The Effect of 1-Naphthaleneacetic Acid and Kinetin on Leaf Abscission in Coleus blumei Benth

Armand R. Loffredo
Eastern Illinois University
This research is a product of the graduate program in Botany at Eastern Illinois University. Find out more about the program.

Recommended Citation

Loffredo, Armand R., "The Effect of 1-Naphthaleneacetic Acid and Kinetin on Leaf Abscission in Coleus blumei Benth" (1968).
Masters Theses. 4124
https://thekeep.eiu.edu/theses/4124

To: Graduate Degree Candidates who have written formal theses.

Subject: Permission to reproduce theses.

The University Library is receiving a number of requests from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow theses to be copied.

Please sign one of the following statements.

Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings.

I respectfully request Booth Library of Eastern Illinois University not allow my thesis be reproduced because it may

Author

ON LEAF ABSCISSION IN COLEUS BLUMEI BENTH. (TITLE)

BY

Armand R. Loffredo

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science

IN THE GRADUATE SCHOOL, EASTERN ILLINOIS UNIVERSITY CHARLESTON, ILLINOIS
\qquad

I HEREBY RECOMMEND THIS THESIS BE ACCEPTED AS FULFILLING this part of the graduate degree cited above

Aug 12,1968
$\frac{\text { Aug } 12,1968}{\text { dote }}$

ACKINOW DELGMENES

The nuthor would fike io express epprectaidon to itr Turty M. Weldinet ior hit quidance and to the members of the graduate commitee, Ur. Iohn Kusa, Dr. Richard smith, Dr. Grant Gray, and Dr. Jonn ebinger, ior their useful suggestlons.

CONTENTS

Page
INTRODUCTION .
METHODS गND MATERIALS 8
RESULTS AND DISCUSSION 24
SUMMARY 3-1
REFERENCES 35

ILLUE TRNTIUNS

Figure Page

1 Coleus blumei Benth.
? Materials used to make weighted gleus caps . . 10
3 Wi.ighted glass caps 11
4 Weighted glass caps on petiole stumpe il
3 Chart of results of experiment i 15
5 Chart oi reaules of experiment 2 17
7 Chart of results of experiment 3 20
8 Chart of results of enperiment i 22
9 Chart of results of experiment 5 24
i) Ciart of results of experiment 6 26

Tsble
1 Petiole lengths and leaí blade weights of experiment 32 2
2. Petiole lengtios bici lezf blade weights of experiment $\{20$

3 Petiole lengths and leat blade weights of experimant 30
4 Petiole lengths and leas blade welghts of experiment 631

INTROUUCTION

In 1933, Lalbach showed that auxins were important in organ absolssion. Three yeare later, LeaRue (1936), using synthetic auxins, was able to delay jeaf-abscission in Coleus. This effect has been since demonstrated by many workers using a variety of plants. Generally, the auxin content of young leaf is high but, as the leaf matures, it gradually declines. When the auxin content reaches a low level, as to common in the stem, the leaf woll soon abscise. The decilne of auxin content usually begins as the leaf approaches full size. In addition, the basipetal polarity of movement and probably the transport effectiveness ore adversely affected (Mal 1934). Thus, the movement of auxin becomes non-directional and there probably is a decrease in its velocity.

The movement of auxin is probably an active transport since its velocity ts greater than the velocity of diffusion and it can move agalnst a concentration gradient. Active transport relles on metabolic processes as is Indicated by les sensitivity to metabolic inhsbitors (duBuy \& Olson, 1940) or Low oxygen levels (Gregory and Hancock, 1955). In addition, Hertel (1962) thought that the transport of auxin out of
tissues wat a secretory process slnoe trilodobenzolc acid Inhlbited Its movement.

The work of Secher \{1967\}, who used subcellular fractions of bean endocarp, indicates that auxin acts primarily to atimulate synthesis of RNA and, therefore, Indirectly enhances the production of protetn. It may be that thse effect is not primary in jeef blede9. Guring the growth of leaves of vascular plants, there is usually a reletively large amount of auxin produced but, as Miller and Kuraisht (1959) demonctrated, the effoct of auxin on the growth of the leaf-blade is usually rainute. It seems reasonable to asaume that a decrease of auxin may be directly related to a decilne in the metabolic effetency of the leat cella. With seneacence, there is a decline of protein and RNA costent (Botger and Wollgiehn, 1958). In addition, carbohydrates are hydrolywed, there are loses of arganic acids (Vickery ot al, 1935), and many nutpiente move out of the lesf.

