A connection between the Yang-Baxter relation for maps and the
multi-dimensional consistency property of integrable equations on quad-graphs
is investigated. The approach is based on the symmetry analysis of the
corresponding equations. It is shown that the Yang-Baxter variables can be
chosen as invariants of the multi-parameter symmetry groups of the equations.
We use the classification results by Adler, Bobenko and Suris to demonstrate
this method. Some new examples of Yang-Baxter maps are derived in this way from
multi-field integrable equations.Comment: 20 pages, 5 figure