EXAMINATION OF TURBULENT SHEAR MODELS AND THE PREDICTION OF COMPRESSIBLE TURBULENT BOUNDARY LAYERS BY THE METHOD OF WEIGHTED RESIDUALS

by
Gail R. Deboy and Douglas E. Abbott

SCHOOL OF MECHANICAL ENGINEERING
FLUID MECHANICS GROUP PURDUE UNIVERSITY

Technical Report FMTR 71-1
January 1971

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Grant No. NGT 15-005-005

EXAMINATION OF TURBULENT SHEAR MODELS AND THE PREDICTION OF COMPRESSIBLE TURBULENT BOUNDARY LAYERS BY THE METHOD OF WEIGHTED RESIDUALS

by

Gail R. Deboy and Douglas E. Abbott

PURDUE RESEARCH FOUNDATION Project No. 2074

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Grant No. NGT 15-005-005

School of Mechanical Engineering
Fluid Mechanics Group
Purdue University

Technical Report FMTR-71-1

```
January 1971
```


ACKNOWLEDGMENTS

The authors wish to acknowledge the National Aeronautics and Space Administration for providing fellowship support during the major period of this research effort. The Department of Health, Education, and Welfare is also gratefully acknowledged for their support during the final stages of the research. In addition, thanks are given to Professor R. W. Fox and Doctors S. J. Koob and V. G. Forsnes and Mr. H. T. Liu for their many helpful and stimulating discussions of this work.

TABLE OF CONTENTS

Page
LIST OF FIGURES v
NOMENCLATURE X
ABSTRACT XV

1. INTRODUCTION 1
2. INVESTIGATION OF TURBULENT SHEAR STRESS 4
2.1 Review of Turbulent Shear Information Models. 4
2.2 Eddy-Viscosity Models 10
2.3 Shear--Stress Calculations in the Literature 16
2.4 Shear-Stress Calculations in the Present Investigation 28
2.5 Analysis of the Anomalous Shear-Stress Behavior 34
2.6 Sensitivity of the CSM Eddy-Viscosity Model 43
2.7 Summary 45
3. BOUNDARY-LAYER PREDICTION ANALYSIS 46
3.1 Introduction 46
3.2 Boundary-Layer Equations. 46
3.3 Mathematical Solution Technique 51
3.4 Application of the MWR Solution Technique 57
3.5 Approximating and Weighting Functions 61
3.6 Initial Conditions 66
3.7 Calculation of the Desired Solution Variables from the Coefficients $\mathrm{C}_{\mathrm{k}}(\xi)$ and $D_{k}(\xi)$ 67
3.8 Analysis of Experimental Data 70
3.9 Summary 76
4. COMPARISON OF CALCULATED AND EXPERIMENTAL RESULTS. 77
4.1 The Numerical Solution Procedure. 77
4.2 The MWR Results Using the CSM Eddy-Viscosity Model 79
4.3 Reliability of the Calculations 99
4.4 The MWR Calculations Using Alternate Shear Models. 105
4.5 Summary 119
Page
5. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS. 121
5.1 Summary 121
5.2 Conclusions 122
5.3 Recommendations 124
LIST OF REFERENCES 126
APPENDICES
APPENDIX A: DIFFERENTIATION FORMULA FOR A FUNCTION TABULATED AT VARIABLY-SPACED VALUES OF THE ARGUMENT. 132
A. 1 Analysis. 132
APPENDIX B: COMPUTER PROGRAM. 135
APPENDIX C: CONVERGENCE OF THE MWR SOLUTIONS. 154
C. 1 Discussion. 154
APPENDIX D: AN INITIALIZATION PROCEDURE FOR $\mathrm{dC}_{\mathrm{f}} / \mathrm{dRe} \mathrm{X}_{\mathrm{x}}$ 171
D. 1 Introduction. 171
D. 2 Analysis. 171

LIST OF FIGURES

Page

Figure

1. Eddy-Viscosity Model of Reference 1 13
2. The Effective-Viscosity Functions of Herring and Mellor [8]. 15
3. Dvorac's [17] Calculation of Shear Stress at $\mathrm{x}=0.937$ Meters for the Zero Pressure-Gradient Flow 1400 18
4. Velocity-Derivative and Shear-Stress Calculations of Forsnes and Abbott [6] Using Several Turbulent Shear Models, Zero Pressure Gradient Flow 1400, x $=0.937$ meters 20
5. Shear-Stress Calculations from Cebeci and Smith [23] for Flow Case 2100 22
6. Shear-Stress Calculations from Cebeci and Smith [23] for Flow Case 2400 24
7. Shear-Stress Calculations from Cebeci and Smith [23] for Flow Case 4400 25
8. First-Approximation Prediction of Forsnes and Abbott [6] Compared with Experimental Data of Flow Case 4400. 27
9. Calculation of Velocity Derivative and ShearStress for the Experimental Data of Coles [24]on an Adiabatic Flat Plate at $\mathrm{M}_{e}=1.978$ and$R e_{x}=4.33 \times 10^{6}$29
10. Calculation of Velocity Derivative and Shear Stress for the Experimental Data of Coles [24] on an Adiabatic Flat Plate at $\mathrm{M}_{e}=1.982$ and $\operatorname{Re}_{\mathrm{X}}=6.18 \times 10^{6}$ 30
11. Calculation of Velocity Derivative and ShearStress for the Experimental Data of Coles [24]on an Adiabatic ${ }_{6}$ Flat Plate at $M_{e}=2.568$ and

LIST OF FIGURES

(Continued)