During senescence, there are many chenges in the blocheonietry of a lat, thus making it difflcult to determine exactiy which of the chemical change are responsible for the absetssion phenomenon. It should be noted that leopold considers abectssion to be an active process. This theory if supported by data which lllustrate that abscigsion 10 suppremesd by a defletency of carbohydrate (Biggs and

Leopoid, 1957) or axyen (Cams ot al. 1951).

Several theortes have been portulered concersing the cause or cauces of abscisalon. Gawadl and Avery (1950) proposed that a cemescont leaf produces ethylene gas which initlates abselwsion when the accelersting effect of the ethylene is greater chan the delaying Influence of auxio. In 1985. Addicott, lysch and Carns mopesed that the concentration gradieat of the euxin in the leaf. as related to the isem, was respansible for abscission. This theory is bosed upon the following observations: When auxhs is applied to the blede (distal to abselssien layer), abscisston so selayed, but when appilet to the alem (oroximal to abecteston layer). absolision ts accelerated. This theory sounds reaseable, but research of Caur and Laopold (i955) and other workers indicates that the absolute concentration of auxin at the abscission sone is mare lmpartant in demeraining whether abscle\#lon will or will not occur than te the fradlent acrosa the absclustion layer. In 18:58, Blgge and Leopold develood e theory steting shat hioh concontrationg of auxin inhlblted absctsaion but low concentrathons promoted it. This ldea has been since shaken by the observafion that ebecigsica of old leaves theither promoted nor suppesesed by low auxln concoatrations. In addtion, the amount of sime that elapses after the blade ig excised and before the ourin in apolied can detormine whether abscission is delayed or accelerated. Since
the work of Ozborne (1955), which ghowes that diffusates of old leaves contalned substance or substancea that promoted absctselon of petiole explants, a new and posalbly more accurate theory has been developed. According to Leopold (1964), "Abscisilion appears. then, to be a correlative effect in which the lesp blade or other organ (fower, frult) eupprezses the cellular chonges which lead to separation, and this suppression involves the flow of auxin from the leaf to the abscteston zose. is feterloration processes set in. however, many matertals aro exported from the leaf. Inciudlng some which can otimulate abscission development." Supporing this poins Of view ts the fact, observed by many workers, that the older a leaf is the smaller will be the affect of auxin tseatment. In addtion, blockace of the flow of auxin (in young leaves) will oause premature sbectesion. This has Deen demonerated by the work of Sequalre and Steeves (i9S4) with coffee plants and the pathogentc funges Omp!ally flaytda. Lestons on the petiols of coffec lesves resulted in early bscission. It wos lound that the fungus producod on onsyme which destroyed Indoleacntic acid (Ln). iherolore preventing a sufflciont upply of auxis from reaching the abeclegion zone. ubscission of infected leaves could be prevented by the oddition of IAA below the levton.

Kinetin ia noted to have an effect upon the moblilestion of nutrients (Mothes et al. 1959). Tissues trented with kinetin show on
increase in nutrients, protein (Mothes, 1960), and RNA (viollgiehn, 1965). It has been demonstrated thai when kinetin is applied proximally or distally to the abscission zone, leaf abscission is accelerated. However, when it is applied to the abscission zone, abscission 18 delayed (Osborme and Moss, 1963). The probable eifect of the kinetin is the mobllization of nutrients from the surrounding tissues. These nutrients are then transported to the area of high kinetin content. Some of these compounds may stimulate the abscission process. For example, when these compounds pass through the abscission zone, the effect may be the acceleration of abscission. The reason for the delay of abscission when the kinetin is applied to the abscission zone may be the result of an increase in various metabolic processes which use these stimulating compounds as fast as they move into the area. An indication of other metabolic effects of kinetin may be shown by the experiments of vonAbrams and Pratt (1967). They found that when 1 -naphthaleneacetic acid (NAA) was added to kinetin, ite senescencerretarding effect was reduced but the accumulation of labeled metabolites was enhanced. Therefore, NAA may have interfered with an effect of kinetin which was involved with a process other than mobllization. The reduction of the kinetin senescence-retarding effect by NAS was greater in young leaves than in old leaves (vonAbrams and Pratt, 1966). In addition, it should be noted that Sacher (1967) reported the variability of kinetin effect on

