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1 Introduction

In recent years QCD in a strong magnetic field has received considerable attention. This

interest has partly been spurred by non-central heavy-ion collisions at the Relativistic

Heavy-Ion Collider and the Large Hadron Collider. In these experiments, time-dependent

magnetic fields on the order of |eB| ∼ 5m2
π are created [1–3] and so detailed knowledge of

strongly interacting matter in external fields is necessary.

At T = 0, the response of the QCD vacuum to an external magnetic field is well-

known. Lattice calculations as well as calculations using the Nambu-Jona-Lasinio (NJL)

model [4–10], the quark-meson (QM) model [11], Schwinger-Dyson equations for QED [12]

and QCD [13], and the Walecka model [14] show that the chiral condensate increases as

a function of the external magnetic field B. Moreover, even the weakest magnetic fields

induce a chiral condensate and thus dynamical chiral symmetry breaking if chiral symmetry

is intact at B = 0.

The fact that the chiral condensate at zero temperature grows as a function of the

magnetic field might lead to the expectation that the critical temperature for the chiral

transition (Tc) increases as well. Indeed, mean-field calculations employing the NJL model

or the Polyakov loop extended NJL (PNJL) [15–17] model as well as the (P)QM model [18–

23] show that the critical temperature is an increasing function of the magnetic field. This

qualitative behavior is independent of the masses of the σ and π mesons. Additionally, the

inclusion of mesonic fluctuations by applying the functional renormalization group (FRG)

does not qualitatively change this picture [24–27].

Results from lattice calculations tell a different story. It is seen that the behaviour of Tc
with B is only increasing at unrealistically large values of the pion masses [28, 29], however

with physical pion masses Tc is seen to decrease with B [30–34]. A number of groups have

begun altering the standard treatment of chiral models to include a mechanism for this

inverse magnetic catalysis around Tc [35–41]. Two such alterations to the PQM model are

to allow either the Yukawa coupling, or the transition temperature of the gluonic sector, to
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vary with magnetic field. The former is further motivated by two recent papers utilizing the

NJL model that were able to demonstrate inverse magnetic catalysis around Tc by varying

the four-point coupling [37, 38]. However, in a recent paper by Fraga et al. [35] it was

shown that neither of these freedoms were sufficient to obtain inverse magnetic catalysis

around Tc, other than for a limited range of low values of the magnetic field.

Motivated both by the seemingly conflicting results coming from the NJL model, and

the extension of the work of Fraga et al. [35] to a functional renormalization group (FRG)

treatment we investigate the effects of varying the Yukawa coupling, g, within the QM

model. We use two different regularization schemes, namely dimensional regularization

(DR) and a sharp cutoff. It is seen that simply varying g whilst employing a sharp cutoff

gives results that are quantitatively and qualitatively dependent upon the scale of the cutoff,

whilst using DR one obtains results that are independent of the renormalization scale. We

also investigate varying the transition temperature of the gluonic potential within the PQM

model using the FRG and find, in agreement with the prediction of [35], that the FRG does

not allow for inverse magnetic catalysis over an extended range of magnetic field values.

It is worth noting that varying the coupling g in an arbitrary fashion amounts to

modelling the B-dependence of physics beyond the NJL/QM models through an effective

coupling g(B). Ideally, such a dependence would be derived directly from QCD, or encoded

through some well-motivated higher-dimensional effective operators dependent upon both

g and B. But as we will see below (see also [35]), even a completely general g(B) seems

to be insufficient to provide inverse catalysis, irrespective of its origin. In a sense this is a

much stronger conclusion than considering just a single realization of such a dependence.

Following [35], we therefore explicitly refrain from specifying the origin of the B-dependence

og g. We will reach a similar conclusion to [35], but also demonstrate that it has certain

loop-holes.

The paper is organized as follows. In section 2, we briefly discuss the quark-meson

model. In section 3, we calculate the effective potential in the mean-field approximation

using different regularizations. In section 4, we present our results for the phase diagram

as a function of g, ΛUV/DR (the cutoff/DR scale) and finally T0. In section 5 we discuss

the results and briefly summarize our work.

