381 research outputs found

    Características e controle da podridão "olho de boi" nas maçãs do sul do Brasil.

    Get PDF
    bitstream/item/55164/1/cir066.pd

    Structure-based design and synthesis of antiparasitic pyrrolopyrimidines targeting pteridine reductase 1

    Get PDF
    The treatment of Human African Trypanosomiasis remains a major unmet health need in sub-Saharan Africa. Approaches involving new molecular targets are important and pteridine reductase 1 (PTR1), an enzyme that reduces dihydrobiopterin in Trypanosoma spp. has been identified as a candidate target and it has been shown previously that substituted pyrrolo[2,3-d]pyrimidines are inhibitors of PTR1 from T. brucei (J. Med. Chem. 2010, 53, 221-229). In this study, 61 new pyrrolo[2,3-d]pyrimidines have been prepared, designed with input from new crystal structures of 23 of these compounds complexed with PTR1, and evaluated in screens for enzyme inhibitory activity against PTR1 and in vitro antitrypanosomal activity. 8 compounds were sufficiently active in both screens to take forward to in vivo evaluation. Thus although evidence for trypanocidal activity in a stage I disease model in mice was obtained, the compounds were too toxic to mice for further development

    Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide

    Get PDF
    Access to the electron spin is at the heart of many protocols for integrated and distributed quantum-information processing [1-4]. For instance, interfacing the spin-state of an electron and a photon can be utilized to perform quantum gates between photons [2,5] or to entangle remote spin states [6-9]. Ultimately, a quantum network of entangled spins constitutes a new paradigm in quantum optics [1]. Towards this goal, an integrated spin-photon interface would be a major leap forward. Here we demonstrate an efficient and optically programmable interface between the spin of an electron in a quantum dot and photons in a nanophotonic waveguide. The spin can be deterministically prepared with a fidelity of 96\%. Subsequently the system is used to implement a "single-spin photonic switch", where the spin state of the electron directs the flow of photons through the waveguide. The spin-photon interface may enable on-chip photon-photon gates [2], single-photon transistors [10], and efficient photonic cluster state generation [11]

    Social sciences research in neglected tropical diseases 2: A bibliographic analysis

    Get PDF
    The official published version of the article can be found at the link below.Background There are strong arguments for social science and interdisciplinary research in the neglected tropical diseases. These diseases represent a rich and dynamic interplay between vector, host, and pathogen which occurs within social, physical and biological contexts. The overwhelming sense, however, is that neglected tropical diseases research is a biomedical endeavour largely excluding the social sciences. The purpose of this review is to provide a baseline for discussing the quantum and nature of the science that is being conducted, and the extent to which the social sciences are a part of that. Methods A bibliographic analysis was conducted of neglected tropical diseases related research papers published over the past 10 years in biomedical and social sciences. The analysis had textual and bibliometric facets, and focussed on chikungunya, dengue, visceral leishmaniasis, and onchocerciasis. Results There is substantial variation in the number of publications associated with each disease. The proportion of the research that is social science based appears remarkably consistent (<4%). A textual analysis, however, reveals a degree of misclassification by the abstracting service where a surprising proportion of the "social sciences" research was pure clinical research. Much of the social sciences research also tends to be "hand maiden" research focused on the implementation of biomedical solutions. Conclusion There is little evidence that scientists pay any attention to the complex social, cultural, biological, and environmental dynamic involved in human pathogenesis. There is little investigator driven social science and a poor presence of interdisciplinary science. The research needs more sophisticated funders and priority setters who are not beguiled by uncritical biomedical promises

    Multi-wave coherent control of a solid-state single emitter

    Get PDF
    The authors acknowledge support by the European Research Council Starting Grant 'PICSEN' contract no. 306387.Coherent control of individual two-level systems (TLSs) is at the basis of any implementation of quantum information. An impressive level of control is now achieved using nuclear, vacancies and charge spins. Manipulation of bright exciton transitions in semiconductor quantum dots (QDs) is less advanced, principally due to the sub-nanosecond dephasing. Conversely, owing to their robust coupling to light, one can apply tools of nonlinear spectroscopy to achieve all-optical command. Here, we report on the coherent manipulation of an exciton via multi-wave mixing. Specifically, we employ three resonant pulses driving a single InAs QD. The first two induce a four-wave mixing (FWM) transient, which is projected onto a six-wave mixing (SWM) depending on the delay and area of the third pulse, in agreement with analytical predictions. Such a switch enables to demonstrate the generation of SWM on a single emitter and to engineer the spectro-temporal shape of the coherent response originating from a TLS. These results pave the way toward multi-pulse manipulations of solid state qubits via implementing the NMR-like control schemes in the optical domain.PostprintPeer reviewe

    Development of a Providencia stuartii multilocus sequence typing scheme

    Get PDF
    Introduction: The Providencia genus is assuming greater clinical relevance among infections caused by Enterobacterales also because of its intrinsic and acquired resistance to last-resort antibiotics. However, despite having been known and studied for over 50 years, genomics and taxonomy of the Providencia genus are currently undergoing a deep rearrangement. In this study we aim to outline and characterized the P. stuartii species. Methods: We retrieved from the GenBank database all genomes labelled as Providencia and performed a comprehensive genome-based species definition founded on average nucleotide identity (ANI) and on alignment-free approaches. Results: After defining the genomes assuredly identifiable as P. stuartii, we devised a MultiLocus Sequence Typing (MLST) and a core-genome MLST (cgMLST) schemes, based on 7 and 2,296 loci respectively. Discussion: This work hence provides a framework for understanding the role of P. stuartii and of other members of this genus, which should be considered as emerging multidrug-resistant pathogens

    Caracterização preliminar do cacho e da qualidade da uva de onze clones putativos da cultivar "Moscato Branco".