Page

Figure
12. Velocity Profile Calculated by the Iterative Procedure on Eddy Viscosity with $K_{1}=0.40$ 37
13. Velocity Profile Calculated by the Iterative Procedure on Eddy Viscosity with $\mathrm{K}_{1}=0.40$ 38
14. Velocity Profile Calculated by the Iterative Procedure on Eddy Viscosity for $K_{1}=0.40$ and the Optimum Value of $\mathrm{K}_{1}=0.36$ 40
15. Velocity Profile Calculated by the Iterative Procedure on Eddy Viscosity for $K_{1}=0.40$ and the Optimum Value of $K_{1}=0.316$. 41
16. Variation of the Optimal Values of K_{1} with Mach numbers 42
17. Experimental Measurements of Turbulent Prandtl Number 52
18. Experimental Measurements from Rotta [38] for the Turbulent Prandtl Number Across the Boundary Layer of a Cooled Flat Plate, $M_{e}=5.1$ 53
19. Comparison of Direct Force Measurements of Turbulent Skin Friction. 73
20. Calculations of Velocity Derivative and Shear Stress by the CSM Eddy-Viscosity Model Without Iteration for the Experimental Data of Coles [24], $M_{e}=2.54, \operatorname{Re}_{\mathrm{x}}=0.63 \times 10^{6}$. 80
21. Comparison of the Iterated Starting Profile with Experimental Data, $M_{e}=2.54$, $R e_{\mathrm{x}}=0.63 \times 10^{6}$ 81
22. Comparison of the Velocity-Derivative Profile Calculated with ${ }_{6}$ and without Iteration, $M_{e}=2.54$, 82
23. Comparison of the Eddy-Viscosity Profile with and without Iteration $M_{e}=2.54 .0$ $\operatorname{Re}_{\mathrm{x}}=0.63 \times 10^{6}$ 83
24. Comparison of Skin-Friction Calculations with Experiment, $M_{e}=2.54$ 85

LIST OF FIGURES

(Continued)

Page

Figure

> 25. Comparison of Velocity-Profile Calculations with Experiment, $M_{e}=2.54$.
26. Comparison of Mach-Number Profile Calculations with Experiment, $M_{e}=2.54$ 87
27. Comparison of Skin-Friction Calculations with Experiment, $M_{e}=2.95$ 89
28. Comparison of Velocity Profile Calculations with Experiment, $\mathrm{M}_{\mathrm{e}}=2.95$. 90
29. Comparison of Mach-Number Profile Calculations with Experiment, $\mathrm{M}_{\mathrm{e}}=2.95$. 91
30. Comparison of Skin-Friction Calculations with Experiment, $\mathrm{M}_{\mathrm{e}}=3.69$ 92
31. Comparison of Velocity-Profile Calculations with Experiment, $M_{e}=3.69$. 94
32. Comparison of Mach-Number Profile Calculations with Experiment, $M_{e}=3.69$ 95
33. Comparison of Skin-Friction Calculations with Experiment, $\mathrm{M}_{\mathrm{e}}=4.2$ 96
34. Comparison of Velocity-Profile Calculations with Experiment, $M_{e}=4.2$ 97
35. Comparison of Mach-Number Profiles with Experiment, $M_{e}=4.2$. 98
36. MWR Calculation of Shear-Stress Profiles Using the CSM Eddy-Viscosity Model, $M_{e}=2.54$ 101
37. MWR Calculation of Eddy-Viscosity Profiles Using the CSM Eddy-Viscosity Model, Me $=2.54$ 102
38. A Greatly Magnified View of the Calculations in the Starting Region, $M_{e}=2.54$ 104
39. Skin-Friction Calculation from an MWR Second Approximation Using the Inner-Region Shear Model of Equation (4.1), $M_{e}=2.54$. 107

LIST OF FIGURES

(Continued)
Page
Figure
40. Skin-Friction Calculation from an MWR Second Approximation Using the Inner-Region Shear Model of Equation (4.2), $M_{e}=2.54$109
41. Skin-Friction Calculation from an MWR Second Approximation Using the Inner-Region Shear Model of Equation (4.3), $\mathrm{M}_{\mathrm{e}}=2.54$ 112
42. Shear--Stress Profiles Calculated from Equation (4.13) 116
43. Skin-Friction Calculation from an MWR Second Approximation Using the Shear Model of Equation (4.13), $\mathrm{M}_{e}=2.54$. 117
Appendices
Figure
Al. A Function Specified at a Discrete Number of Variably Spaced Points 133
Cl. Comparison of the MWR Skin-Friction Calculations with Experiment, $M_{e}=2.54$ 155
C2. Comparison of the MWR Profile Calculations with Experiment, $\mathrm{M}_{\mathrm{e}}=2.54, \mathrm{Re}_{\mathrm{x}}=0.63 \times 10^{6}$ 。 156
C3. Comparison of the MWR Profile Calculations with Experiment, $\mathrm{M}_{\mathrm{e}}=2.54, \mathrm{Re}_{\mathrm{x}}=4.21 \times 10^{6} \mathrm{M} \cdot \mathrm{C}$ 157
C4. Comparison of the MWR Profile Calculations with Experiment, $M_{e}=2.54, \operatorname{Re}_{x}=7.7 \times 10^{6}$ 158
C5. Comparison of the MWR Skin-Friction Calculations with Experiment, $M_{e}=2.95$ 159
C6. Comparison of the MWR Profile Calculations with Experiment, $\mathrm{M}_{\mathrm{e}}=2.95, \mathrm{Re}_{\mathrm{x}}=9.0 \times 10^{6}$ 160
C7. Comparison of the MWR Profile Calculations with Experiment, $\mathrm{M}_{\mathrm{e}}=2.95, \mathrm{Re}_{\mathrm{X}}=3.1 \times 10^{6}$ 161
C8. Comparison of the MWR Skin-Friction Calculations with Experiment, $M_{e}=3.69$ 162

LIST OF FIGURES

(Continued)
Page
Appendices
Figures
C9. Comparison of the MWR Profile Calculations with Experiment, $\mathrm{M}_{\mathrm{e}}=3.69, \mathrm{Re}_{\mathrm{x}}=0.67 \times 10^{6} \ldots . \mathrm{M} 3$