2 The quark-meson model

The quark-meson model is a low-energy effective theory for chiral symmetry in QCD. In

two-flavor QCD it couples the O(4)-symmetric linear sigma model to a massless quark

doublet via the Yukawa coupling g. The Euclidean Lagrangian in a magnetic field is then

given by

L =
1

2

[
(∂µσ)2 + (∂µπ0)

2
]

+ (Dµπ
+)†Dµπ

+ +
1

2
m2
(
ϕ†ϕ

)
+

λ

24

(
ϕ†ϕ

)2 − hσ
+ψ̄ [γµDµ + g(B)(σ − γ5τ · π)]ψ , (2.1)

where the covariant derivative is Dµ = ∂µ − iqfA
EM
µ , with qf a diagonal matrix of the

electric charges of the up and down quarks. τ are the Pauli matrices, ϕ† = (σ, π0, π1, π2)
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and π± = 1√
2
(π1 ± iπ2). The fermion field is an isospin doublet,

ψ =

(
u

d

)
, (2.2)

which, as stated, couples to the mesonic sector via the Yukawa coupling g(B), where we

have indicated explicitly that this will be allowed to vary with B. We make no assumptions

as to the manner of this dependence, and simply investigate the available parameter space

when any such dependence is allowed (as was done in [35]).

In the absence of external gauge fields the Lagrangian (2.1) is O(4) symmetric if h = 0

and O(3) symmetric if h 6= 0. In the presence of a background Abelian gauge field, the

O(4) symmetry is reduced to an O(2) × O(2) symmetry, because of the different electric

charges of the u and d quarks.

Chiral symmetry (or approximate chiral symmetry when h 6= 0) is broken in the

vacuum by a nonzero expectation value φ for the sigma field. Expanding σ around this

mean field φ we define

σ = φ+ σ̃ , (2.3)

where σ̃ is a quantum fluctuating field with vanishing expectation value. The tree-level

potential is then

V0 =
1

2
m2φ2 +

λ

24
φ4 − hφ . (2.4)

3 Mean-field approximation

In the one-loop approximation, one takes into account the Gaussian fluctuations around

the mean-field φ. The one-loop effective potential can then be written as a sum of the tree-

level term (2.4) and the one-loop contributions from the sigma, the pions, and the quarks.

Furthermore, it is a common approximation in the QM model to omit the quantum and

thermal fluctuations of the bosons, i.e. treat them at tree level [18, 42].

The one-loop contribution to the effective potential is then given by

V1 = −
∑
f

Tr log [iγµDµ +mf ]

=
∑

P0,f,n,s

−
|qfB|

2π

∫
pz

log
[
P 2
0 + p2z +m2

f + |qfB|(2n+ 1− s)
]
, (3.1)

where the trace is over Dirac and color indices and in space-time and mu = md = g(B)φ.
Summing over the Matsubara frequencies in eq. (3.1), we find

V1 = −
∑
f,n,s

|qfB|
2π

∫
pz

{√
p2z +m2

f + |qfB|(2n+ 1− s)− 2T log
[
1 + e−β

√
p2z+m

2
f+|qfB|(2n+1−s)

]}
.

(3.2)
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The integral over pz for the zero temperature term is divergent and is typically regularized

using dimensional regularization in d = 1 − 2ε dimensions. The sum over Landau levels

is then subsequently regulated using ζ-function regularization. The resulting expression

is then expanded around ε = 0 and the poles in ε are removed by renormalization of the

parameters in the Lagrangian in the usual way. The details of this calculation can be found

in [23]. The result for the renormalized one-loop effective potential reads

VDR =
1

2
m2φ2 +

λ

24
φ4 − hφ+

Ncm
4
q

(4π)2

∑
f

[
log

Λ2
DR

|2qfB|
+ 1

]
− Nc

2π2

∑
f

(qfB)2
[
ζ(1,0)(−1, xf )

+
1

2
xf log xf

]
−Nc

∑
s,f,k

|qfB|T
π2

∫ ∞
0

dp log
[
1 + e−β

√
p2+M2

q

]
, (3.3)

where xf =
m2

f

|2qfB| and M2
f =

√
m2
f + |qfB|(2k + 1− s), ΛDR is the renormalization scale

associated with the modified minimal subtraction scheme and ζ(a, x) is the Hurwitz zeta-

function.

Although not often employed in renormalizable theories, there is nothing that prevents
from using a sharp ultraviolet cutoff ΛUV to regulate the divergent integrals. The effective
potential is then

Vcut =
1

2
m2φ2 +

λ

24
φ4 − hφ+

2Nc
(4π)2

∑
f

{
− ΛUV

√
Λ2
UV +m2

f (2Λ2
UV +m2

f )

+m4
f log

ΛUV +
√

Λ2
UV +m2

f

mf
− 1

4
m4
f − 4(qfB)2

[
ζ(1,0)(−1, xf )− 1

2
(x2f − xf ) log xf

]}
−Nc

∑
s,f,k

|qfB|T
π2

∫ ∞
0

dp log
[
1 + e−β

√
p2+M2

q

]
. (3.4)

Comparing the two expressions, eqs. (3.3) and (3.4), we see that they have similar struc-

ture, other than the presence of an additional term coupling various powers of mf = gφ

and ΛUV. Additionally the finite temperature term is independent of the regularization

scheme.

