3,750 research outputs found

    Impact of knee marker misplacement on gait kinematics of children with cerebral palsy using the Conventional Gait Model — a sensitivity study

    Get PDF
    Clinical gait analysis is widely used in clinical routine to assess the function of patients with motor disorders. The proper assessment of the patient’s function relies greatly on the repeatability between the measurements. Marker misplacement has been reported as the largest source of variability between measurements and its impact on kinematics is not fully understood. Thus, the purpose of this study was: 1) to evaluate the impact of the misplacement of the lateral femoral epicondyle marker on lower limb kinematics, and 2) evaluate if such impact can be predicted. The kinematic data of 10 children with cerebral palsy and 10 aged-match typical developing children were included. The lateral femoral epicondyle marker was virtually misplaced around its measured position at different magnitudes and directions. The outcome to represent the impact of each marker misplacement on the lower limb was the root mean square deviations between the resultant kinematics from each simulated misplacement and the originally calculated kinematics. Correlation and regression equations were estimated between the root mean square deviation and the magnitude of the misplacement expressed in percentage of leg length. Results indicated that the lower-limb kinematics is highly sensitive to the lateral femoral epicondyle marker misplacement in the anterior-posterior direction. The joint angles most impacted by the anterior-posterior misplacement were the hip internal-external rotation (5.3° per 10 mm), the ankle internal-external rotation (4.4° per 10 mm) and the knee flexion-extension (4.2° per 10 mm). Finally, it was observed that the lower the leg length, the higher the impact of misplacement on kinematics. This impact was predicted by regression equations using the magnitude of misplacement expressed in percentage of leg length. An error below 5° on all joints requires a marker placement repeatability under 1.2% of the leg length. In conclusion, the placement of the lateral femoral epicondyle marker in the antero-posterior direction plays a crucial role on the reliability of gait measurements with the Conventional Gait Model

    The Role of Cuticular Strata Nomenclature in the Systematics of Nemata

    Get PDF
    A system of cuticular nomenclature based on the strata observed in Enoplia is proposed. Nematode cuticle is divided into four fundamental strata: epicuticle, exocuticle, mesocuticle, and endocuticle. Application of this system allows the correlation of complementary strata throughout Nemata. The major taxonomic categories within Nemata are differentiated on the basis of their cuticular strata as compared with the Enoplia model cuticle

    Tribune: Genus and Family: Concepts and Natural Groupings

    Get PDF
    A little over two hundred and fifty years ago Linnaeus (= Linne) began to maneuver his concepts of animal arrangement into Aristotle’s logic of classes. Twenty-three years elapsed between the publication of his first and tenth editions of Systema naturae. The tenth edition (1758) is the acknowledged starting point of zoological nomenclature. Often forgotten but highly significant is the fact that he spent those intervening twenty years orchestrating the then known animals into the world of philosophy

    Alien Registration- Pomerleau, Joseph Armand R. (Auburn, Androscoggin County)

    Get PDF
    https://digitalmaine.com/alien_docs/30194/thumbnail.jp

    Slow flows of yield stress fluids: complex spatio-temporal behaviour within a simple elasto-plastic model

    Full text link
    A minimal athermal model for the flow of dense disordered materials is proposed, based on two generic ingredients: local plastic events occuring above a microscopic yield stress, and the non-local elastic release of the stress these events induce in the material. A complex spatio-temporal rheological behaviour results, with features in line with recent experimental observations. At low shear rates, macroscopic flow actually originates from collective correlated bursts of plastic events, taking place in dynamically generated fragile zones. The related correlation length diverges algebraically at small shear rates. In confined geometries bursts occur preferentially close to the walls yielding an intermittent form of flow localization.Comment: 4 pages, 4 figure

    Classical Loop Actions of Gauge Theories

    Full text link
    Since the first attempts to quantize Gauge Theories and Gravity in the loop representation, the problem of the determination of the corresponding classical actions has been raised. Here we propose a general procedure to determine these actions and we explicitly apply it in the case of electromagnetism. Going to the lattice we show that the electromagnetic action in terms of loops is equivalent to the Wilson action, allowing to do Montecarlo calculations in a gauge invariant way. In the continuum these actions need to be regularized and they are the natural candidates to describe the theory in a ``confining phase''.Comment: LaTeX 14 page
    • …
    corecore