245 research outputs found

    The ergogenic effects of transcranial direct current stimulation on exercise performance

    Get PDF
    The physical limits of the human performance have been the object of study for a considerable time. Most of the research has focused on the locomotor muscles, lungs and heart. As a consequence, much of the contemporary literature has ignored the importance of the brain in the regulation of exercise performance. With the introduction and development of new non-invasive devices, the knowledge regarding the behaviour of the central nervous system during exercise has advanced. A first step has been provided from studies involving neuroimaging techniques where the role of specific brain areas have been identified during isolated muscle or whole-body exercise. Furthermore, a new interesting approach has been provided by studies involving non-invasive techniques to manipulate specific brain areas. These techniques most commonly involve the use of an electrical or magnetic field crossing the brain. In this regard, there has been emerging literature demonstrating the possibility to influence exercise outcomes in healthy people following stimulation of specific brain areas. Specifically, transcranial direct current stimulation (tDCS) has been recently used prior to exercise in order to improve exercise performance under a wide range of exercise types. In this review article, we discuss the evidence provided from experimental studies involving tDCS. The aim of this review is to provide a critical analysis of the experimental studies investigating the application of tDCS prior to exercise and how it influences brain function and performance. Finally, we provide a critical opinion of the usage of tDCS for exercise enhancement. This will consequently progress the current knowledge base regarding the effect of tDCS on exercise and provides both a methodological and theoretical foundation on which future research can be based

    BAT2 and BAT3 polymorphisms as novel genetic risk factors for rejection after HLA-related SCT.

    Get PDF
    The genetic background of donor and recipient is an important factor determining the outcome of allogeneic hematopoietic SCT (allo-HSCT). We applied whole-genome analysis to investigate genetic variants - other than HLA class I and II - associated with negative outcome after HLA-identical sibling allo-HSCT in a cohort of 110 β-Thalassemic patients. We identified two single-nucleotide polymorphisms (SNPs) in BAT2 (A/G) and BAT3 (T/C) genes, SNP rs11538264 and SNP rs10484558, both located in the HLA class III region, in strong linkage disequilibrium between each other (R2 =0.92). When considered as single SNP, none of them reached a significant association with graft rejection (nominal P<0.00001 for BAT2 SNP rs11538264, and P<0.0001 for BAT3 SNP rs10484558), whereas the BAT2/BAT3 A/C haplotype was present at significantly higher frequency in patients who rejected as compared to those with functional graft (30.0% vs 2.6%, nominal P=1.15 × 10-8; and adjusted P=0.0071). The BAT2/BAT3 polymorphisms and specifically the A/C haplotype may represent a novel immunogenetic factor associated with graft rejection in patients undergoing allo-HSCT

    New Dihydrothiazole Benzensulfonamides: Looking for Selectivity toward Carbonic Anhydrase Isoforms I, II, IX, and XII

    Get PDF
    In the present study we investigated the structure-activity relationships of a new series of 4-[(3-ethyl-4-aryl-2,3-dihydro-1,3-thiazol-2-ylidene)amino]benzene-1-sulfonamides (EMAC10101a-m). All synthesized compounds, with the exception of compound EMAC10101k, preferentially inhibit off-target hCA II isoform. Within the series, compound EMAC10101d, bearing a 2,4-dichorophenyl substituent in position 4 of the dihydrothiazole ring, was the most potent and selective toward hCA II with an inhibitory activity in the low nanomolar range

    Combined measure of salivary alpha-synuclein species as diagnostic biomarker for Parkinson's disease

    Get PDF
    Parkinson's disease (PD) diagnosis is still vulnerable to bias, and a definitive diagnosis often relies on post-mortem neuropathological diagnosis. In this regard, alpha-synuclein (αsyn)-specific in vivo biomarkers remain a critical unmet need, based on its relevance in the neuropathology. Specifically, content changes in αsyn species such as total (tot-αsyn), oligomeric (o-αsyn), and phosphorylated (p-αsyn) within the cerebrospinal fluid (CSF) and peripheral fluids (i.e., blood and saliva) have been proposed as PD biomarkers possibly reflecting the neuropathological outcome. Here, we measured the p-αsyn levels in the saliva from 15 PD patients along with tot-αsyn, o-αsyn and their ratios, and compared the results with those from 23 healthy subjects (HS), matched per age and sex. We also calculated the optimal cutoff values for different αsyn species to provide information about their capability to discriminate PD from HS. We found that p-αsyn was the most abundant alpha-synuclein species in the saliva. While p-αsyn concentration did not differ between PD and HS when adjusted for total salivary proteins, the ratio p-αsyn/tot-αsyn was largely lower in PD patients than in HS. Moreover, the concentration of o-αsyn was increased in the saliva of PD patients, and tot-αsyn did not differ between PD and HS. The ROC curves indicated that no single αsyn form or ratio could provide an accurate diagnosis of PD. On the other hand, the ratio of different items, namely p-αsyn/tot-αsyn and o-αsyn, yielded more satisfactory diagnostic accuracy, suggesting that the combined measure of different species in the saliva may show more promises as a diagnostic means for PD