The effective potential VDR(φ) (Vcut(φ)) depends upon the parameters λ, m2, g, h

and ΛDR (ΛUV). As we will explore the dependence of the transition temperatures on

ΛDR and ΛUV, these are left as completely ‘free’. Without explicit symmetry breaking

the pions are true Goldstone bosons, i.e. we need not fix mπ as it is automatically zero.

At nonzero pion mass we adjust h to set mπ. The pion decay constant, fπ, and sigma

mass mσ in the vacuum, T = B = 0, are fixed by tuning λ and m2. All these must

be tuned for every different value of ΛDR or ΛUV and of course they will be different for

the different regularization schemes. We use the values fπ = 93 MeV and mσ = 530 MeV

throughout this paper, and at the physical point mπ = 139 MeV. Finally the Yukawa

coupling, g = g(B), at B = 0 is set to 3.2258 such that the constituent quark mass is

gφ = 300 MeV. However at finite B and T we will allow this to vary whilst holding m2

and λ fixed.
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Physical point
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Figure 1. Chiral transition temperature as a function of possible value of the Yukawa coupling

for the chiral limit (1a) and the physical point (1b). The plots show that a function g(B) starting

at g = 3.2258, •, can give inverse magnetic catalysis up to around 10 m2
π at the physical point.

Beyond this the theory breaks down (grey region). See text for details.

4 Numerical results

Our initial motivation was to use the FRG to see if the conclusions in ref. [35] would be

altered when including mesonic fluctuations. It turns out that FRG seems to open for the

possibility of inverse magnetic catalysis. However, the flow equation involves integration of

momenta k from a sharp ultraviolet cutoff ΛFRG down to k = 0 and the naive use of this

cutoff proves problematic.

Following ref. [35], in figure 1, we plot the critical temperature for the chiral transition

as a function of the Yukawa coupling g(B) for various values of B. Figure 1a gives the

results in the chiral limit, while figure 1b is at the physical point. The curves are obtained

using the dimensionally regulated mean-field result, eq. (3.3), with ΛDR = 182 MeV, as

was used in [23]. The results shown in figure 1 are in approximate agreement with those of

Fraga et al. [35]. At the physical point (1b) we see that the critical temperature becomes

undefined at high B and g(B), as given by the grey region. We return to this point shortly.

Figure 1 is understood as follows: atB = 0 the constituent quark mass fixes the Yukawa

coupling, and thus the chiral transition temperature is fixed to be 165 MeV (155 MeV at

the physical point), as is given by •. The dashed black line is simply a visual guide to

distinguish catalysis from inverse catalysis. Moving to finite magnetic field the value of the

Yukawa coupling as a function of B and T is not known, thus we allow for any possible

dependence. Any particular function g(B) is a curve beginning at • and successively

intersecting the various contours of increasing B. One such function g(B) is given by the

grey line in figure 1a. If the functional dependence is given by

g(B) = g(0)
[
1 + a(B/m2

π)b
]

(4.1)
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Figure 2. 2a gives the mean-field potential in the chiral limit for g = 3.2258 and 3.6 at T = 0.

We see at g = 3.6 that the theory has an unstable vacuum. 2b is the potential with g = 3.6 for

increasing T . It is seen that the potential develops a local minimum at positive, finite φ before the

transition temperature, which lies at 161.5 MeV. In both plots B = 10 m2
π.

then this grey line corresponds approximately to a = 0.0008 and b = 2.2. Here g increases

with B in such a way as to give inverse magnetic catalysis up to at least 12 m2
π. An

even simpler function is a line moving vertically upwards from •. This corresponds to the

standard case, where one assumes the Yukawa coupling is independent of B and T i.e.

a = b = 0. In this case, of course, we find Tc, increasing with B, i.e. magnetic catalysis.

After inspection of figure 1a it seems quite possible to create a function g(B) such

that we have inverse magnetic catalysis over a large range of magnetic field strength.

