36,515 research outputs found
MODIS algorithm development and data visualization using ACTS
The study of the Earth as a system will require the merger of scientific and data resources on a much larger scale than has been done in the past. New methods of scientific research, particularly in the development of geographically dispersed, interdisciplinary teams, are necessary if we are to understand the complexity of the Earth system. Even the planned satellite missions themselves, such as the Earth Observing System, will require much more interaction between researchers and engineers if they are to produce scientifically useful data products. A key component in these activities is the development of flexible, high bandwidth data networks that can be used to move large amounts of data as well as allow researchers to communicate in new ways, such as through video. The capabilities of the Advanced Communications Technology Satellite (ACTS) will allow the development of such networks. The Pathfinder global AVHRR data set and the upcoming SeaWiFS Earthprobe mission would serve as a testbed in which to develop the tools to share data and information among geographically distributed researchers. Our goal is to develop a 'Distributed Research Environment' that can be used as a model for scientific collaboration in the EOS era. The challenge is to unite the advances in telecommunications with the parallel advances in computing and networking
Examination of turbulent shear models and the prediction of compressible turbulent boundary layers by the method of weighted residuals
Evaluation of turbulent shear models and prediction of compressible turbulent boundary layers by method of weighted residual
Low speed wind tunnel investigation of the aerodynamic and acoustic performance of several sonic inlet takeoff and approach geometries
A series of tests was conducted to determine the aerodynamic and acoustic performance of several sonic inlet takeoff and approach geometries. The effects of inlet lip shape and diffuser length were also investigated. The tests were conducted in a low-speed wind tunnel at free-stream velocities of 0 and 45 meters per second. Inlet incidence angle was varied from 0 deg to 50 deg. The inlets were sized to fit a 13.97-centimeter-diameter fan. In terms of the highest level of inlet total pressure recovery for a given amount of noise suppression, a cylindrical centerbody takeoff geometry and a bulb-shaped centerbody approach geometry provided the best results over all conditions of free-stream velocity and incidence angle. Increasing inlet lip contraction ratio extended the maximum incidence angle for attached lip flow, while increasing inlet diffuser length resulted in a higher total pressure recovery for a given amount of noise suppression
Discrete--time ratchets, the Fokker--Planck equation and Parrondo's paradox
Parrondo's games manifest the apparent paradox where losing strategies can be
combined to win and have generated significant multidisciplinary interest in
the literature. Here we review two recent approaches, based on the
Fokker-Planck equation, that rigorously establish the connection between
Parrondo's games and a physical model known as the flashing Brownian ratchet.
This gives rise to a new set of Parrondo's games, of which the original games
are a special case. For the first time, we perform a complete analysis of the
new games via a discrete-time Markov chain (DTMC) analysis, producing winning
rate equations and an exploration of the parameter space where the paradoxical
behaviour occurs.Comment: 17 pages, 5 figure
In-trail dynamics of multiple CDTI-equipped aircraft queues
One of the potential problems of in-trail self-spacing with a Cockpit Display of Traffic Information (CDTI) is whether dynamic oscillations would occur in a queue of aircraft flying an approach, similar to the ""accordion'' effect seem with the queue of automobiles in stop-and-go traffic. In order to gain some insight into this potential problem, a brief experiment was conducted with the Transport Systems Research Vehicle (TSRV) ground-based simulator equipped with CDTI which presented the position of other aircraft in the area. Three simulation sessions were conducted wherein queues of up to nine aircraft were built, each one self-spacing on the preceding aircraft. The aircraft crews were rotated to ensure that the pilots had no prior knowledge of the lead aircraft behavior they would be following. Two different spacing criteria were employed: a constant time predictor criterion and a constant time delay criterion. The experiment failed to uncover any dynamic oscillatory tendencies in queues of seven to nine aircraft
Upper Limits from Counting Experiments with Multiple Pipelines
In counting experiments, one can set an upper limit on the rate of a Poisson
process based on a count of the number of events observed due to the process.
In some experiments, one makes several counts of the number of events, using
different instruments, different event detection algorithms, or observations
over multiple time intervals. We demonstrate how to generalize the classical
frequentist upper limit calculation to the case where multiple counts of events
are made over one or more time intervals using several (not necessarily
independent) procedures. We show how different choices of the rank ordering of
possible outcomes in the space of counts correspond to applying different
levels of significance to the various measurements. We propose an ordering that
is matched to the sensitivity of the different measurement procedures and show
that in typical cases it gives stronger upper limits than other choices. As an
example, we show how this method can be applied to searches for
gravitational-wave bursts, where multiple burst-detection algorithms analyse
the same data set, and demonstrate how a single combined upper limit can be set
on the gravitational-wave burst rate.Comment: 26 pages (CQG style), 8 figures. Added study of robustness of limits
Concepts for conformal and body-axis attitude information for spatial awareness presented in a helmet-mounted display
A piloted simulation study has been conducted to evaluate two methods of presenting attitude information in a helmet-mounted display (HMD) for spatial awareness in a fighter airplane. One method, the body-axis concept, displayed the information relative to the body axis of the airplane. The quantitative results of this study favored the body-axis concept. Although no statistically significant differences were noted for either the pilots' understanding of roll attitude or target position, the pilots made pitch judgment errors three times more often with the conformal display. The subjective results showed the body-axis display did not cause attitude confusion, a prior concern with this display. In the posttest comments, the pilots overwhelmingly selected the body-axis display as the display of choice
- …