    Selective inhibition of carbonic anhydrase IX and XII by coumarin and psoralen derivatives

    Get PDF
    A small library of coumarin and their psoralen analogues EMAC10157a-b-d-g and EMAC10160a-b-d-g has been designed and synthesised to investigate the effect of structural modifications on their inhibition ability and selectivity profile towards carbonic anhydrase isoforms I, II, IX, and XII. None of the new compounds exhibited activity towards hCA I and II isozymes. Conversely, both coumarin and psoralen derivatives were active against tumour associated isoforms IX and XII in the low micromolar or nanomolar range of concentration. These data further corroborate our previous findings on analogous derivatives, confirming that both coumarins and psoralens are interesting scaffolds for the design of isozyme selective hCA inhibitors

    α-Synuclein seeding activity in duodenum biopsies from Parkinson's disease patients

    Get PDF
    Abnormal deposition of α-synuclein is a key feature and biomarker of Parkinson's disease. α-Synuclein aggregates can propagate themselves by a prion-like seeding-based mechanism within and between tissues and are hypothesized to move between the intestine and brain. α-Synuclein RT-QuIC seed amplification assays have detected Parkinson's-associated α-synuclein in multiple biospecimens including post-mortem colon samples. Here we show intra vitam detection of seeds in duodenum biopsies from 22/23 Parkinson's patients, but not in 6 healthy controls by RT-QuICR. In contrast, no tau seeding activity was detected in any of the biopsies. Our seed amplifications provide evidence that the upper intestine contains a form(s) of α-synuclein with self-propagating activity. The diagnostic sensitivity and specificity for PD in this biopsy panel were 95.7% and 100% respectively. End-point dilution analysis indicated up to 106 SD50 seeding units per mg of tissue with positivity in two contemporaneous biopsies from individual patients suggesting widespread distribution within the superior and descending parts of duodenum. Our detection of α-synuclein seeding activity in duodenum biopsies of Parkinson's disease patients suggests not only that such analyses may be useful in ante-mortem diagnosis, but also that the duodenum may be a source or a destination for pathological, self-propagating α-synuclein assemblies

    !CHAOS: A cloud of controls

    Get PDF
    The paper is aimed to present the !CHAOS open source project aimed to develop a prototype of a national private Cloud Computing infrastructure, devoted to accelerator control systems and large experiments of High Energy Physics (HEP). The !CHAOS project has been financed by MIUR (Italian Ministry of Research and Education) and aims to develop a new concept of control system and data acquisition framework by providing, with a high level of abstraction, all the services needed for controlling and managing a large scientific, or non-scientific, infrastructure. A beta version of the !CHAOS infrastructure will be released at the end of December 2015 and will run on private Cloud infrastructures based on OpenStack

    On malfunctioning software

    Get PDF
    Artefacts do not always do what they are supposed to, due to a variety of reasons, including manufacturing problems, poor maintenance, and normal wear-and-tear. Since software is an artefact, it should be subject to malfunctioning in the same sense in which other artefacts can malfunction. Yet, whether software is on a par with other artefacts when it comes to malfunctioning crucially depends on the abstraction used in the analysis. We distinguish between “negative” and “positive” notions of malfunction. A negative malfunction, or dysfunction, occurs when an artefact token either does not (sometimes) or cannot (ever) do what it is supposed to. A positive malfunction, or misfunction, occurs when an artefact token may do what is supposed to but, at least occasionally, it also yields some unintended and undesirable effects. We argue that software, understood as type, may misfunction in some limited sense, but cannot dysfunction. Accordingly, one should distinguish software from other technical artefacts, in view of their design that makes dysfunction impossible for the former, while possible for the latter

    High Differentiation among Eight Villages in a Secluded Area of Sardinia Revealed by Genome-Wide High Density SNPs Analysis

    Get PDF
    To better design association studies for complex traits in isolated populations it's important to understand how history and isolation moulded the genetic features of different communities. Population isolates should not “a priori” be considered homogeneous, even if the communities are not distant and part of a small region. We studied a particular area of Sardinia called Ogliastra, characterized by the presence of several distinct villages that display different history, immigration events and population size. Cultural and geographic isolation characterized the history of these communities. We determined LD parameters in 8 villages and defined population structure through high density SNPs (about 360 K) on 360 unrelated people (45 selected samples from each village). These isolates showed differences in LD values and LD map length. Five of these villages show high LD values probably due to their reduced population size and extreme isolation. High genetic differentiation among villages was detected. Moreover population structure analysis revealed a high correlation between genetic and geographic distances. Our study indicates that history, geography and biodemography have influenced the genetic features of Ogliastra communities producing differences in LD and population structure. All these data demonstrate that we can consider each village an isolate with specific characteristics. We suggest that, in order to optimize the study design of complex traits, a thorough characterization of genetic features is useful to identify the presence of sub-populations and stratification within genetic isolates
    • …
    corecore