However the complete picture is more complex as is shown at the physical point, given in

figure 1b. Firstly, the change in the definition of the critical temperature (from a second

order transition, to a cross over with a pseudocritical temperature) flattens the curves of

constant B such that a greater change in g is required for the same change in B and the

total range of B values over which one could have inverse catalysis is reduced (for example

the blue B = 15 m2
π curve may never cross the dashed line even if it could be continued to

infinitely high g). More problematic than this, at large g (given by the grey region), the

theory breaks down. We now explain this with the help of figure 2.

As is well known, at very large values of the field φ the mean-field potential becomes

unbounded from below, due to the log term in the zero temperature expression (eq. (3.3)

for the DR scheme). This term is proportional to the fourth power of the quark mass, so it

is greatly influenced by varying the Yukawa coupling. This is evident from figure 2a, where

we see at T = 0 MeV, B = 10 m2
π that changing g from 3.2258 to 3.6, the local minimum

disappears altogether giving us unbounded (unphysical) results, indeed for g > 3.35 this

is the case. Thus if g is only a function of B then we may not vary it higher than 3.35.

However, in figure 2b we now show the change in the potential with T with B = 10 m2
π,
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Figure 3. Tc plotted against g using a sharp cutoff of 800 MeV. It is seen that a decreasing function

g(B) could give inverse magnatic catalysis, however, as noted in the text, this result depends heavily

upon the value of the cutoff.

g = 3.6 and in the chiral limit. As T increases, we first develop a local minimum, like

we have in the zero T , g = 3.2258 case, and then the potential undergoes the usual chiral

phase transition. Because the transition temperature in the chiral limit essentially involves

investigating the potential around φ = 0 we are able to define the transition temperature

even for very large values of g and B. But as g is pushed higher and higher, the region

where we have a local minimum becomes smaller, both in T and φ. For this reason at

finite B we will allow g to be a function of both B and T such that we have the maximum

flexibility in g with which to obtain inverse magnetic catalysis. At the physical point the

definition of the pseudocritical temperature involves investigation of a finite value of the

field φ, in our case where it is equal to half the zero temperature value (but note this is

not changed when investigating the inflection point). In this case even moderate values of

g and B give unphysical results, as is given by the grey region in figure 1b. This is the

primary reason that disallows inverse magnetic catalysis even allowing g to be a function

of both B and T .

We now turn out attention to the QM model with a sharp cutoff, choosing a value

of 800 MeV, as was used in our previous calculations using FRG [25, 26]. The plot corre-

sponding to the previous figure 1 is given in figure 3. These results are qualitatively the

same as those we found using the FRG. The observed behaviour is reversed as compared

with the dimensionally regulated result, most obviously Tc is an increasing function of g for

any fixed B is, while it was a decreasing function in the dimensionally regulated theory. In

addition we see that it is possible to choose a function g(B, T ) that gives inverse magnetic

catalysis. Both as the curves become steeper as we move from 3.2258 to approximately 3

(the region of interest here), but also because g must decrease to obtain inverse magnetic

catalysis, thus avoiding the problems of an unbounded potential seen above. However we
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DR
ΛUV = 100 MeV
ΛUV = 275 MeV
ΛUV = 450 MeV
ΛUV = 625 MeV
ΛUV = 800 MeV

Figure 4. Tc with g(B) for various values of UDR and UUV for both regularization schemes. For

the dimensionally regularized theory only a single curve (black ‘up’ triangles) is given as all values

of the renormalization scale between 100 and 800 MeV have Tc within ± 2 MeV of the curve given,

which is calculated using Λ = 182 MeV. In the sharp cutoff theory with Λ = 100 MeV (blue ‘down’

triangles) the phase transition is of first order, all other transition are second order. The plot shows

the heavy dependence of the cutoff theory on the value of the cutoff.

stress that this result is heavily dependent upon the cutoff used and thus this conclusion

should not be used out of context. We now turn our attention to this cutoff dependence.

In figure 4 we plot Tc for only a single value of the magnetic field, instead varying the

cutoff. The parameter fixing we discussed in section 3 is done for each different value of

ΛDR and ΛUV, thus at g = 3.2258, fπ, mσ, mπ and mq are equal for each curve. We plot

only a single value of ΛDR for the theory using DR as the results are within ±2 MeV for all

cutoff values between 100 and 800 MeV. For both regularization schemes the finite T terms

are exactly the same, and the zero T components are also very similar with exception that

the sharp cutoff theory adds a term of the form −ΛUV

√
Λ2
UV +m2

f (2Λ2
UV +m2

f ). Figure 4

shows that using a large cutoff this term begins to dominate the behaviour as we increase

g, lowering the potential and thus increasing Tc.