RNA synchesta in subcollular fraciona of bean endocarp. In some of the experimenti, kinetin stimulated, and in sorse, inhtbited, RNA production; shis may indicate that very silghe fifferences in environment may have a great influence on the action of kineiln.
rnorber eflect of auxin is the phenomonon of apical dominance In whlch auxin, produced by the aplcal bud, inhlblis the growin of ihe lateral buds. Jacobs and Cise (1985) sound that indoleaceac acid plus gibberellic acid, when applled so decaptiated Rigum stumps. malntained aploal domlnance more effectuely then indoleaceric acid alone. Thelr work indicated that gibborellic acia may inorease the trensport of INA or may be "auxin saving" since is resulted in a greater amount of functioning IRA to be pregent a: a greater diEsance from the site of application. Not anly did there appeor to be a synergism beiween IA: and Got but also between IAA and kinetin (Davia, Eeth, Wereing, 1366). Davis, Seth and Wareing temonstrated an enhancing effect when kinetin was applled with lif. They thought the effect of kinetin was posatbly a result of an increased uptake end trancport of IAA or that the metabollies are mobllized from the laterai budy to the ares of kinetin opplication. It seems reasonable that both modes of action may occur simultaneously.
nother axample of the synerglstic effect of kineth and If was demonstrated by seth and Wareing (i967). In thetr experiment,
pefuncles of developing fults (frults removed) were treated with kinesin and lan. Their resulta showed an incresse in the traneport of radionctive metabolites in the kinetin and ind ireated plants as compared so the planis treated only with IAA.

Since a byergistic effect of kinetin and ouxin was demonstrated in apical dominance and in metabolite tranapart in peduncles of developing iruits, it moy be that a sfriter affect occurs in the phenomenon of leat absclssion. In this study, the effects of kinetin and NAA will be observed to see if they are eymergitate in leaf bactasion.

MATERIALS AND METHODS

Goleus blumet Benth. (Figure 1) plants, which originaíed from the same clone, were used for this expariment. These plants were grown in the greenhouse using atertle poting intxture. To avold possible adverse environmental influences, the plants were planted ta five-inch pots which were spread out to avola crowding.

The hormones were mixes in lanolin, using the following concentrations: (1) 10 mg . 1-naphthateneacettc (NAA) in 20 ml . of lanolin and (2) 10 mg . NAi plus 10 mg . of k (netin in 20 ml . of lanolin. These mbxtures were stored at $3^{0} 5$ until needed.

In order to Insure that the petioles would fall off the stem when the abscteftion layer formed, wolghted glass caps were used. These olass caps also simplifled the appltcation of the hormoner. The hormone was snjected into each cap with a hypodermic syringe. Therofore, applleation of hormone and weighting of the pettole could be accomplished in one operotton.

The gloss caps were made from $6 \times 50 \mathrm{~mm}$ test tubes by cutting off opproximately $1 / 4^{\prime \prime}$ of the sealed end with a nichrome wire.

[^0]Then, ane hoh losget of ys stotro was glued to the side of the !'in cep noar its opon end. Plnally, a weifht consising of lead snot was clampod to the opposite end of ihe siting (Figurez 2 and 3). In ihis experfiment, bleck stringe were used to injlca:o auxin and brown strings: aunts plus klatin. In order to faclidtaco numbering, the 1 ollowtor oolor code wa: devised.
(i) no polnt
(9) green - red - green
(a) red
(i0) green - yellow - green
(3) green
(ii) yellow - red - yellow
(8) yollow
(12) yellow - green - yellow
(j) red - green
(13) reju - green - yellow
(5) res - yellow
(14) green - res - yellow
(7) red - green - red
(1i) yellow - red - green
(8) red - yollow - red

The color cambinations were painted on the glass caps with the tirst color boing applied io the tip. One set of weighted glass oxps constired of fifteen pairs, half with black stelngs and half with brown strings. Six sets of glass caps were maye. These ware disclngulshod from each other by the color of the lead welghts.

In this experiment, the main stem refaris to the largeat stam. Stems o. b, c.etc., ars leteral items growing frommaln stem. Tine flest - 6 ieaf palrs of the upper porison of the atem were not

Figure 1
Coleus blumei Benth.

Figure 2
Materials used to make weighted glass caps

Figure 3
Weighted glass caps

Figure 4
Weighted glass caps on petiole stumps
used. Petloles from these younger leaves take seversh week to fall off ond were, tharolore, not considered in inse study. The leaf polfe Were numbered from the top of the atems to the base. When it had been determised whion leaves were to be used, ite blades were excised, oasked, and saved for later meighing. in addition, the petioles were meesursd before the glass ceps contelaing hormone were placed over the pottole istumps. After the plants had been prepared and pleced in the growth chamber, the blades were woighed and the weight recorded.

