313 research outputs found

    Quenching of the Deuteron in Flight

    Get PDF
    We investigate the Lorentz contraction of a deuteron in flight. Our starting point is the Blankenbecler-Sugar projection of the Bethe-Salpeter equation to a 3-dimensional quasi potential equation, wqhich we apply for the deuteron bound in an harmonic oscillator potential (for an analytical result) and by the Bonn NN potential for a more realistic estimate. We find substantial quenching with increasing external momenta and a significant modification of the high momentum spectrum of the deuteron.Comment: 11 pages, 4 figure

    Eta-Helium Quasi-Bound States

    Full text link
    The cross section and tensor analysing power t_20 of the d\vec{d}->eta 4He reaction have been measured at six c.m. momenta, 10 < p(eta) < 90 MeV/c. The threshold value of t_20 is consistent with 1/\sqrt{2}, which follows from parity conservation and Bose symmetry. The much slower momentum variation observed for the reaction amplitude, as compared to that for the analogous pd->eta 3He case, suggests strongly the existence of a quasi-bound state in the eta-4He system and optical model fits indicate that this probably also the case for eta-3He.Comment: LaTeX, uses elsart.sty, 10 pages, 3 Postscript figures, Submitted to Physics Letters

    G0^0 Electronics and Data Acquisition (Forward-Angle Measurements)

    Get PDF
    The G0^0 parity-violation experiment at Jefferson Lab (Newport News, VA) is designed to determine the contribution of strange/anti-strange quark pairs to the intrinsic properties of the proton. In the forward-angle part of the experiment, the asymmetry in the cross section was measured for ep\vec{e}p elastic scattering by counting the recoil protons corresponding to the two beam-helicity states. Due to the high accuracy required on the asymmetry, the G0^0 experiment was based on a custom experimental setup with its own associated electronics and data acquisition (DAQ) system. Highly specialized time-encoding electronics provided time-of-flight spectra for each detector for each helicity state. More conventional electronics was used for monitoring (mainly FastBus). The time-encoding electronics and the DAQ system have been designed to handle events at a mean rate of 2 MHz per detector with low deadtime and to minimize helicity-correlated systematic errors. In this paper, we outline the general architecture and the main features of the electronics and the DAQ system dedicated to G0^0 forward-angle measurements.Comment: 35 pages. 17 figures. This article is to be submitted to NIM section A. It has been written with Latex using \documentclass{elsart}. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment In Press (2007

    Measurement of the Transverse Beam Spin Asymmetry in Elastic Electron Proton Scattering and the Inelastic Contribution to the Imaginary Part of the Two-Photon Exchange Amplitude

    Full text link
    We report on a measurement of the asymmetry in the scattering of transversely polarized electrons off unpolarized protons, A_\perp, at two Q2^2 values of \qsquaredaveragedlow (GeV/c)2^2 and \qsquaredaveragedhighII (GeV/c)2^2 and a scattering angle of 30<θe<4030^\circ < \theta_e < 40^\circ. The measured transverse asymmetries are A_{\perp}(Q2^2 = \qsquaredaveragedlow (GeV/c)2^2) = (\experimentalasymmetry alulowcorr ±\pm \statisticalerrorlowstat_{\rm stat} ±\pm \combinedsyspolerrorlowalucorsys_{\rm sys}) ×\times 106^{-6} and A_{\perp}(Q2^2 = \qsquaredaveragedhighII (GeV/c)2^2) = (\experimentalasymme tryaluhighcorr ±\pm \statisticalerrorhighstat_{\rm stat} ±\pm \combinedsyspolerrorhighalucorsys_{\rm sys}) ×\times 106^{-6}. The first errors denotes the statistical error and the second the systematic uncertainties. A_\perp arises from the imaginary part of the two-photon exchange amplitude and is zero in the one-photon exchange approximation. From comparison with theoretical estimates of A_\perp we conclude that π\piN-intermediate states give a substantial contribution to the imaginary part of the two-photon amplitude. The contribution from the ground state proton to the imaginary part of the two-photon exchange can be neglected. There is no obvious reason why this should be different for the real part of the two-photon amplitude, which enters into the radiative corrections for the Rosenbluth separation measurements of the electric form factor of the proton.Comment: 4 figures, submitted to PRL on Oct.

    On contribution of three-body forces to NdNd interaction at intermediate energies

    Get PDF
    Available data on large-angle nucleon-deuteron elastic scattering NddNNd\to dN below the pion threshold give a signal for three-body forces. There is a problem of separation of possible subtle aspects of these forces from off-shell effects in two-nucleon potentials. By considering the main mechanisms of the process, we show qualitatively that in the quasi-binary reaction N+d(NN)+NN+d\to (NN)+N with the final spin singlet NN-pair in the S-state the relative contribution of the 3N forces differs substantially from the elastic channel. It gives a new testing ground for the problem in question.Comment: 9 pages, Latex, 3 Postscript figure

    Evidence for Strange Quark Contributions to the Nucleon's Form Factors at Q2Q^2 = 0.108 (GeV/c)2^2