It has been suggested that the backreaction of the quarks to the gluons plays a primary

role in inverse magnetic catalysis [33], thus a natural first step towards inverse magnetic

catalysis in Polyakov loop coupled models would be via tuning the gluonic potential. In [35]

this was done at mean-field level, where they concluded that it was not possible to obtain

inverse magnetic catalysis by simply varying the gluonic transition temperature, T0. We

show that this result remains unchanged with the inclusion of mesonic fluctuations in

figure 5, which is calculated using the FRG. We do not introduce the full machinery of

the FRG, instead referring the reader to [26]. The methods are the same as in that paper,

other than that we rerun the calculation for varying values of T0, which is a free parameter

in the model. For the physical observables fπ, mf , mπ and mσ, the values are the same as

– 8 –
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Figure 5. Tc with varying T0 for various values of B. Note that the scaling in B is more gradual

than in previous plots. We see that it is not possible to have inverse magnetic catalysis given any

possible function T0(B) if we also require that Tc(B = 0) ∼ Td(B = 0).

we used in the physical point, mean-field calculations and we have ΛFRG = 800 MeV. The

figure can be read in the same way as figure 1, but with T0 in the place of g. At B = 0, T0
is usually taken as ∼ 210 MeV with two flavours of quarks. This value also ensures that Tc
is approximately equal to the deconfinement transition temperature, Td. Using this as the

zero-B starting point we see that the curves are simply too flat (and become increasingly

so as we decrease T0) to allow for inverse magnetic catalysis up to magnetic fields over

B ∼ 4 m2
π. Thus we find in agreement with the prediction of [35] that using the FRG,

there is no possible function T0(B) which could give inverse magnetic catalysis.

5 Discussion and conclusion

In the quark-meson model, one chooses a regularization prescription and fixes the associated

scale (Λ = ΛDR, ΛUV, ΛFRG) and then sets m2, λ, h and g to obtain the correct values

of the particle masses and pion decay constant in the vacuum. In doing so the model’s

dependence upon Λ is essentially cancelled out. The model is useful because we may then

vary external parameters without introducing strong Λ dependence and thus investigate

physics outside of the vacuum. But in varying g there is no guarantee that the model will

be Λ independent, and as figure 4 shows, when using a cutoff this is not the case. The

real problem here, in terms of modelling inverse magnetic catalysis, is not only that it is

not possible to generate meaningful results in the mean-field approximation using a sharp

cutoff, but that it is not possible to do so using the FRG, as it suffers from exactly the

same problems.

Usually it is the case that the inclusion of mesonic fluctuations has some quantitative

effect upon the chiral transition temperature but that the results remain qualitatively the
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same. However we have seen from lattice results that inverse magnetic catalysis is depen-

dent upon the pion mass. But usually in model calculations only the mesonic fluctuations

are dependent upon the pion mass, thus indicating their importance. Moreover varying the

pion mass amounts to varying m2 and λ in eq. (3.3) or (3.4). But as there is no coupling

between g and either of these variables, varying mπ simply shifts all of the curves in figure 1

either up or down, something we have checked explicitly. Thus to fully reproduce the lattice

results at mean-field by varying g (if it was even possible) one would need g(B, T,mπ).

We agree with the basic result of Fraga et al. [35], that within the QM model it is not

possible to reproduce lattice results by simply utilizing g(B), even if we allow complete

freedom in this functional dependence. However, as we use different regularization the

reason for this is very different. Moreover we find within our own results that the transition

temperature as a function of g depends in detail of how one treats the vacuum fluctuations.

It is not only a question of whether to include them or not, as in the case of the order

of the transition, but it also depends upon the exact implementation of the regularization

scheme. Allowing g to run with B acknowledges that there exists physics not captured

by the quark-meson model yet vital in mapping out the chiral phase diagram. But this

physics must be incorperated in such a way that reliable computations can still be made.

This is not the case when simply varying g using a sharp cutoff and only approximately

true in dimensional regularization.

We have refrained from explicitly stating where the effective B-dependence comes from.

In full renormalizable QCD the B-dependence can not depend on the regularization, and

the expectation is therefore that any effective theory should share this feature. The way

forward seems to be to augment the PNJL or PQM model with a selection of additional

operators and perform a consistent renormalization of the quantum theory. In particular

any such operators would provide additional counterterms to cancel out residual cutoff

dependence through some additional renormalization condition.
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