103 research outputs found

    A General Framework for Sound and Complete Floyd-Hoare Logics

    Full text link
    This paper presents an abstraction of Hoare logic to traced symmetric monoidal categories, a very general framework for the theory of systems. Our abstraction is based on a traced monoidal functor from an arbitrary traced monoidal category into the category of pre-orders and monotone relations. We give several examples of how our theory generalises usual Hoare logics (partial correctness of while programs, partial correctness of pointer programs), and provide some case studies on how it can be used to develop new Hoare logics (run-time analysis of while programs and stream circuits).Comment: 27 page

    Self-Formalisation of Higher-Order Logic: Semantics, Soundness, and a Verified Implementation

    Get PDF
    This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s10817-015-9357-xWe present a mechanised semantics for higher-order logic (HOL), and a proof of soundness for the inference system, including the rules for making definitions, implemented by the kernel of the HOL Light theorem prover. Our work extends Harrison’s verification of the inference system without definitions. Soundness of the logic extends to soundness of a theorem prover, because we also show that a synthesised implementation of the kernel in CakeML refines the inference system. Apart from adding support for definitions and synthesising an implementation, we improve on Harrison’s work by making our model of HOL parametric on the universe of sets, and we prove soundness for an improved principle of constant specification in the hope of encouraging its adoption. Our semantics supports defined constants directly via a context, and we find this approach cleaner than our previous work formalising Wiedijk’s Stateless HOL.The first author was supported by the Gates Cambridge Trust. The second author was funded in part by the EPSRC (grant number EP/K503769/1). The third author was partially supported by the Royal Society UK and the Swedish Research Council

    Double Negation Semantics for Generalisations of Heyting Algebras

    Get PDF
    This paper presents an algebraic framework for investigating proposed translations of classical logic into intuitionistic logic, such as the four negative translations introduced by Kolmogorov, Gödel, Gentzen and Glivenko. We view these as variant semantics and present a semantic formulation of Troelstra’s syntactic criteria for a satisfactory negative translation. We consider how each of the above-mentioned translation schemes behaves on two generalisations of Heyting algebras: bounded pocrims and bounded hoops. When a translation fails for a particular class of algebras, we demonstrate that failure via specific finite examples. Using these, we prove that the syntactic version of these translations will fail to satisfy Troelstra’s criteria in the corresponding substructural logical setting

    Comprehending Isabelle/HOL's consistency

    Get PDF
    The proof assistant Isabelle/HOL is based on an extension of Higher-Order Logic (HOL) with ad hoc overloading of constants. It turns out that the interaction between the standard HOL type definitions and the Isabelle-specific ad hoc overloading is problematic for the logical consistency. In previous work, we have argued that standard HOL semantics is no longer appropriate for capturing this interaction, and have proved consistency using a nonstandard semantics. The use of an exotic semantics makes that proof hard to digest by the community. In this paper, we prove consistency by proof-theoretic means—following the healthy intuition of definitions as abbreviations, realized in HOLC, a logic that augments HOL with comprehension types. We hope that our new proof settles the Isabelle/HOL consistency problem once and for all. In addition, HOLC offers a framework for justifying the consistency of new deduction schemas that address practical user needs

    On Definitions of Constants and Types in HOL

    Get PDF
    corecore