    Full text link
    We report on a measurement of the parity violating asymmetry in the elastic scattering of polarized electrons off unpolarized protons with the A4 apparatus at MAMI in Mainz at a four momentum transfer value of Q2Q^2 = \Qsquare (GeV/c)2^2 and at a forward electron scattering angle of 30<θe<40^\circ < \theta_e < 40^\circ. The measured asymmetry is ALR(ep)A_{LR}(\vec{e}p) = (\Aphys ±\pm \Deltastatstat_{stat} ±\pm \Deltasystsyst_{syst}) ×\times 106^{-6}. The expectation from the Standard Model assuming no strangeness contribution to the vector current is A0_0 = (\Azero ±\pm \DeltaAzero) ×\times 106^{-6}. We have improved the statistical accuracy by a factor of 3 as compared to our previous measurements at a higher Q2Q^2. We have extracted the strangeness contribution to the electromagnetic form factors from our data to be GEsG_E^s + \FakGMs GMsG_M^s = \GEsGMs ±\pm \DeltaGEsGMs at Q2Q^2 = \Qsquare (GeV/c)2^2. As in our previous measurement at higher momentum transfer for GEsG_E^s + 0.230 GMsG_M^s, we again find the value for GEsG_E^s + \FakGMs GMsG_M^s to be positive, this time at an improved significance level of 2 σ\sigma.Comment: 4 pages, 3 figure

    Measurement of Strange Quark Contributions to the Nucleon's Form Factors at Q^2=0.230 (GeV/c)^2

    Get PDF
    We report on a measurement of the parity-violating asymmetry in the scattering of longitudinally polarized electrons on unpolarized protons at a Q2Q^2 of 0.230 (GeV/c)^2 and a scattering angle of \theta_e = 30^o - 40^o. Using a large acceptance fast PbF_2 calorimeter with a solid angle of \Delta\Omega = 0.62 sr the A4 experiment is the first parity violation experiment to count individual scattering events. The measured asymmetry is A_{phys} =(-5.44 +- 0.54_{stat} +- 0.27_{\rm sys}) 10^{-6}. The Standard Model expectation assuming no strangeness contributions to the vector form factors is A0=(6.30+0.43)106A_0=(-6.30 +- 0.43) 10^{-6}. The difference is a direct measurement of the strangeness contribution to the vector form factors of the proton. The extracted value is G^s_E + 0.225 G^s_M = 0.039 +- 0.034 or F^s_1 + 0.130 F^s_2 = 0.032 +- 0.028.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Letters on Dec 11, 200

    Exclusive Photoproduction of Large Momentum-Transfer K and K* Mesons

    Full text link
    The reactions gamma p -> K+ Lambda and gamma p -> K* Lambda are analyzed within perturbative QCD, allowing for diquarks as quasi-elementary constituents of baryons. The diquark-model parameters and the quark-diquark distribution amplitudes of proton and Lambda are taken from previous investigations of electromagnetic baryon form factors and Compton-scattering off protons. Unpolarized differential cross sections and polarization observables are computed for different choices of the K and K* distribution amplitudes. The asymptotic form of the K distribution amplitude (proportional to x1 x2) is found to provide a satisfactory description of the K photoproduction data.Comment: 32 pages, 7 figures available as tared, compressed and uuencoded PS-file

    Proton--induced deuteron breakup at GeV energies with forward emission of a fast proton pair

    Get PDF
    A study of the deuteron breakup reaction pd(pp)npd \to (pp)n with forward emission of a fast proton pair with small excitation energy Epp<E_{pp}< 3 MeV has been performed at the ANKE spectrometer at COSY--J\"ulich. An exclusive measurement was carried out at six proton--beam energies Tp=T_p=~0.6,~0.7,~0.8,~0.95,~1.35, and 1.9 GeV by reconstructing the momenta of the two protons. The differential cross section of the breakup reaction, averaged up to 88^{\circ} over the cm polar angle of the total momentum of the pppp pairs, has been obtained. Since the kinematics of this process is quite similar to that of backward elastic pddppd \to dp scattering, the results are compared to calculations based on a theoretical model previously applied to the pddppd \to dp process.Comment: 17 pages including 6 figures and 1 table v2: minor changes; v3: minor change of author list; v4: changes in accordance with referee remark

    Phenomenology of the Deuteron Electromagnetic Form Factors

    Full text link
    A rigorous extraction of the deuteron charge form factors from tensor polarization data in elastic electron-deuteron scattering, at given values of the 4-momentum transfer, is presented. Then the world data for elastic electron-deuteron scattering is used to parameterize, in three different ways, the three electromagnetic form factors of the deuteron in the 4-momentum transfer range 0-7 fm^-1. This procedure is made possible with the advent of recent polarization measurements. The parameterizations allow a phenomenological characterization of the deuteron electromagnetic structure. They can be used to remove ambiguities in the form factors extraction from future polarization data.Comment: 18 pages (LaTeX), 2 figures Feb. 25: minor changes of content and in Table
    corecore