Cl0. Comparison of the MWR Profile Calculations with Experiment, $M_{e}=3.69, \mathrm{Re}_{\mathrm{x}}=2.64 \times 10^{6}$. . . 164
Cll. Comparison of the MWR Profile Calculations with Experiment, $\mathrm{M}_{\mathrm{e}}=3.69, \mathrm{Re}_{\mathrm{x}}=6.35 \times 10^{6} \ldots \ldots 165$
C12. Comparison of the MWR Skin-Friction Calculations with Experiment, $M_{e}=4.2$. 166

C13. Comparison of the MWR Profile Calculations with Experiment, $\mathrm{M}_{\mathrm{e}}=4.2, \mathrm{Re}_{\mathrm{x}}=6.2 \times 10^{6}$. 167

C14. Comparison of the MWR Profile Calculations with Experiment, $M_{e}=4.2, \operatorname{Re}_{\mathrm{x}}=35 . \times 10^{6}$. 168
C15. Comparison of the MWR Profile Calculations with Experiment, $M_{e}=4.2, \operatorname{Re}_{x}=69 . \times 10^{6}$. 169

NOMENCLATURE

$A_{i j}$	Matrix in the MWR equations, defined by equation (3.45)
B_{j}	Vector in the MWR equations, defined by equation (3.47)
C	Constant in Sutherland's viscosity law, equation (2.25)
$C_{\text {f }}$	Local skin-friction coefficient, $\tau_{w} /(1 / 2) \rho_{e} U_{e}^{2}$
C_{j}	Vector in the MWR equations, see equation (3.35)
c_{p}	Specific heat at constant pressure
C_{V}	Specific heat at constant volume
D_{j}	Vector in the MWR equations, see equation (3.37)
F	Approximating function, see equation (3.39)
F_{CS}	Velocity derivative function, $R e_{X}^{l / 2} \frac{v}{U_{e}^{2}} \frac{\partial u}{\partial y}$
f_{i}	Functions defined by equations (2.27) and (2.28) for Section 2, or weighting functions defined by equation (3.42) for section 3
G	Approximating function, see equation (3.40)
g_{i}	Vector in the MWR equations, defined by equation (3.48)
H	Total enthalpy
h_{i}	Weighting function, defined by equation (3.41)
$I_{i j}$	Matrix in the MWR equations, defined by equation (3.46)
$\mathrm{J}_{\mathbf{i j}}$	Matrix in the MWR equations, defined by equation (3.49)

K von Kármán constant, equation (2.19)
$K_{1} \quad$ Mixing-length constant, equation (2.9)
$K_{2} \quad$ Constant in equation (2.13)
$K_{3} \quad$ Constant in equation (2.30)
$K_{i j} \quad$ Matrix \quad in the $M W R$ equations, defined by equation (3.50)
$k \quad$ Thermal conductivity
I Reference length
$L_{i} \quad$ Vector in the MWR equations, defined by equation (3.51)
\& Mixing length
M Mach number
$M_{i} \quad$ Vector in the MWR equations, defined by equation (3.52)
$\mathrm{N} \quad$ Order of MWR approximation
$P_{j} \quad$ Legendre polynomial, order j
Pr Prandtl number
Pr t Turbulent Prandtl number
p Time mean pressure
$q_{w} \quad H e a t ~ t r a n s f e r ~ a t ~ t h e ~ w a l l ~$
R Gas constant
$R e_{x} \quad$ Reynolds number based on $x, U_{e} x / \nu_{e}$
$\operatorname{Re}_{\theta} \quad$ Reynolds number based on $\theta, U_{e} \theta / \nu_{e}$
$x_{i} \quad$ Discrete values of the functional argument in Appendix A

S Functional argument value in Appendix A
T Time mean temperature
To Total temperature

t	Time
Ue	Free-stream velocity
UAIC $_{k}$	Vector defined by equation (D.4)
u	Time mean velocity component in the x -direction
$u_{1}(y)$	First guess for $u(y)$ in Section 2.5
$u_{2}(\mathrm{y})$	Second estimate for $u(y)$ in Section 2.5
u_{i}	Time mean velocity in the i-direction
u_{i}^{\prime}	Fluctuating velocity component in the i-direction
u^{+}	Nondimensional velocity, $u / \sqrt{\tau_{w} / \rho}$
V	Nondimensional velocity, defined by equation (3.25)
v	Time mean velocity component in the y -direction
W	Function specified at a discrete number of points in Appendix A
w^{*}	Nondimensional velocity, defined by equation (3.23)
X	Effective-viscosity variable; defined by equation (2.20)
X	Cartesian coordinate tangent to the surface
x_{i}	Cartesian coordinate vector, $\mathrm{x}_{1}=\mathrm{x}$ and $\mathrm{x}_{2}=\mathrm{y}$
y	Cartesian coordinate normal to the surface
y^{+}	Nondimensional y-coordinate $\frac{y}{\nu} \sqrt{\tau_{w} / \rho}$
Y_{C}	y-value defined in Figure 1
Y_{m}^{*}	Match point where the eddy-viscosity values from an inner and outer expression are identical
z	Time mean component of a flow or property variable
z^{3}	Fluctuating component of a flow or property variable
$z_{\text {in }}$	Instantaneous value of a flow or property variable

