Given a continuous and increasing function f : [0, 1]→ [0, 1] such

that f(1) = 1 and f(t)
t is decreasing on (0, 1], consider the copula

C(u, v) = min(u, v)f(max(u, v))

(see [3, 7] for more details about this construction). Such a copula C is TP2
(see [3]). Therefore, as follows by condition (4), C is hyper-PQD. Further-
more, by Proposition 2,

Ct(u, v) = min(u, v)
f(tmax(u, v))

f(t)

is TP2 for any t ∈ (0, 1]. The evolution of the strength of the dependence,
instead, is influenced by the choice of f . In particular, the following cases can
be considered.

• If f(t) = tα, α ∈ [0, 1], then C is a Cuadras–Augé copula (see [2]) and
Ct = C for every t ∈ (0, 1] (see also [1, Example 4.1]).

• If f(t) = αt + (1 − α), α ∈ [0, 1], then C is a Fréchet copula and,
for all t1, t2 ∈ (0, 1], t1 ≤ t2, we have Ct1 �PQD Ct2 . In particular,
limt→0+ Ct(u, v) = min(u, v).
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• If f(t) = min(αt, 1), α ≥ 1, then C is an ordinal sum of the copu-
las Π(u, v) = uv and M(u, v) = min(u, v) with respect to the parti-
tion ([0, 1/α], [1/α, 1]). Thus, for all t1, t2 ∈ (0, 1], t1 ≤ t2, we have
Ct1 �PQD Ct2 . In particular, limt→0+ Ct(u, v) = uv.

Thus, depending on f , the mapping t 7→ Ct may be constant, increasing or
decreasing in the PQD order. ut

4 Measures of association of residual lifetimes

The analysis of the dependence properties of Ct can be sometimes compli-
cated because of technical difficulties in computing Eq. (1). In such a case, it
could be convenient to consider some suitable association measures that are
related to copulas.

Here, we concentrate on the most widespread Kendall’s tau and Spear-
man’s rho, which measure the concordance between two random variables.
As known (see e.g. [12]), for every copula C, they are given by:

τK(C) = 4

∫
[0,1]2

C(u, v) dC(u, v)− 1,

ρS(C) = 12

∫
[0,1]2

(C(u, v)− uv) du dv.

To compute such measures for Ct, we assume here that C is absolutely con-
tinuous and, hence, Ct is absolutely continuous for all t ∈ (0, 1] (see [4,
Proposition 17]).

Proposition 4. Let C be an absolutely continuous copulas. For every t ∈
(0, 1], one has

• τK(Ct) =
4

C(t, t)2

∫
[0,t]2

C(x, y)∂212C(x, y) dxdy − 1;

• ρS(Ct) =
12

C(t, t)4

∫
[0,t]2

(C(x, y)C(t, t)−C(x, t)C(t, y))∂1C(x, t)∂2C(t, y) dxdy.

Proof. By the formula for calculating Kendall’s τ , one has

τK(Ct) = 4

∫
[0,1]2

Ct(u, v)∂212Ct(u, v)dudv − 1.

Therefore, by the change of variable x = h−1t (uht(t)) and y = k−1t (vkt(t)),

τK(Ct) = 4

∫
[0,t]2

C(x, y)∂212C(x, y)

∂1C(x, t)∂2C(t, y)
· ∂1C(x, t)∂2C(t, y)

C(t, t)2
dxdy − 1.

Analogously,
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ρS(Ct) = 12

∫
[0,1]2

(Ct(u, v)− uv)dudv

= 12

∫
[0,t]2

(
C(x, y)

C(t, t)
− C(x, t)C(t, y)

C(t, t)2

)
∂1C(x, t)∂2C(t, y)

C(t, t)2
dxdy,

which concludes the proof. ut

Notice that the measures of association of Ct only depend on the value of
C on the subdomain [0, t]2.

Finally, together with τK and ρS , a measure of dependence may be consid-
ered for the process (Ct)t∈(0,1]. Here we consider the Schweizer-Wolff’s index
σ (see [13]), given by

σ(C) = 12

∫ 1

0

∫ 1

0

|C(u, v)− uv|dudv.

By the same arguments in the proof of Proposition 4, it straightly follows
that

σ(Ct) =
12

C(t, t)4

∫ t

0

∫ t

0

|C(u, v)C(t, t)−C(u, t)C(t, v)|∂1C(u, t)∂2C(t, v)dudv.

It is immediate that, if C is PQD, then σ(C) = ρS(C). Therefore, when C
is hyper-PQD, σ(Ct) = ρS(Ct). However, in general, σ(Ct) is not directly
obtained from ρS(Ct) (see [11, Examples 5.18, 5.19]).

Example 2. Let us consider the copula

C(u, v) = uv + uv(1− u)(1− v).

In view of Proposition 4, for every t ∈ (0, 1], we have

τK(Ct) =
2t2

9(2− 2t+ t2)2
.

In particular, τK(Ct) → 0 as t → 0+. Analogously, for every t ∈ (0, 1], we
have

ρS(Ct) =
t6

3
,

and ρS(Ct) → 0 as t → 0+. Intuitively, the residual lifetimes are asymptoti-
cally (as the time τ tends to infinity) uncorrelated.

A stronger conclusion can be achieved by means of the σ index. Since C
is TP2 and hence hyper-PQD, σ(Ct) = ρS(Ct) for any t. Thus we also have
σ(Ct)→ 0 as t→ 0+, implying that the residual lifetimes are asymptotically
independent. ut
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5 Conclusions

We have considered a copula process that allows to study the dependence
behaviour of a random vector of lifetimes X, knowing that all the components
are surviving up to time τ . The study of such a copula process provides
a way for looking at the tail dependence of the joint distribution of the
vector. Moreover, the association measures related to the process may provide
another way for expressing how the residual lifetimes evolve when the time
increases.
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