1,082 research outputs found

    Cold Start Streaming Learning for Deep Networks

    Full text link
    The ability to dynamically adapt neural networks to newly-available data without performance deterioration would revolutionize deep learning applications. Streaming learning (i.e., learning from one data example at a time) has the potential to enable such real-time adaptation, but current approaches i) freeze a majority of network parameters during streaming and ii) are dependent upon offline, base initialization procedures over large subsets of data, which damages performance and limits applicability. To mitigate these shortcomings, we propose Cold Start Streaming Learning (CSSL), a simple, end-to-end approach for streaming learning with deep networks that uses a combination of replay and data augmentation to avoid catastrophic forgetting. Because CSSL updates all model parameters during streaming, the algorithm is capable of beginning streaming from a random initialization, making base initialization optional. Going further, the algorithm's simplicity allows theoretical convergence guarantees to be derived using analysis of the Neural Tangent Random Feature (NTRF). In experiments, we find that CSSL outperforms existing baselines for streaming learning in experiments on CIFAR100, ImageNet, and Core50 datasets. Additionally, we propose a novel multi-task streaming learning setting and show that CSSL performs favorably in this domain. Put simply, CSSL performs well and demonstrates that the complicated, multi-step training pipelines adopted by most streaming methodologies can be replaced with a simple, end-to-end learning approach without sacrificing performance.Comment: 52 pages, 7 figures, pre-prin

    Yang-Baxter maps and symmetries of integrable equations on quad-graphs

    Full text link
    A connection between the Yang-Baxter relation for maps and the multi-dimensional consistency property of integrable equations on quad-graphs is investigated. The approach is based on the symmetry analysis of the corresponding equations. It is shown that the Yang-Baxter variables can be chosen as invariants of the multi-parameter symmetry groups of the equations. We use the classification results by Adler, Bobenko and Suris to demonstrate this method. Some new examples of Yang-Baxter maps are derived in this way from multi-field integrable equations.Comment: 20 pages, 5 figure

    Randomly removing g handles at once

    Get PDF
    AbstractIndyk and Sidiropoulos (2007) proved that any orientable graph of genus g can be probabilistically embedded into a graph of genus g−1 with constant distortion. Viewing a graph of genus g as embedded on the surface of a sphere with g handles attached, Indyk and Sidiropoulos' method gives an embedding into a distribution over planar graphs with distortion 2O(g), by iteratively removing the handles. By removing all g handles at once, we present a probabilistic embedding with distortion O(g2) for both orientable and non-orientable graphs. Our result is obtained by showing that the minimum-cut graph of Erickson and Har-Peled (2004) has low dilation, and then randomly cutting this graph out of the surface using the Peeling Lemma of Lee and Sidiropoulos (2009)

    Development of Improved Surface Integral Methods for Jet Aeroacoustic Predictions

    Get PDF
    The accurate prediction of aerodynamically generated noise has become an important goal over the past decade. Aeroacoustics must now be an integral part of the aircraft design process. The direct calculation of aerodynamically generated noise with CFD-like algorithms is plausible. However, large computer time and memory requirements often make these predictions impractical. It is therefore necessary to separate the aeroacoustics problem into two parts, one in which aerodynamic sound sources are determined, and another in which the propagating sound is calculated. This idea is applied in acoustic analogy methods. However, in the acoustic analogy, the determination of far-field sound requires the solution of a volume integral. This volume integration again leads to impractical computer requirements. An alternative to the volume integrations can be found in the Kirchhoff method. In this method, Green's theorem for the linear wave equation is used to determine sound propagation based on quantities on a surface surrounding the source region. The change from volume to surface integrals represents a tremendous savings in the computer resources required for an accurate prediction. This work is concerned with the development of enhancements of the Kirchhoff method for use in a wide variety of aeroacoustics problems. This enhanced method, the modified Kirchhoff method, is shown to be a Green's function solution of Lighthill's equation. It is also shown rigorously to be identical to the methods of Ffowcs Williams and Hawkings. This allows for development of versatile computer codes which can easily alternate between the different Kirchhoff and Ffowcs Williams-Hawkings formulations, using the most appropriate method for the problem at hand. The modified Kirchhoff method is developed primarily for use in jet aeroacoustics predictions. Applications of the method are shown for two dimensional and three dimensional jet flows. Additionally, the enhancements are generalized so that they may be used in any aeroacoustics problem

    Generating indicative-informative summaries with SumUM

    Get PDF
    We present and evaluate SumUM, a text summarization system that takes a raw technical text as input and produces an indicative informative summary. The indicative part of the summary identifies the topics of the document, and the informative part elaborates on some of these topics according to the reader's interest. SumUM motivates the topics, describes entities, and defines concepts. It is a first step for exploring the issue of dynamic summarization. This is accomplished through a process of shallow syntactic and semantic analysis, concept identification, and text regeneration. Our method was developed through the study of a corpus of abstracts written by professional abstractors. Relying on human judgment, we have evaluated indicativeness, informativeness, and text acceptability of the automatic summaries. The results thus far indicate good performance when compared with other summarization technologies

    Industrial Data Services for Quality Control in Smart Manufacturing - the i4Q Framework

    Full text link
    [EN] This paper presents a new innovative framework to support smart manufacturing quality assurance. More specifically, the i4Q framework provides an IoT-based Reliable Industrial Data Services (RIDS), a complete suite consisting of 22 innovative Solutions, able to manage the huge amount of industrial data coming from cheap cost-effective, smart, and small size interconnected factory devices for supporting manufacturing online monitoring and control. The i4Q Framework guarantees data reliability with functions grouped into five basic capabilities around the data cycle: sensing, communication, computing infrastructure, storage, and analysis-optimization. i4Q RIDS includes simulation and optimization tools for manufacturing line continuous process qualification, quality diagnosis, reconfiguration and certification for ensuring high manufacturing efficiency, leading to an integrated approach to zero-defect manufacturing. This paper presents the main principles of the i4Q framework and the relevant industrial case studies on which it will be evaluated.This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958205Karakostas, A.; Poler, R.; Fraile Gil, F.; Vrochidis, S. (2021). Industrial Data Services for Quality Control in Smart Manufacturing - the i4Q Framework. IEEE. 454-457. https://doi.org/10.1109/MetroInd4.0IoT51437.2021.948849045445
    • …
    corecore