β	Eddy-viscosity parameter, defined by equation (3.24), $1+\varepsilon / \nu$
γ	Ratio of specific heats, C_{p} / C_{v}
Δr^{-}	Increment in r, defined by equation (A.2)
Δr_{+}	Increment in r, defined by equation (A.1)
δ	Boundary-layer thickness
$\delta *$	Displacement thickness, $\int^{\delta}\left(1-\frac{\rho}{\rho_{e}} \frac{u}{U_{e}}\right) d y$
δ_{K}^{*}	Kinematic displacement thickness defined by equation (2.15)
ε	Eddy viscosity
ε^{+}	Nondimensional eddy viscosity, ε / ν
η	Transformed normal coordinate, equation (3.22)
θ	Inverse velocity slope, defined by equation (3.31)
θ	Momentum thickness, $\int^{0}\left(1-\frac{u}{U_{e}}\right) \frac{\rho}{\rho_{e}} \frac{u}{U_{e}} d y$
λ_{t}	Eddy conductivity 0
μ	Dynamic viscosity
v	Kinematic viscosity
$\nu_{\text {ef }}$	Effective viscosity
ξ	Transformed tangential coordinate, equation (3.22)
ρ	Time mean density of fluid
σ	Fractional value
τ	Total shear stress
Φ	Effective-viscosity function for the defect layer, Fig. 2
ϕ	Effective-viscosity function for the wall layer, Fig. 2
ϕ_{j}	Approximating functions, defined by equation (3.35)
χ	Effective-viscosity variable, defined by equation (2.19)

Subscripts
e Evaluated at the outer edge of the boundary layer

Indices
\max

- Denotes the outer region of the boundary layer on ε, ℓ, and τ; denotes the initial or starting value of x on all other symbols
r Reference value
w Evaluated at $y=0$ (or $u=0$)

Superscripts
Time averaged
Differentiation with respect to independent variable or time dependent portion of a local quantity

Denotes displacement thickness on δ; denotes nondimensional variable, defined wherever used, on all other symbols

Differentiation with respect to ξ

ABSTRACT

There are two primary objectives of this work: first to examine the behavior of local, turbulent shear-stress models, and second to extend the method of weighted residuals (a method for solving a system of partial differential equations) to the solution of the compressible turbulent boundary-layer equations. Thus, in the first part of this work shear models are studied both as they influence a given boundary-layer prediction scheme and also as they yield shear-stress profiles independent of prediction methods. Shear-stress calculations are then examined as reported by previous workers, as calculated from the intermediate boun-dary-layer results of other methods, and as computed in the present investigation. It is found that the behavior of many of the shear models is qualitatively incorrect in terms of their prediction of the shear-stress distribution. The cause of the anomalous behavior of the shear-stress profiles is discussed in relation to the specific shear models, and the effects of this behavior on boundary-layer prediction programs are examined. In addition, previous efforts to correct the anomalous behavior, such as, employ ing a diffusion equation on the maximum eddy-viscosity or smoothing eddy-viscosity profiles, are also indicated.

Finally, it is shown possible to develop an iterative procedure to at least provide properly behaved shear-stress profiles at the initial station of a prediction program.

In the second part of this study, the computational advantages of the method of weighted residuals are compared with those of finite-difference methods and those of the conventional integral methods. Since the method of weighted residuals is found to possess many of the advantages of the other two methods, it is extended to the solution of the compressible, turbulent boundary-layer equations. Numerical solutions, for the compressible flow of air over adiabatic flat plates at free stream Mach numbers ranging from 2.54 to 4.2 , are compared with both experiment and the finitedifference calculations of Cebeci, Smith, and Mosinskis [1]. The general analysis of the present investigation includes pressure-gradient and heat-transfer effects, but these effects are not incorporated into the computer program; consequently, no numerical results are presented for flows with pressure gradient or heat transfer.

1. INTRODUCTION

The prediction of the compressible, turbulent boundary layer became of critical importance with advances in the design of supersonic aircraft, guided missiles, gas turbines, and other high-speed gas flow devices. With the high velocities involved in such applications, drag and heating effects are very important design criteria; consequently, a calculation procedure for compressible, turbulent boundary layers can be a valuable design tool - particularly in the early stages of the problem analysis.

In the past twenty years considerable research effort has been focused on the understanding and prediction of turbulent boundary layers, primarily incompressible, but in the past five years a few of the incompressible analytical techniques have been extended to compressible flow appli= cations with varying degrees of success.

In any prediction scheme for turbulent boundary layers, there are three major factors for consideration: the governing differential equations which mathematically model the physical situation; a turbulent shear-stress information model which renders the system of governing equations, with their appropriate boundary conditions, a well-posed mathematical problem; and finally the mathematical procedure
to solve the well-posed problem. The goal of the present Work is to advance the existing state of knowledge in two of these areas - namely; turbulent shear models and mathematical solution techniques.

An investigation is made of the predicted shear-stress distributions in turbulent flow, and the resulting calculations are analyzed for four separate investigations including the present one as well as some unpublished results of other investigators. The anomalous behavior of some of these shearstress profiles is examined, and a plausible explanation of this behavior is set forth. Various methods of avoiding this anomalous shear-stress behavior are also postulated.

The method of weighted residuals, a powerful mathematical technique for approximately solving a system of complex partial differential equations, is described; and the computational advantages of this method are compared with those of conventional integral techniques and finite-difference procedures. Since ultimately the Method of Weighted Residuals (or MWR) is proposed as retaining many of the computational advantages of both integral and finite-difference techniques, the MWR is extended to the solution of the compressible, turbulent boundary-layer equations using both an eddy-viscosity model and various other similarity shearstress models. A new treatment for the energy equation is developed which has distinct computational advantages over procedures previously employed for laminar flows.

Since the experimental procedure for varying $R e_{x}$ differs from that of the calculation procedure, several valid techniques of comparing the experimental and analytical results are studied. A comparison technique is presented which appears to properly test the ability of a prediction method. The corresponding results of the prediction program are compared with both experiment and the finite-difference calculations of Cebeci, Smith, and Mosinskis [1] for the flow of air over an adiabatic flat plate with free stream Mach numbers ranging from 2. 54 to 4.2. The accuracy, computation times, and convergence properties of these MWR predictions are examined.

