23,418 research outputs found

    Chemical fractionations in meteorites, 4. Abundances of fourteen trace elements in L-chondrites - Implications for cosmothermometry

    Get PDF
    Trace element abundances in L-chondrites determined by neutron activation analysis, and implications cosmothermometr

    High-energy magnon dispersion and multi-magnon continuum in the two-dimensional Heisenberg antiferromagnet

    Full text link
    We use quantum Monte Carlo simulations and numerical analytic continuation to study high-energy spin excitations in the two-dimensional S=1/2 Heisenberg antiferromagnet at low temperature. We present results for both the transverse and longitudinal dynamic spin structure factor S(q,w) at q=(pi,0) and (pi/2,pi/2). Linear spin-wave theory predicts no dispersion on the line connecting these momenta. Our calculations show that in fact the magnon energy at (pi,0) is 10% lower than at (pi/2,pi/2). We also discuss the transverse and longitudinal multi-magnon continua and their relevance to neutron scattering experiments.Comment: 4 page

    Monte Carlo Study of the Phase Structure of Compact Polymer Chains

    Full text link
    We study the phase behavior of single homopolymers in a simple hydrophobic/hydrophilic off-lattice model with sequence independent local interactions. The specific heat is, not unexpectedly, found to exhibit a pronounced peak well below the collapse temperature, signalling a possible low-temperature phase transition. The system size dependence at this maximum is investigated both with and without the local interactions, using chains with up to 50 monomers. The size dependence is found to be weak. The specific heat itself seems not to diverge. The homopolymer results are compared with those for two non-uniform sequences. Our calculations are performed using the methods of simulated and parallel tempering. The performances of these algorithms are discussed, based on careful tests for a small system.Comment: 13 pages LaTeX, 6 Postscript figures, References adde

    Why Development Levels Differ: The Sources of Differential Economic Growth in a Panel of High and Low Income Countries

    Get PDF
    Average income per capita in the countries of the OECD was more than 20 times larger in 2000 than that of the poorest countries of sub-Sahara Africa and elsewhere, and many of the latter are not only falling behind the world leaders, but have even regressed in recent years. At the same time, other low-income countries have shown the capacity to make dramatic improvements in income per capita. Two general explanations have been offered to account for the observed patterns of growth. One view stresses differences in the efficiency of production are the main source of the observed gap in output per worker. A competing explanation reverses this conclusion and gives primary importance to capital formation. We examine the relative importance of these two factors as an explanation of the gap using 112 countries over the period 1970-2000. We find that differences in the efficiency of production, as measured by relative levels of total factor productivity, are the dominant factor accounting for the difference in development levels. We also find that the gap between rich and most poor nations is likely to persist under prevailing rates of saving and productivity change. To check the robustness of these conclusions, we employ different models of the growth process and different assumptions about the underlying data. Although different models of growth produce different relative contributions of capital formation and TFP, we conclude that the latter is the dominant source of gap. This conclusion must, however, be qualified by the poor quality of data for many developing countries.

    Inverse magnetic catalysis and regularization in the quark-meson model

    Get PDF
    Motivated by recent work on inverse magnetic catalysis at finite temperature, we study the quark-meson model using both dimensional regularization and a sharp cutoff. We calculate the critical temperature for the chiral transition as a function of the Yukawa coupling in the mean-field approximation varying the renormalization scale and the value of the ultraviolet cutoff. We show that the results depend sensitively on how one treats the fermionic vacuum fluctuations in the model and in particular on the regulator used. Finally, we explore a BB-dependent transition temperature for the Polyakov loop potential T0(B)T_0(B) using the functional renormalization group. These results show that even arbitrary freedom in the function T0(B)T_0(B) does not allow for a decreasing chiral transition temperature as a function of BB. This is in agreement with previous mean-field calculations.Comment: 13 pages, 5 figure