The tirst two groups of piante were treated in the following manner. One of the petiole stumps of wach opposite pair was reated with lanolin only asd thls was compared to the othor stump which was treated with elther NAA or NAA pius klactin. dince tho leaf palss varied in age, the age not determined, it was impossible to Wee thia date for comparison with bater expertments but, the repulis Ald demonstrate the effectivenesi of the harmones. In the iast four experimenss, one petiole stump of eoch pair of opposite leaves was treated with auxin and ane with auxin plus kineiln. Ihis arrangoment gove a compartaon of swis leaves of equal age. inforlunateiy, the micso-enviromment of each leaf variod, as evidenced by the flfferences In blade weights and petlole lengths of opposite patrs. However, stnce the age of a leal has a very pronounced eifect on the tho reautred
for ite formation of tite absciosion layer, it seemed reatonable to assume that the best comparison could be maje using leaves of equal age.

The preparad planti (figure i) were placed in a Sherer plant growth chamber, model number CEL $25-7$. Fuli sluoreacent and incandescent lighting was used. The photoperbac was adjusteis 10 zixteen houre dayilght and elght hours darkness with a day temperature of $80^{\circ} \mathrm{F}$ and a nigat iemperature of $73^{\circ} \mathrm{F}$. A stream of air was bubbieu itrough a container of water to help analstain the humidity in the chamber. line pois were placed la dishe witch containais one inch or less of water. The plents were checked every twelve hours and the poiftions of the petioies thet had iallen were secorded.

RESULTS AND DISCUSSION

The tables and charts (Figures 5-10 and Tables 1 - 4)
Indicate the results of the experiments. In experiments 1 and 2 (Figures 5 and 6), the suxin and auxin-plus-kinetin-treated petiole stumps fell first in 26 out of 28 leaf poirs. This demonstrates the effectiveness of the hormones since most of the treated petioles fell before the untreated petio!es. In addition, the leaf pairs in which the treated patioles did not fall furst were lower leaves and, therefore, older. acoording to Osborse and Moss (1963), kinetin accelerates abscission when applied dictolly to the abscission zone. In this study, the kinetin treated petioles show a tendency to delay abscission slightly as indicated by the following data: The treated and untreated petioles fell suring the same time interval in 18 leaf pairs (Figures 5 and 5). Kinetin-treated petioles fell first in 2 leaf patrs and, in 8 leaf pairs, the untreated petiole fell ilrst. These results are not similar to those reported by Osborne and Moss and the reasons for this difference are not known.

In 22.3% of the leaf pairs, the NAA-treated petioles fell off flrst and in 67.2\%, the NAA-plus-kinetin-treated petioles fell off

Ftgure 5 Experlment number 5 started 20 February 10. 1968. Hormone treated peldolen . . unlroated Detloled x. Both petioles foll during same interval 0 . The treated petioles of leaf patrs $1-14$ were rreated with auxin, $15-28$ with auxin plus kinetin, and $29-42$ with kinesin.

N:amber of Leaf Pairs
*These petioles did not fall within the time allotted.
Figure 6 Experiment nuaber 6 started on March 1, 1968. Hormone treated petloles - untreared petioles x. Both pettoles fell durlag ram interval o. The reated petloles of leaf paire 1 - 14 were treated with auxin, $15-28$ with auxin plua kinetin, and 29-12 with klnetin.

*These petioles did not fall within the time allotted.
firs: ©igures 7 - 10). In the remaining 11. 3%, both petioles iell during the same twelve hour Interval. In addition, there were ten leaf pairs of which nolther peitole had fallen when the experiments were terminated. The Dercentages were computed ueing only the palrs of which one or both petloles had fallen in the time allotted.

Interpretation of the data indicated that NAA plus kinetin treatment is less efficient at delaying absclesion than the auxin alone. No correlation with delay or acceleration of absctestion could be found by comparing leaf welghts or petiole lengths (isbles 1-4) with the the required for absolaston. A correlation may have been posstble if the leat getis could have been separated according to age and each age group compared.