In summary, the goals of this investigation are to (1) carefully examine the behavior of several local shearstress models and (2) investigate certain computational advantages of the method of weighted residuals and extend the MWR to the analytical prediction of compressible, turbulent boundary-layer flows.

2. INVESTIGATION OF TURBULENT SHEAR STRESS

In the calculation of compressible turbulent boundary layers there are three major factors for consideration; these are the governing differential equations of motion, the mathematical method to solve these differential equations, and the physical model to yield the required turbulent shear-stress information. The task of studying and selecting a turbulent shear information model is considered in this section.

2.1 Review of Turbulent Shear Information Models

The two basic types of turbulent shear information models are global descriptions, which depend only on the streamwise x-coordinate, the local descriptions, which depend on both the x -coordinate and the normal y -coordinate. A global shear model is an algebraic or differential equation which relates an integral of the shear stress, for example,

$$
\begin{equation*}
\int_{0}^{\infty} f(x, y) \tau d y \tag{2.1}
\end{equation*}
$$

to the boundary-layer integral parameters $(f(x, y)$ is an arbitrary function and the integration eliminates the y variation). A local shear model is an algebraic or differential equation relating shear stress, eddy viscosity, or
mixing length to the boundary-layer parameters and/or the velocity field.

Boussinesq [2] first introduced the eddy-viscosity concept in the form

$$
\begin{equation*}
-\overline{u_{i}^{\tau} u_{j}^{i}}=\varepsilon\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \tag{2,2}
\end{equation*}
$$

where the eddy viscosity has a scalar value with directional constancy. Hinze [3] has shown that a constant eddy viscosity will yield satisfactory velocity profiles for the free turbulent wake far behind a cylinder. In general, however, eddy viscosity has a spacial variation, e.g. in boundary-layer shear flows. It must also be recognized that the form of equation (2.2) cannot be mathematically correct if ε is considered to be a scalar because a contraction of this equation yields

$$
\begin{equation*}
-\overline{u_{i}^{p} u_{i}^{i}}=2 \varepsilon \frac{\partial u_{i}}{\partial x_{i}} \tag{2,3}
\end{equation*}
$$

The right side of this equation is always zero for incompressible flow (from the continuity equation) while the left side can only be zero if there is no turbulence. Similar arguments utilizing properties of symmetric tensors show that tensors of second and third order are also unsatisfactory representations for eddy viscosity; whereas, a fourthorder tensor can satisfy all contraction and symmetricity relations. Despite these objections the Boussinesq formu* lation with a scalar eddy viscosity is often adopted in calm culation procedures for turbulent flow. The major justification
for its use is the successful agreement often shown between the calculated and measured values of the gross, mean prom perties of the flow.

For turbulent boundary-layer calculations the Clauser [4] eddy-viscosity model is generally used in the outer or law-of-themwake region, while various other models are employed in the inner or law-of-the-wall region. The inner and outer models are then patched together in a variety of ways. The resulting predictions of mean velocity and temperature profiles, integral thickness parameters, and skin friction have been quite adequate for engineering purposes except in flows with very sudden changes in pressure gradient or flows near separation.

Some interesting differences in opinion can be found over the last decade. In considering eddy-viscosity models, Laufer [5] states that he is doubtful that a "correct" formulation exists in the inner or wall region. Conversely, Clauser [4] said ten years earlier that the inner region could essentially be considered as solved with a logarithmic velocity profile and an eddy viscosity proportional to y. Clauser then proceeded to consider what he called the much more difficult problem of predicting the behavior of the outer portion of the boundary layer. It should certainly be noted that Clauser's comments were made in 1956 and Laufer's in 1968, and that in 1956 much more was known about the inner region than the outer region. It now appears that
with the results of Clauser's work, the outer region can essentially be considered as solved, and attention should be focused on the more difficult problem of predicting the behavior of the inner layer: some consideration of this point will be given later in this section.

Forsnes and Abbott [6] reported an extensive study of over thirty global and local turbulent shear-stress models for two-dimensional, incompressible, turbulent boundary layers. Only a few of these models have been extended to compressible flow: for example, Alber and Coats [7] extended their dissipation integral formulation; Cebeci, Smith and Mosinskis [1] modified their eddy-viscosity expression; and Herring and Mellor [8] reworked their effective-viscosity hypothesis for the compressible regime. Forsnes and Abbott [6] evaluated the incompressible versions of these three turbulent shear models independently of any boundarylayer prediction scheme by directly substituting experimental data into the shear models and comparing the outputs from the various models. The main items of concern in Forsnes and Abbott's [6] results are that the dissipa-tion-integral values calculated from Alber and Coats ${ }^{\text {P }}$ [7] formulation are always much larger than the values calculated by five other dissipation-integral correlations and that the shear-stress profiles calculated by both the HerringMellor model and the Cebeci-Smith-Mosinskis model have grossly unrealistic behavior in the inner region of the
boundary layer where y / δ is less than about two-tenths. Forsnes and Abbott [6] then employed these three models in a two-dimensional, incompressible, turbulent, boundarymlayer prediction program, but the predictions of $C_{f^{\prime}} \delta^{*}$, and θ were very inaccurate. These inaccurate predictions were certainly expected considering the grossly unrealistic behavior of the input shear profiles.

In the light of Forsnes and Abbott's [6] earlier comparison of the dissipation-integral values and shear-stress profiles calculated by the above three shear models, considerably more work and understanding must be accomplished before these models can be successfully incorporated into an arbitrary boundary-layer prediction scheme. The rationale for continuing this approach of understanding is: (1) the Cebeci-Smith-Mosinskis and the Herring-Mellor eddy-viscosity models are among the best known and regarded shear models in the turbulent boundary-layer community; and (2) the calculations for two-dimensional, incompressible, turbulent boundary layers by these two groups ranked in the best third of the prediction methods as determined by the evaluation committee of the 1968 AFOSR-IFP Stanford Conference entitled, "Computation of Turbulent Boundary Layers" [9]. These two eddy-viscosity models are presented and studied in Sections 2.2 and 2.3, but first a policy of evaluation needs to be clarified.

