2,684 research outputs found

    Efficiency of N use by wheat as a function of influx and efflux of NO sub 3

    Get PDF
    Since N assimilation is one of the most costly functions of a plant, its efflux before assimilation results in a serious energy cost and loss in efficiency which could decrease yields. Efficient crop production is critical to the Controlled Ecological Life-Support System (CELSS). The objective is to determine the extent of efflux of the N species NO3(-), NH4(+), NO2(-), and urea after uptake, and possible means of regulation. It was found that NO3(-) efflux became serious as its substrate level increased. Efflux/Influx (E/I) of 3NO3(-) was greater in darkness (35 pct) than in light (14 pct) and the ratio greatly increased with increased substrate NO3(-), (up to 45 pct at 10 mM). It seems advantageous to use the lowest possible nutrient concentration of NO3(-). The feasibility of using ClO3(-) as a trapping agent (competitive inhibitor of NO3(-) uptake) for effluxed NO3(-) was assessed and its toxicity determined

    Efficiency of N use by wheat as a function of influx and efflux of NO3

    Get PDF
    Since N assimilation is one of the most costly functions of a plant, its efflux before assimilation results in a serious energy cost and loss in efficiency which could decrease yields. Efficient crop production is critical to the Closed Ecology Life Support System (CELSS). The objective is to determine the extent of efflux of the N species NO3(-), NH4(+), NO2(-), and urea after uptake, and possible means of regulation. Researchers found that NO3 efflux became serious as its substrate level increased. Efflux/Influx (E/I) of NO3(-) was greater in darkness (35 percent) than in light (14 percent), and the ratio greatly increased with substrate NO3 (-), (up to 45 percent at 10 mM). It seems advantageous to use the lowest possible nutrient concentration of NO3(-). The feasibility of using ClO3(-) was assessed and its toxicity determined

    Hsp31, A Member of the DJ-1 Superfamily, is a multitaskingstress responder with chaperone activity

    Get PDF
    Among different types of protein aggregation, amyloids are a biochemically well characterized state of protein aggregation that are associated with a large number of neurodegenerative diseases including Parkinson’s disease, Alzheimer and Creutzfeldt-Jakob disease. Yeast, Saccharomyces cerevisiae is an insightful model to understand the underlying mechanism of protein aggregation. Many yeast molecular chaperones can modulate aggregation and misfolding of proteins including a-Syn and the Sup35 prion. Hsp31 is a homodimeric protein structurally similar to human DJ-1, a Parkinson’s disease-linked protein, and both are members of the DJ-1/ThiJ/PfpI superfamily. An emerging view is that Hsp31 and its associated superfamily members each have divergent multitasking functions that have the common theme of responding and managing various types of cellular stress. Hsp31 has several biochemical activities including chaperone and detoxifying enzyme activities that modulate at various points of a stress pathway such as toxicity associated with protein misfolding. However, we have shown the protective role of Hsp31’s chaperone activity can operate independent of detoxifying enzyme activities in preventing the early stages of protein aggregate formation and associated cellular toxicities. We provide additional data that collectively supports the multiple functional roles that can be accomplished independent of each other. We present data indicating Hsp31 purifed from yeast is more active compared to expression and purifcation from E. coli suggesting that posttranslational modifcations could be important for Hsp31 to be fully active. We also compare the similarities and differences in activities among paralogs of Hsp31 supporting a model in which this protein family has overlapping but diverging roles in responding to various sources of cellular stresses

    Paspalum notatum Grass-waste-based Adsorbent for Rhodamine B Removal from Polluted Water

    Get PDF
    The potential of Paspalum notatum grass waste to adsorb Rhodamine B dye from aqueous phase is reported in this research. The grass waste was activated and characterized through various techniques to analyze the chemical (FTIR), morphological (SEMEDX), and thermal (TGA) changes incorporated through the activation process. The pollutant removal efficiency of the raw and modified adsorbents was studied by varying different process parameters in a batch process. The maximum capacity of adsorption which was observed for grass waste and activated grass waste was 54 mg g–1 and 72.4 mg g–1 respectively. Among the various kinetic models, the pseudo-second order model gives the best regression results. However, the intraparticle diffusion-adsorption model showed that the diffusion within pores controlled the adsorption rate. Thermodynamic analysis of this process revealed that Rhodamine B adsorption was endothermic and spontaneous in nature. The results of this study show that grass waste has the potential to be used as an adsorbent for the treatment of colored water. This work is licensed under a Creative Commons Attribution 4.0 International License