Xaushikz (1965) noticed a definite seasonal change in the thme interval resulsed for abscisaion of both controls and inf-treated petioles of Coleus. The time required for absctssion in winter was much longer than in summer. The eame tendency is noticed in this study when the approximate averages of the time required for abscinaion in these expertments are compared. The average time of absctssion decreases with the increase of day length (a.g., auxinreated - Rprll - 152 hours and - June - 110 hours). Even though the plants were placed in a growth chamber with controlled condltlons, the data Indicate that the pre-treatment environment may have Influenced the results. In addition, all the plants used for

Figure 7 Experiment number 7 gtarted on Agrll 7. 1968. Aurin iseased potioles - , auxin plus kinetin ereted petioles x. Both petioles fel! aring the eame lime latervel 0 .

Nivumber of Leaf Pairs
*These petioles did not fall within the time allotted.

Flgure 8 Experiment number 8 storted on May 12. 1968. Auxis treated petsoles. . auxin plus kineiln treated petlole: X. Bren pestoles sell during the same time interval o.

*These petioles did not fall within the time allotted.

Floure 3 Experiment number 3 tstarted on June 7. 1968. Auxin treated petioles - auxin plus kinetin rrestel pettoles x. Botis pettolee fall during the same time interval 0 .

Number of Leaf Pairs
*These petioles did not fall within the time allotted.

「loure 10 Lxparimeni number 10 ztasted on June 8.1968. fiuxin reated petioles. . duxin plus kinetin treesed pelloles x. Both petlolea fell furing the some time interval o.

Number of Leaf Pairs
*These petioles did not fall within the time allotted.

Table 1.
Leaf blede welghts and petiol: lengtis of expertment number 3.

$\begin{aligned} & \text { locef } \\ & \text { Patr } \end{aligned}$	Biade Welont (cm.)		Petlole Lengths (om.)	
	fuxin	Suxin + Kinetin	Auxin	Auxin + Kinetin
1	. 88	. 87	3.8	3.6
2	. 80	. 75	1.0	3.6
3	. 65	. 89	4.3	3.0
3	. 48	. 33	2.8	2.6
5	. 65	. 53	4.3	4.0
6	. 28	. 21	2.2	2.2
9	. 94	. 81	3.6	1.8
8	.9?	. 87	6.2	3.8
9	. 65	. 83	3.1	4.0
10	. 66	. 82	3.8	4.8
: 1	. 38	. 52	1.2	4.4
12	. 24	. 17	3.0	2.4
13	. 49	. 48	3.2	3.0
:4	. 88	- 80	3.2	2.3
45	. 21	. 28	2.4	2.5
is	1.28	1.21	1.1	2.8
$!5$	1.21	4.39	1.1	1.9
18	2. 23	-. 53	4.5	3.8
19	1.37	1. $\$ 1$	4.7	4.0
20	1. 47	1.80	1.1	4.0
21	1.21	. 28	4.0	1.2
22	. 83	. 96	3.7	3.6
23	. 18	. 68	2.6	2.8
31	. 61	. 72	2.5	2.5
25	. 57	. 86	2.9	3.2
28	. 55	. 58	2.7	2.5
27	. 23	. 37	2.8	1.9
28	. 27	. 25	2.0	1.9
29	. 41	. 32	2.9	2.4
30	. 34	. 32	2.2	2.1
31	2. 35	1.21	3.0	2.8
42	2. 48	2.31	3.5	3.8
33	1.88	1. 44	1.2	4.4
34	4.40	$\therefore 34$	4.4	4.8
35	1.22	-. 18	4.5	4.8
. 66	1.04	1.14	1.3	4.2
37	1.10	1.11	1.9	3.9
38	. 91	. 73	1.6	4.1
d9	.12	. 37	2.9	2.7
40	. 53	. 59	3.1	2.5
41	. 36	. 54	2.1	3.5
42	. 31	.22	2.7	2.3

Table 2.
leai blade welghta ans petiole lengthe of xperiment number 4.