In evaluating turbulent shear models in the past, the
popular approach has appeared to be - the better the calw culated values of $\delta \%, \theta$, and C_{f} agree with the experimental data, then the better the shear model used in the prediction procedure must be. This implied evaluation is often made without any regard to the behavior of the calculated shear-stress profiles. Of course, there is always the implicit assumption that the shear-stress profiles are correct if the integral parameters are adequately predicted. This applied point of view has its chief defense in the fact that the industrial user is generally only interested in the prediction of $\delta *, C_{f}$, and the separation point, and he has little interest in the predicted behavior of the velocity and shear-stress profiles. Further justification for the applied evaluation approach may be that very little measured shear-stress data are available for comparison by any means.

There is an element of risk with this applied evaluation, however. While the applied user is mostly concerned with computational results, he nevertheless would like to see existing turbulence formulations pushed to newer and often more complex applications, such as, for example, compressibility, boundary-layer control, low Reynolds number effects, wall-roughness effects, etc. Typically such extensions by the originators of the earlier shear-stress models (see, for example, [10] and [11]) assume that the new and more complicated phenomenon can be accounted for by
deducing appropriate modifications of the details of the previously successful turbulent shear-stress model in some intuitively logical manner, The continued success of such a line of research, measured in terms of integral parameters, would thus imply the soundness of the original assumption for the shear stress. Presumably, only when a failure is encountered with this chain of deduction would it be necessary to examine the details of the assumed shear stress.

A different philosophy presents itself to the investigator who desires to accept the merits of one of the earlier shear models and perform his own extensions or modifications to suit some specific need. For the sake of saving time or at least optimizing the effort, such an investigator would like to select the "best" of the shear models available. This is the philosophy adopted in this report and in keeping with this approach, the eddy-viscosity models proposed by Cebeci, Smith, and Mosinskis [1] and Herring and Mellor [8, 12] will be reviewed in some detail, including an examination of the resulting shear-stress profiles.

2.2 Eddy-Viscosity Models

The defining equations for eddy viscosity are

$$
\begin{equation*}
\frac{\tau}{\rho}=(\nu+\varepsilon) \frac{\partial u}{\partial y} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon \frac{\partial u}{\partial y}=-\overline{u^{9} v^{8}} \tag{2.5}
\end{equation*}
$$

where ε is the eddy viscosity, The defining equations for
the Prandtl mixing length are

$$
\begin{equation*}
\frac{\tau}{\rho}=\left(v+\ell^{2}\left|\frac{\partial u}{\partial y}\right|\right) \frac{\partial u}{\partial y} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
-\overline{u^{8} v^{8}}=\ell^{2} \frac{\partial u}{\partial y}\left|\frac{\partial u}{\partial y}\right| \tag{2.7}
\end{equation*}
$$

where ℓ is the mixing length. Combining equations (2.5) and (2.7) yields a relation between eddy viscosity and mixing length

$$
\begin{equation*}
\varepsilon=\ell^{2}\left|\frac{\partial u}{\partial y}\right| \tag{2,8}
\end{equation*}
$$

Prandtl originally argued that for the inner region of the boundary layer (denoted by subscript i)

$$
\begin{equation*}
\ell_{i}=K_{1} Y \tag{2,9}
\end{equation*}
$$

where K_{1} is a constant for fully-developed turbulent flow. Van Driest [13] modified Prandtl's argument for mixing length to account for the viscous sublayer by consideration of a Stokesian flow over an oscillating flat plate. Van Driest made the analogy between the Stokesian flow and the fluctuating turbulent fluid over a stationary flat plate, resulting in the introduction of a damping factor into equation (2.9) which becomes

$$
\begin{equation*}
\ell_{i}=K_{1} y[1-\exp (-y / A)] \tag{2.10}
\end{equation*}
$$

where A is a constant for a given streamwise location. Come bining equations (2.8) and (2.10) results in

$$
\begin{equation*}
\varepsilon_{i}=\mathrm{K}_{1}^{2} \mathrm{y}^{2}[1-\exp (-y / A)]^{2}\left|\frac{\partial u}{\partial y}\right| \tag{2.11}
\end{equation*}
$$

Equation (2.11). was developed by Van Driest for incompress ible flow over a flat plate with zero pressure gradient. Cebeci, Smith, and Mosinskis [1] have extended Van Driest's development to encompass compressible flows with pressure gradients. Their final result is

$$
\begin{equation*}
\varepsilon_{i}=K_{1}^{2} y^{2}\left(1-\exp \left[-\frac{y}{26 v}\left(\frac{\tau w}{\rho}+\frac{d p}{d x} \frac{y}{\rho}\right)^{\frac{1}{2}}\right]\right)^{2}\left|\frac{\partial u}{\partial y}\right| \tag{2.12}
\end{equation*}
$$

