8 research outputs found

    Shear behavior of steel fiber reinforced concrete using full-field displacements from digital image correlation

    Get PDF
    Reinforced concrete beams with discrete hooked-end steel fibers at 0.5% volume fraction are tested with a shear span to depth (a/d) ratio equal to 1.8. Digital image correlation (DIC) technique was used to obtain the full-filed displacements from the beam. The formation and propagation of a shear crack which directly influences the load response and the peak load in the load response of the beam is monitored using the displacement information available from DIC. There is a continuous increase in slip across the crack faces with increasing load, which produces an increase in the crack opening. The dilatant behavior indicated by the proportion of crack opening to slip displacement obtained from the control and the SFRC beams is identical. Failure in control beams is brittle and was produced by the opening of dominant shear crack within the shear span. At the peak load, the shear crack pattern in fiber reinforced concrete is identical to the crack pattern in the control beam. The fiber reinforced concrete beams exhibit post peak load carrying capacity with continued slip of the dominant shear crack. The crack bridging stress provided by the fibers results in a significant increase shear transfer across the crack which provides significant post-peak load carrying capacity with increasing slip of the shear crack

    Geomatics for Mapping of Groundwater Potential Zones in Northern Part of the United Arab Emiratis - Sharjah City

    No full text
    In United Arab Emirates (UAE) domestic water consumption has increased rapidly over the last decade. The increased demand for high-quality water, create an urgent need to evaluate the groundwater production of aquifers. The development of a reasonable model for groundwater potential is therefore crucial for future systematic developments, efficient management, and sustainable use of groundwater resources. The objective of this study is to map the groundwater potential zones in northern part of UAE and assess the contributing factors for exploration of potential groundwater resources. Remote sensing data and geographic information system will be used to locate potential zones for groundwater. Various maps (i.e., base, soil, geological, Hydro-geological, Geomorphologic Map, structural, drainage, slope, land use/land cover and average annual rainfall map) will be prepared based on geospatial techniques. The groundwater availability of the basin will qualitatively classified into different classes based on its hydro-geo-morphological conditions. The land use/land cover map will be also prepared for the different seasons using a digital classification technique with a ground truth based on field investigation
    corecore