Biade Welghts (om.)			Petiole leagthe (cm.)	
1	1.15	1.30	\&. 1	4.8
2	3.04	. 90	4, ?	4.1
3	1.12	$\therefore .37$	2.3	5.2
4	. 95	1.27	4.1	1.4
5	. 99	1.13	+. 2	1.8
6	. 35	$\pm .15$	5.0	4.8
7	. 73	. 75	3.4	3.3
8	. 8 ?	. 70	3.7	3.2
9	. 85	. 84	3.7	3.8
10	. 68	.19	4.7	. 7
12	. 71	. 72	3.5	5.0
¢ 2	. 78	. 67	4.3	4.8
13	. 28	. 41	2.5	3.0
14	. 23	. 39	2.4	1.0
¢ 5	1.18	1.21	3.9	3.5
16	1.28	i. 15	3.8	3.8
17	2. 22.	3.07	3.9	4.0
18	-.d3	. 87	3.3	3.9
18	i. 02	. 74	3.8	4.1
20	\%.09	1.35	3.0	3.1
21	1.17	1.52	3.0	3.2
22	¢. 05	-. 42	3.5	3.7
23	. 89	3.42	3.8	4.0
21	. 88	. 95	3.0	3.7
25	. 24	. 30	2.2	2.7
26	. 28	. 30	3.0	2.9
27	.17	. 29	1. 8	2.8
28	. 17	. 16	2.2	2.0
29	b. 60	1.33	3.7	3.3
30	1.29	1.50	3.1	3.4
31	1.45	1.18	4.5	3.8
32	. 9 !	$\therefore .26$	3.7	3.9
13	.70	. 76	3.7	3.3
34	. 59	. 65	3.7	3.5
35	1.48	i. 26	3.5	3.9
36	1.20	1.16	3.6	3.3
37	1.19	\$. 17	3.5	4.3
38	. 84	2.04	3.7	4.1
39	. 75	. 75	3.2	3.0
40	. 35	4.16	2.7	3.6
41	. 53	. 64	3.8	3.2
42	. 77	. 19	2.8	2.7

Tuble 3.
Leaf blade weights and peilole lengthe of expertment mumbr 3.

Clade Walghts (ow.)			Petiole Langths (cm.)	
Pair	Auxin	Ausin + Kinetin	Auxin	Auxin + Kingtin
1	. 89	1.00	5.3	4.5
2	. 95	. 95	4.4	\%. 4
3	. 72	. 61	1.1	4.3
4	. 69	. 57	1.5	3.7
5	. 30	. 65	3.4	3.7
6	. 57	. 60	4.1	4.1
7	. 92	. 57	3.0	4.0
8	. 67	. 81	W. 4	4.0
9	. 53	. 69	3.3	3.1
10	. 39	. 76	\$. 6	4.1
11	. 35	. 69	3.7	6.5
12	. 73	. 71	4.5	3.8
13	. 85	. 65	3.6	4.7
14	. 13	. 49	+. 1	4.2
is	. 78	. 83	. 3.2	3.5
. 8	. 80	. 81	3.5	4.0
17	.67	. 89	3.8	4.7
38	. 51	. 75	3.3	4.3
19	. 89	1.05	2.9	3.3
20	1.11	1.02	3.8	3.8
21	. 83	. 38	4.0	4.8
22	. 88	. 83	3.5	4.2
23	. 77	. 75	4.5	1.8
21	. 66	. 70	4.3	4.8
25	. 35	. 54	5.0	6.0
26	. 38	. 50	3.8	4.0
3.8	. 67	. 63	3.8	3.9
48	. 44	. 52	3.0	4.1
29	. 49	. 50	3.8	1.8
3.3	. 26	. 32	3.0	3.6
31	. 28	. 26	3.7	3.5
32	. 20	. 31	2.3	3.7
33	. 31	. 34	3.0	2.8
31	. 23	. 29	2.7	2.9
35	. 31	. 25	3.0	3.7
36	1.13	1.28	3.9	3.7
37	1.18	i. 22	5.0	4.2
38	. 92	. 98	3.9	$\checkmark .2$
38	:. 02	: 15	3.3	4.0
40	1.02	. 98	4.0	4.4
41	.78	1.07	4.0	4.8
12	. 35	. 54	4.1	5.3
43	. 42	. 50	2.6	3. ${ }^{\text {a }}$
44	. 34	. 41	3.1	3.3
35	. 41	. 34	3.2	2.9

Table 4.
l.at blade welehte ind petlole lengthe of expertment number b.