    Get PDF
    O cacho da cultivar ?Moscato Branco? apresenta compacidade elevada, o que favorece a ocorrência de podridões. Onze clones putativos da cultivar ?Moscato Branco? foram coletados na Serra Gaúcha e estão sendo avaliados para confirmar diferenças em relação à cultivar original

    Combined Use of Phenotypic Screening and of a Novel Commercial Assay (REALQUALITY Carba-Screen) for the Rapid Molecular Detection of Carbapenemases: A Single-Center Experience

    Get PDF
    Carbapenem resistance is a serious public health threat, causing numerous deaths annually primarily due to healthcare-associated infections. To face this menace, surveillance programs in high-risk patients are becoming a widespread practice. Here we report the performance of the combined use of a recently approved commercial multiplex real-time PCR assay (REALQUALITY Carba-Screen kit) with conventional phenotypic screening. In this three-month study, 479 rectal swabs from 309 patients across high-risk units were evaluated by combining the two approaches. Although the molecular assay showed a higher positivity rate than phenotypic screening (7.1% vs. 5%), it should be noted that the molecular method alone would have missed eight carbapenem-resistant isolates, while using only phenotypic screening would not have detected sixteen isolates. This demonstrates the complementary strengths of each method. Our study confirms the need for a combined approach to maximize the possible clinical impact of this kind of screening, ensuring a more comprehensive detection of resistant strains

    Echoes from a long time ago: Chewbacca inflation

    Full text link
    The cosmic microwave background (CMB) radiation offers a unique avenue for exploring the early Universe's dynamics and evolution. In this paper, we delve into the fascinating realm of slow-roll inflation, contextualizing the primordial acoustic perturbations as the resonant echoes akin to the iconic sound of Chewbacca from the Star Wars universe. By extrapolating polynomial potentials for these primordial sounds, we illuminate their role in shaping the inflationary landscape. Leveraging this framework, we calculate the scalar spectral index (nsn_s) and tensor-to-scalar ratio (rr), providing insights into the underlying physics governing the inflationary epoch. Employing a rigorous chi-square (χ2\chi^2) analysis, we meticulously scrutinize the Planck data combined with that offered by the BICEP/Keck collaboration to identify the Chewbacca sound profile that best aligns with observational constraints. Our findings not only shed light on the intricate interplay between sound and cosmology but also unveil intriguing parallels between the cosmic symphony of the early universe and beloved cultural icons.Comment: 8 pages + references, 5 figures. Prepared for submission to the Annals of Improbable Research on April 1st 2024. Find "The Sound of the Big Bang" in the audio folder of the source fil

    Endocanalicular transendothelial crossing (ETC): A novel intravasation mode used by HEK-EBNA293-VEGF-D cells during the metastatic process in a xenograft model

    Get PDF
    In cancer metastasis, intravasation of the invasive tumor cell (TCi) represents one of the most relevant events. During the last years, models regarding cancer cell intravasation have been proposed, such as the "endocanalicular transendothelial crossing" (ETC) theory. This theory describes the interplay between two adjacent endothelial cells and the TCi or a leukocyte during intravasation. Two endothelial cells create a channel with their cell membranes, in which the cell fits in without involving endothelial cell intercellular junctions, reaching the lumen through a transendothelial passage. In the present study, ten SCID mice were subcutaneously xenotransplanted with the HEK-EBNA293-VEGF-D cell line and euthanized after 35 days. Post-mortem examinations were performed and proper specimens from tumors were collected. Routine histology and immunohistochemistry for Ki-67, pAKT, pERK, ZEB-1, TWIST-1, F-actin, E-cadherin and LYVE-1 were performed followed by ultrastructural serial sections analysis. A novel experimental approach involving Computed Tomography (CT) combined with 3D digital model reconstruction was employed. The analysis of activated transcription factors supports that tumor cells at the periphery potentially underwent an epithelial-to-mesenchymal transition (EMT)-like process. Topographical analysis of LYVE-1 immunolabeled lymphatics revealed a peritumoral localisation. TEM investigations of the lymphatic vessels combined with 3D digital modelling enhanced the understanding of the endotheliocytes behavior during TCi intravasation, clarifying the ETC theory. Serial ultrastructural analysis performed within tumor periphery revealed numerous cells during the ETC process. Furthermore, this study demonstrates that ETC is an intravasation mode more frequently used by the TCi than by leukocytes during intravasation in the HEK-EBNA293-VEGF-D xenograft model and lays down the potential basis for promising future studies regarding intravasation blocking therapy
    corecore