In the outer region of the boundary layer (denoted by subscript 0), Clauser [4] heuristically derived the result

$$
\begin{equation*}
\varepsilon_{0}=K_{2} U_{e} \delta^{*} \tag{2.13}
\end{equation*}
$$

for incompressible, equilibrium turbulent boundary layers where K_{2} is a constant. Equation (2.13) has been modified by the intermittency factor given by Klebanoff [14] as

$$
\begin{equation*}
\Omega=\frac{1}{2}\{1-\operatorname{erf}[5(y / \delta-0.78)]\} \tag{2.14}
\end{equation*}
$$

where Ω is the intermittency factor. Clauser's model has been further modified by Herring and Mellor [8] by replacing $\delta *$ with δ_{K}^{*} for compressible flows, where the kinematic displacement thickness

$$
\begin{equation*}
\delta_{K}^{*}=\int_{0}^{\infty}\left(1-u / U_{e}\right) d y \tag{2.15}
\end{equation*}
$$

is used to account for the kinematic character of the eddy viscosity, Cebeci, Smith and Mosinskis [l] also have approximated equation (2.14) by

$$
\Omega=\left[1+5.5(y / \delta)^{6}\right]^{-1}
$$

The complete, composite eddy-viscosity model used by Cebeci, Smith, and Mosinskis [1] is given in the inner region by

$$
\begin{equation*}
\varepsilon_{i}=K_{1}^{2} y^{2}\left(1-\exp \left[-\frac{y}{26 v}\left(\frac{{ }^{\tau} w}{\rho}+\frac{d p}{d x} \frac{y}{\rho}\right)^{\frac{1}{2}}\right]\right)^{2}\left|\frac{\partial u}{\partial y}\right| \tag{2.12}
\end{equation*}
$$

and in the outer region by

$$
\begin{equation*}
\varepsilon_{0}=K_{2} U_{e} \delta_{K}^{*}\left[1+5.5(y / \delta)^{6}\right]^{-1} \tag{2.16}
\end{equation*}
$$

where $\mathrm{K}_{1}=0.40, \mathrm{~K}_{2}=0.0168$, and δ is defined as the distance from the wall to the point where $u / U_{e}=0.995$. The dividing point between the inner and outer region of the boundary layer is defined by requiring the eddy-viscosity function to be continuous. Thus, equation (2.12) is used for $0 \leq y<Y_{C}$, and equation (2.16) is used for $Y_{C} \leq Y \leq \delta$ where y_{c} is defined as the value of y where $\varepsilon_{i}=\varepsilon_{0}$. Figure 1 graphically depicts the joining of the two regions.

Figure 1: Eddy-Viscosity Model of Reference l

Herring and Mellor develop their effective-viscosity model in References 8 and 12. The defining equations are

$$
\begin{equation*}
\frac{\tau}{\rho}=v \frac{\partial u}{\partial y}-\overline{u^{8} v^{\top}} \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\tau}{\rho}=\nu_{\text {ef }} \frac{\partial u}{\partial y} \tag{2.18}
\end{equation*}
$$

where $\nu_{\text {ef }}$ is the effective viscosity. Utilizing physical and dimensional arguments they obtain

$$
\begin{equation*}
\frac{\nu \text { ef }}{\nu}=\phi(x) \quad, \quad x=\frac{K y}{\nu} \sqrt{\tau / \rho} \text { in the wall layer } \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\nu_{e f}}{U_{e} \delta_{K}^{*}}=\Phi(X), \quad X=\frac{K y}{U_{e}^{\delta}} \sqrt{\delta_{K}^{*}} \quad \sqrt{\tau / \rho} \text { in the defect layer } \tag{2.20}
\end{equation*}
$$

where ϕ and Φ are, as yet, undetermined functions and $K=0.41$ is the von Karman constant. With the assumption that an overlap region occurs between the wall and defect layers and Clauser's [4] assumption that $\nu_{\text {ef }}$ is constant in the defect layer, Herring and Mellor obtain the functional form for Φ. Once again using the overlap region assumption with the law of the wall and some of Laufer's [15] data (to specify an empirical constant), they determine the ϕ function. Figure 2 displays these functions. Herring and Mellor then unite their composite model into a single equation by the matched asymptotic expansions (Van Dyke [16]); this is

(a) Defect Layex

(b) Wall Layer

Figure 2: The Effective-Viscosity Functions of Herring and Mellor [8]
achieved by adding the inner model to the outer model and subtracting the common asymptote to obtain their final, resultant effective-viscosity model.

$$
\begin{equation*}
\frac{\nu_{e f}}{U_{e} \delta_{K}^{*}}=\frac{\nu}{U_{e} \delta_{K}^{*}} \phi(x)+\Phi(x)-x \tag{2.21}
\end{equation*}
$$

Hereafter, equation (2.21) will be referred to as the HM effective- or eddy-viscosity model for Herring and Mellor, and equations (2.12) and (2.16) will be referred to as the CSM eddy-viscosity model for Cebeci, Smith and Mosinskis. There is a decided difference in the application of these two models. If values for $u(y), \frac{\partial u(y)}{\partial y}$, and $T(y)$ are known from experimental measurements or from the calculations of a prediction scheme, then the CSM model is an explicit equation for the eddy viscosity; while the HM model is an implicit equation for effective viscosity which must be solved by iteration, since the terms on the right-hand side of equation (2.21) contain X and X which are functions of the shear stress. In a boundary-layer calculation program where the shearmstress profile must be calculated at many streamwise locations, the iterative procedure required by the HM model could cause a considerable increase in computer time.

2.3 Shearmstress Calculations in the Literature

Before shear-stress profiles are calculated by the CSM and HM models, it will be instructive to examine the calculated shear-stress profiles of previous investigators.

Predicted sheaxmstress distributions are rare in the literature, but shear profiles have been obtained from three separate investigations. Perhaps some insight on the behavior to expect of calculated shear profiles can be gained from these three investigations.

Dvorac [17] calculated the shear-stress profile on an incompressible flat plate at $x=0.937$ meters for flow case number 1400 of the Stanford data [18]. By using an eddyviscosity model, which is briefly presented in Reference 9, he obtained the result shown in Figure 3; the interesting feature of this graph is the anomalous behavior near the wall. The shear-stress curve should approach its maximum value at the wall with a slope normal to the wall (as seen by evaluating the momentum boundary-layer equation at the wall). Dvorac used a diffusion equation on the maximum eddy viscosity in the outer region to obtain the results of Figure 3, but when he did not use this diffusion equation, he predicted an even larger $(\tau / \rho)_{\max }$ of 2.14. The use of the diffusion equation was mentioned to emphasize that Dvorac has already attempted to improve his shear-stress calculations.