Let	Blade Welghts (ga.)		Petcole Lengthe (cm.)	
Patr	Auxin	Auxin + Kinata	Auxin	Suxin + Kinetin
1	. 87	1.03	3.7	1.0
2	1.15	. 96	3.0	4.5
3	a. 13	.91	3.3	4.0
1	.81	. 97	4.2	3.5
5	. 82	. 79	1.9	5.0
6	. 51	. 77	3.8	*. 2
7	. 46	. 68	3.8	3.8
8	. 32	. 53	2.3	3.7
9	. 50	. 48	4.0	1.7
10	. 48	. 12	3.7	3.5
15	. 13	. 64	3.3	3.0
12	. 65	. 86	3.2	3.5
23	. 39	- 13	3.8	4.3
14	. 42	. 37	3.2	3.0
- 3	1. 45	1.56	8.7	4.8
16	. 53	. 63	3.3	3.2
:7	. 49	. 53	2.9	3.2
18	. 32	. 34	3.3	2.9
19	. 51	. 59	3.0	3.0
20	. 36	. 44	2.8	2.8
21	. 23	. 36	2.3	2.7
22	. 37	. 35	2.8	3.0
23	. 98	. 43	3.8	3.0
24	. 63	. 12	3.3	1.4
25	. 32	. 34	2.5	3.1
26	. 23	. 26	2.3	2.6
27	. 30	.39	2.5	2.1
28	. 63	. 62	2.3	2.2
29	. 87	. 64	1.3	2.8
30	. 75	. 64	1.0	3.3
31	. 99	. 65	3.9	3.7
32	88	. 81	S. 6	4.7
33	. 85	. 75	3. 3	\$. 3
34	. 29	. 23	3.5	3.3
35	1.37	\%. 02	2.7	3.0
36	1.09	1.10	3.7	3.4
37	3.05	. 83	3.8	6.7
38	. 97	. 88	1.2	1.3
39	1.16	-. 20	5.0	5.8
40	. 31	. 42	3.8	2.9

This sudy, except for mone ta the flest ewo experimentis (Figure.s S sni 6), Dere aterted on the game day; therafore, the differance in age of the plants may have influenced the slfference ta obacission Ime. Since the NAA-treatea petlole fell flrst in approximately 2.1% of the leaf pairs (fioures $7-10$). If may be that the effect of Kinetin is inhlbitory under cerain condslons. Sacher (1967) found. In en experiment with subcoliular lractions of baan endocarp, a veriable effect of kinetin with boch Intibleson and stimulation of RNA synthesde occurring. Thus, it may that very slight envicanmental conditions may reverse the effect of kineiln. Tine generul mode of action of the kinetin may be due so the mobilization of varlous matabollita into the petiole tump from the lower portions of the pethole and, posably, trom the stem. Thus, the metaboltios are probably depleted sagtor then would oceur when auxin alone is appliad to the wtump. Therefore, jeqradation of the cetular compounds may be enthanced and the protuction of absaiseton-stimulating molecules in appropriate concentration would porhaps occur sooner than wovid be possible in the obsence o: kisetin. In addition, due to the gifilne of metabolites in the lower partion of the peible. the active transpori of auxin would probably secrese since this process iw thougint to be rctaset to metabolic effictency. It seams possible. in the promomanon of leaf absclasion, to compare the producitor snd llow of auxin to s
feedback mechanism whereby the status of the cells in the leaf blade is determined by the flow of auxin through the abscission zone. Therefore, as long as the flow of auxin tis sufflcient, abscission will not occur; but any condition that will decrease the flow of auxin will argger abscission. Most modern machinery has a similar mechanlsm whereby, if the operation is abnormal. it will automatically tum itselit off. Possibly the main effect of kinetin in this experiment was to accelerate the decrease of the flow of auxin by increasing the rate of atrophy of the petlole cells.

SUM MARX

The application of 1 -naphtheleneacetic acid (NAA) to 000 petioic stump was more effective at delaying absctssion than NAA plus kinetin used to treat the opposite petiole stump. in 67.2\% of the ieaf pairs, the NAA-plus-kinotin-troated peffole fell first and In 21.3%, the NAA-treated petioles fell firs:. In the remoining 11.3%, both petiolec fell suring the same twelve-bour interval. In addition, kinatin-treated petloles wore compared to untreated petioleg. In 18 leaf pars, both petiolea fell during the same time interval. The kinetin-treated petiole fell tifst in two leaf pairs and, in eloht leaf poirs, the untreated petiole fell first. These results may indicate a tendency for kinelin to slsghty inhibit absclesion.