    Galactic consequences of clustered star formation

    Full text link
    If all stars form in clusters and both the stars and the clusters follow a power law distribution which favours the creation of low mass objects, then the numerous low mass clusters will be deficient in high mass stars. Therefore, the mass function of stars, integrated over the whole galaxy (the Integrated Galactic Initial Mass Function, IGIMF) will be steeper at the high mass end than the underlying IMF of the stars. We show how the steepness of the IGIMF depends on the sampling method and on the assumptions made for the star cluster mass function. We also investigate the O-star content, integrated photometry and chemical enrichment of galaxies that result from several IGIMFs, as compared to more standard IMFs.Comment: 4 pages, 2 figures, to appear in online version of Proceedings of IAU S266, a two page version will appear in the Proceedings of IAU S26

    Chiral and deconfinement transitions in a magnetic background using the functional renormalization group with the Polyakov loop

    Get PDF
    We use the Polyakov loop coupled quark-meson model to approximate low energy QCD and present results for the chiral and deconfinement transitions in the presence of a constant magnetic background BB at finite temperature TT and baryon chemical potential ÎźB\mu_B. We investigate effects of various gluoni potentials on the deconfinement transition with and without a fermionic backreaction at finite BB. Additionally we investigate the effect of the Polyakov loop on the chiral phase transition, finding that magnetic catalysis at low ÎźB\mu_B is present, but weakened by the Polyakov loop.Comment: 17 pages and 8 figs. v2: added ref

    Cathodoluminescence of shocked quartz at the Cretaceous-Tertiary boundary

    Get PDF
    Empirical studies have documented an association between rock type and the cathodoluminescence color of constituent quartz grains. Quartz from extrusive igneous sources luminesces uniform pale blue. Quartz from intrusive igneous and high-grade metamorphic rocks generally luminesces darker purple-blue, whereas quartz recrystallized under low-grade metamorphic conditions luminesces reddish-brown. Quartz grains in most sandstones luminesce a heterogeneous mixture of these colors because the grains were derived from a variety of ultimate source rocks. If shocked quartz found at the Cretaceous-Tertiary (K-T) boundary is volcanic in origin, its cathodoluminescence should be predominantly pale blue. Alternatively, quartz grains derived from bolide impact upon, and ejection of, mixed igneous, metamorphic, and sedimentary rocks should luminesce a variety of colors. Grain mounts of sand collected at the K-T boundary horizon from the Clear Creek North site in the Raton Basin, Colorado were examined. Shocked quartz luminesced a variety of colors and very few grains luminesced the pale blue color that is typical of volcanic quartz. It was concluded that the shocked quartz was derived from a petrologically diverse source region without substantial volcanic contribution. Most shocked grains apparently were derived from low-grade metamorphic rocks, with a slightly smaller contribution from high-grade metamorphic and intrusive igneous rocks. Rare quartz grains with brown-luminescing rims reflect a minor addition from detrital sedimentary sources. The apparent relative abundances of intrusive (and rare extrusive) igneous, metamorphic, and sedimentary ultimate source rocks suggested by CL colors of shock-deformed quartz at the K-T boundary is consistent with a crustal/supracrustal origin for the grains

    Computing Groebner Fans

    Get PDF
    This paper presents algorithms for computing the Groebner fan of an arbitrary polynomial ideal. The computation involves enumeration of all reduced Groebner bases of the ideal. Our algorithms are based on a uniform definition of the Groebner fan that applies to both homogeneous and non-homogeneous ideals and a proof that this object is a polyhedral complex. We show that the cells of a Groebner fan can easily be oriented acyclically and with a unique sink, allowing their enumeration by the memory-less reverse search procedure. The significance of this follows from the fact that Groebner fans are not always normal fans of polyhedra in which case reverse search applies automatically. Computational results using our implementation of these algorithms in the software package Gfan are included.Comment: 26 page

    Longitudinal vortices in a transitioning boundary layer

    Get PDF
    Naturally occurring spanwise variations of the streamwise velocity component, characteristic of longitudinal vortices embedded in a transitioning boundary layer were explored using hot-wire anemometers. A vibrating ribbon introduced stable or unstable Tollmien-Schlichting waves into the laminar boundary layer. These damped or growing disturbances always developed a strong three dimensional pattern even though no spanwise perturbations were artificially induced. Changing the radius of the leading edge and other modifications to the flat plate, wind tunnel and boundary layer did not alter the spanwise wavelength of the vortices
    • …
    corecore