    Use of untreated wastewater in peri-urban agriculture in Pakistan: risks and opportunities

    Get PDF
    Water reuse / Waste waters / Water quality / Groundwater / Irrigation practices / Soil properties / Environmental effects / Conjunctive use / Pakistan / Haroonabad

    Deterministic and Probabilistic Binary Search in Graphs

    Full text link
    We consider the following natural generalization of Binary Search: in a given undirected, positively weighted graph, one vertex is a target. The algorithm's task is to identify the target by adaptively querying vertices. In response to querying a node qq, the algorithm learns either that qq is the target, or is given an edge out of qq that lies on a shortest path from qq to the target. We study this problem in a general noisy model in which each query independently receives a correct answer with probability p>12p > \frac{1}{2} (a known constant), and an (adversarial) incorrect one with probability 1p1-p. Our main positive result is that when p=1p = 1 (i.e., all answers are correct), log2n\log_2 n queries are always sufficient. For general pp, we give an (almost information-theoretically optimal) algorithm that uses, in expectation, no more than (1δ)log2n1H(p)+o(logn)+O(log2(1/δ))(1 - \delta)\frac{\log_2 n}{1 - H(p)} + o(\log n) + O(\log^2 (1/\delta)) queries, and identifies the target correctly with probability at leas 1δ1-\delta. Here, H(p)=(plogp+(1p)log(1p))H(p) = -(p \log p + (1-p) \log(1-p)) denotes the entropy. The first bound is achieved by the algorithm that iteratively queries a 1-median of the nodes not ruled out yet; the second bound by careful repeated invocations of a multiplicative weights algorithm. Even for p=1p = 1, we show several hardness results for the problem of determining whether a target can be found using KK queries. Our upper bound of log2n\log_2 n implies a quasipolynomial-time algorithm for undirected connected graphs; we show that this is best-possible under the Strong Exponential Time Hypothesis (SETH). Furthermore, for directed graphs, or for undirected graphs with non-uniform node querying costs, the problem is PSPACE-complete. For a semi-adaptive version, in which one may query rr nodes each in kk rounds, we show membership in Σ2k1\Sigma_{2k-1} in the polynomial hierarchy, and hardness for Σ2k5\Sigma_{2k-5}

    Studies on the in vitro and in vivo antiurolithic activity of Holarrhena antidysenterica

    Get PDF
    Background: Holarrhena antidysenterica has a traditional use in the treatment of urolithiasis, therefore, its crude extract has been investigated for possible antiurolithic effect. Materials and methods: The crude aqueous-methanolic extract of Holarrhena antidysenterica (Ha.Cr) was studied using the in vitro and in vivo methods. Results: In the in vitro experiments, Ha.Cr demonstrated a concentration-dependent (0.25–4 mg/ml) inhibitory effect on the slope of aggregation. It decreased the size of crystals and transformed the calcium oxalate monohydrate (COM) to calcium oxalate dehydrate (COD) crystals, in calcium oxalate metastable solutions. It also showed concentration-dependent antioxidant effect against 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) free radicals and lipid peroxidation induced in rat kidney tissue homogenate. Ha.Cr (0.3 mg/ml) reduced (p \u3c 0.05) the cell toxicity and LDH release in renal epithelial cells (MDCK) exposed to oxalate (0.5 mM) and COM (66 μg/cm2) crystals. In male Wistar rats, receiving 0.75% ethylene glycol (EG) for 21 days along with 1% ammonium chloride (AC) in drinking water, Ha.Cr treatment (30–100 mg/kg) prevented the toxic changes caused by lithogenic agents; EG and AC, like loss of body weight, polyurea, oxaluria, raised serum urea and creatinine levels and crystal deposition in kidneys compared to their respective controls. Conclusion: These data indicate that Holarrhena antidysenterica possesses antiurolithic activity, possibly mediated through inhibition of CaOx crystal aggregation, antioxidant and renal epithelial cell protective activities and may provide base for designing future studies to establish its efficacy and safety for clinical use
    corecore