REFERENCES

1. smbirong, D., 1966. Hypothesis conceming the mechanism of auxin action. Proc. Nst. Acad. Scl. USA. 56:64-66.
2. Nidicott, F. T., R. Lymeh, and H. R Cams, 1955. Ruxin gradient theary of abscission regulation. Science, 121:644-645.
3. ___ ond _1931. Neceleration and recardation of abecission by incoleacettc acid. Sclence, 124:688-639.
4. Audue, 2. J., 1959. Plan Growth Substances. Leonerd Hill, Lid., London. 353 pp.
5. Blgas, R. h. and A. C. Leopold, 1958. The two phase action of auxin on absciszion. Am. Jour. Bot., 15:547-S51.
6.

and \qquad 1957. Factors Influencing sbscisston. P1. Phyy., 32:626-632.
7. Bottger, 1.and R. Wollgiehn, 1958. Untersuchungen uber den zugammenhang awischen Nucleinsaure und Eiwelwasioffwechel in grunem Blatiem. Fiors, $1468302-320$.
4. Carns, H. R., F. T. Addicott, and R. S. immeh, 1951. Effects or water and oxygen on absciasion in vitro. Pl. Phys. 26:629-630.
3. Ditula, C. R., seth, A. K, and wereing, P. P., 1966. Auxin and kinetin interaction in apleal dominance. sclence. 53:868-469.
10. JuBuy, H. G. and R. t_{0}. Olson, 1993. The relation between reaplration, protoplasmic streaming, and auxin cransport in the fuen coleoptile. Am. Jour. Bot., 27:401-414.
i1. Guar, B. K. and and Leopold, A. C., 1955. The promotion of absclesion by auxin. Pl. Phys., 30:487-490.
12. Gregory, F. C. and C. R. Hancock, 1955. The rate of uransport of natural auxis in woody shoots. Ann. Bot., 19:451-465.
13. Herte1. R. 1962. Der Auxintransport in der Koleop:lle von Zea mays. Ph.D. Diss. Ludwig Maximillian Univ.. Munich. 72 pp.
14. Jacobs, W. P. and Case, D. B., 1965. Auxin transport, glbberellin, and aplcal dominance. Sclence, i48:1729-173i.
15. Kaushikz, M. P., 1965. Exact substitution of leaf blade by Beta-indotylacetic acld with respect to the retardation of abecission of debladed petioles of Coleus blumel Benth. Indian Jour. Pi. ?ny.., 8:2j-35.
i6. Kuralsh1, S., 1959. Fifect of kinetin analogs on leaf growth. Sci. Papers Coll. Gen. Educ. Univ. Tokyo., 9:67-1u4.
17. Lurue, C. D., 19. Eifect of auxin on abscission of petioles. Proc. Natl. Acad. Ect. U. S.. 22:254-259.
i8. Teopold, A. C., i964. P.ant Growth and Development. McGrawHlll Book Co.. Mew York. 66 pp.
19. Mothes, K., 1960. Uber das Altern der Blater und die Moglichreit threr Wiederverjungung. Naturwissenschafien, 47: $337-35$? .
20. \qquad , L. Engelbrecht, and O. Kulajewa, 1\$59. Uber die Wirkung des Kinetins anf sticksfoffvertellung und Eiwelsssynthese in fsolferte Blattern. Flora, 147:445-464.
21. O borne, D. J.. 133j. Acceleration of absclssion by a racior produced in enescent leaves. Noture, 176:1161-3.
22. and J. Moss, i963. Effect of kine:In on senescence and abscission in explants of Phaseolus vulgaris. Noture 290:1293-301.
23. Sicher, I. A.. i967. Senescence; nction of auxin and kinetin
 of bean endocirp. P: Phys., 42:1334-1:34.
24. Seth, i. K. and P. F. Woreing, 1967. Hormone directing rransport of metabolltes and its possible role in plant senescence. J, E. Bot. 18:5s-67.
25. Sequeira, L. and T. A. Sieeves, 13j4. Auxin indacilvation and its relation to leaf trop caused by the fungus Omphalla ilavida. Pl. Phys.. 29.
26. Vickery, H. B., G. W. Pucher, C. S. Leavenworth and A. J. Wakeman, 1935. Chemical investigations of the tobacco plant. Chemical changes during growth. Conn. Agr. Expt. Eta. Bull. . 374:557-608.
27. vonAbrams, C. J. and H. K. Pratt, 1966. Interaction of naphthalencacetic acld and kinetin in the senescence of detached ieaves. Pl. Phys., 41:1525-15.30.
28. and \qquad - i967. The effect of kinetin and naphthaleneacetlc acid upon locallzed accumulailon as related to senescence in detached leaves. Planta, 76: 06-308.

[^0]: *yellow-green variety from Eastern Hilnols Untversity greenhouse

