21 research outputs found

    Photothermoelastic response of zincblende crystals to radiation from a THz-frequency quantum cascade laser

    Get PDF
    We investigate the photothermoelastic response of ZnTe and GaP crystals irradiated by THz-frequency radiation from a quantum cascade laser. We present a full theoretical description of this interaction that agrees well with the measured response

    Active phase-nulling of the self-mixing phase in a terahertz frequency quantum cascade laser

    Get PDF
    We demonstrate an active phase-nulling scheme for terahertz (THz) frequency quantum cascade lasers (QCLs) under optical feedback, by active electronic feedback control of the emission frequency. Using this scheme the frequency tuning rate of a THz QCL is characterised, with significantly reduced experimental complexity compared to alternative approaches. Furthermore, we demonstrate real-time displacement sensing of targets, overcoming the resolution limits imposed by quantisation in previously-implemented fringe counting methods. Our approach is readily applicable to high-frequency vibrometry and surface profiling of targets, as well as frequency-stabilisation schemes for THz QCLs

    Coherent THz imaging using the self-mixing effect in quantum cascade lasers

    Get PDF
    We demonstrate that the self-mixing effect in THz QCLs can be used for three-dimensional coherent imaging; swept-frequency interferometry for imaging and materials analysis; and high-resolution inverse synthetic aperture radar imaging

    Three-dimensional terahertz imaging using swept-frequency feedback interferometry with a quantum cascade laser

    No full text
    We demonstrate coherent three-dimensional terahertz imaging by frequency modulation of a quantum cascade laser in a compact and experimentally simple self-mixing scheme. Through this approach we can realize significantly faster acquisition rates compared to previous schemes employing longitudinal mechanical scanning of a sample. We achieve a depth resolution of better than 0.1 μm with a power noise spectral density below −50 dB/Hz, for a sampling time of 10 ms/pixel

    Terahertz imaging using quantum cascade lasers — a review of systems and applications

    Get PDF
    The terahertz (THz) frequency quantum cascade laser (QCL) is a compact source of THz radiation offering high power, high spectral purity and moderate tunability. As such, these sources are particularly suited to the application of THz frequency imaging across a range of disciplines, and have motivated significant research interest in this area over the past decade. In this paper we review the technological approaches to THz QCL-based imaging and the key advancements within this field. We discuss in detail a number of imaging approaches targeted to application areas including: multiple-frequency transmission and diffuse reflection imaging for the spectral mapping of targets; as well as coherent approaches based on the self-mixing phenomenon in THz QCLs for long-range imaging, three-dimensional imaging, materials analysis, and high-resolution inverse synthetic aperture radar imaging

    Potential oligogenic disease of mental retardation, short stature, spastic paraparesis and osteopetrosis

    No full text
    Abdulaziz Alsemari,1 Mohanned Alsuhaibani,2 Rawabi Alhathlool,1 Bayan Mamdouh Ali1 1Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia; 2Department of Radiology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia Abstract: The interaction of multiple genetic factors, as opposed to monogenic inheritance, has been suspected to play a role in many diseases. This interaction has been described as an oligogenic inheritance model, which may be a useful tool in explaining certain clinical observations. The purpose of this study was to search for novel genetic defects among members of a family with traits that include mental retardation, short stature, osteopetrosis, calcification of basal ganglia, and thinning of the corpus callosum. In the index case (111-4), we identified four homozygous mutations: chromosome 8, intron2 (c.232+1G>A) at CA2 gene; chromosome 15, exon 32 (c.6100C>T) at the SPG11; chromosome 5, exon 11 (c.1015G>A) at the MCCC2; and chromosome 9, exon 9 (C.1193g>t) at the LARP gene. The mutations were confirmed by Sanger sequencing, and both parents were observed to be heterozygous for the four mutations. A moderately affected sister of the index case was homozygous for only three mutations in CA2, LARP, and Mccc2, while a nonaffected sister was heterozygous for three mutations in CA2, LARP, and MCCC2 and negative for SPG11. The clinical features of the two affected sisters can be explained distinctively by each homozygous mutation in an oligogenic pattern of inheritance. This family represents an example of an oligogenic pattern of inheritance of mental retardation, short stature, spastic paraparesis, and osteopetrosis. Keywords: mental retardation, short stature, spastic paraparesis, CA2, SPG11, LARP, oligogeni
    corecore