Forsnes and Abbott [6] also calculated the shear-stress profile for flow 1400 of the Stanford data [18] at $\mathrm{x}=0.937$ meters. They used the experimental velocity profile and derivatives obtained from it (by an averaged linear-slope scheme) to calculate the shear-stress profiles with several

Figure 3: Dvorac's [17] Calculation of Shear Stress at $\mathrm{x}=0.937$ Meters for the Zero PressureGradient Flow 1400
different eddy-viscosity and mixing-length models. Some of their results are shown in Figure 4 : it is important to realize that they did not use the boundary-layer equations or any prediction program to obtain the results in Figure 4. They simply substituted experimental data and their derivatives into shear models which were reported by the several authors. Figure 4 shows that the shear-stress distributions are very poorly behaved near the wall for all four shear models, while the shear-stress curves for two of the models are unacceptably high in the outer region of the boundary layer*. It is not the intent of Figure 4 to imply that it is impossible to predict correct shear-stress profiles with these four shear models; instead, it might imply that the shear models are unusually sensitive to their input velocity and derivative profiles. The sensitivity of a particular model, the CSM model, will be discussed later in Section 2.6 .

Another investigation for which shear--stress profiles are available is that of Cebeci and Smith [23]. Although Reference 23 does not explicitly contain the shear-stress values, it does contain tabular values of the variables ε^{+} and. $F_{C s}^{\prime \prime}$ for the Stanford [18] data case 4400. When these

[^0]

Figure 4: Velocity-Dexivative and Shear-Stress Calculations of Forsnes and Abbott [6] Using Several Turbulent Shear Models, Zero Pressure Gradient Flow 1400, $\mathrm{x}=0.937$ meters
variables are combined properly, the shear-stress values are obtained. since

$$
\begin{equation*}
\left(1+\varepsilon^{+}\right) F_{C S}^{\mathrm{n}}=\operatorname{Re}_{\mathrm{x}}^{1 / 2} \frac{\tau}{\rho U_{e}^{2}} \tag{2.22}
\end{equation*}
$$

Calculations of ε^{+}and $F_{c s}^{\prime \prime}$ were also cooperatively supplied by Cebeci and Smith for several other incompressible, turbulent boundary-layer flows. However, Cebeci and Smith do not directly use the CSM eddy-viscosity model in their predictions, since the direct use of their model led to oscillations in the calculated values of δ^{*} and C_{f} and caused their iterative procedure to diverge; consequently, they use an averaging or smoothing technique on their eddyviscosity profiles to prevent the oscillations and divergence. Figure 5 depicts the calculated shear-stress profiles at three different streamwise locations for flow case 2100 of the stanford data [18]. This case is a boundary layer on a large airfoil-like body. The profile at $x=2.84$ feet is in a mild favorable pressure gradient; the one at $x=19.84$ feet is in a strong adverse pressure gradient; and the profile at $x=26.11$ feet is within a few inches of separation. All three shear-stress profiles are smooth and properly behaved. A comparison of the calculations of the global, boundary-layer parameters in Reference [9] shows that the predictions of $\delta *, \theta$, and C_{f} by Cebeci and Smith are quite good for this flow case. As one would expect, well-behaved shearmstress profiles generated good

Figure 5: Shear-Stress Calculations from Cebeci and Smith [23] for Flow Case 2100
predictions for the global parameters.
Figure 6 displays the shear-stress profiles from the Cebeci-Smith boundary layer calculation program for flow case 2400 [18]. This is a flow with a moderate, adverse. equilibrium pressure gradient which is abruptly decreased to zero and then allowed to relax to this new equilibrium pressure gradient of zero. The profile at $x=4.917$ feet is near the end of the adverse pressure-gradient region while the one at $x=7.2$ feet is well into the zero pressuregradient region. Thus, the profile at $x=7.2$ feet should have a slope of zero at the wall, but the calculated profile does not. Another anomally exhibited by both of the calculated profiles is a sudden jump very near the wall so that in general the calculated shear-stress profiles for this flow case are rather ill-behaved. An examination of the calculations in Reference 9 reveals that for this flow case Cebeci and Smith predict $\delta *$ and θ very well but do rather poorly on C_{f}. As one would expect, the unrealistic shear distributions led to inaccurate skin-friction calcum lations, while the boundary-layer thickness parameters are apparently less sensitive to the shear-stress inaccuracies.

Figure 7 shows two shear-stress distributions calculated from Cebeci and Smith's results for flow 4400 [18], which is a boundary layer in a strong adverse pressure gradient. Both of these profiles have a large unrealistic jump at $y / \delta \approx 0.035$ which is undoubtedly in the zone of

Figure 6: Shear-Stress Calculations from Cebeci and Smith [23] for Flow Case 2400

Figure 7: Shear-Stress Calculations from Cebeci and Smith [23] for Flow Case 4400
application of the inner-region model. In view of these shear-stress profiles, one might expect very inaccurate calculations of the global parameters, but Reference 9 shows that the Cebeci-Smith calculations of $\delta *, \theta$, and C_{f} are nearly perfect - passing through almost every experimental data point. In fact all seventeen investigators who predicted flow 4400 in Reference 9 did extremely well. The reason Cebeci and Smith were able to correctly predict the global parameters with such poor shear-stress profiles is probably because the turbulent shear information terms in the governing equations are of only secondary importance for this flow case. Further substantiation of this claim is seen in the work of Forsnes and Abbott [6]. They developed a first approximation to the solution of the governing equations using the method of weighted residuals. This first approximation contains no turbulent shear information, since all terms containing τ are identically zero. Forsnes and Abbott's first approximation calculations for flow 4400 are given in Figure 8 and show remarkably good agreement with experiment. Additional first-approximation or "zero-physics" predictions are given in Reference 6 which shows comparable success for several of the flow cases in Reference 18. These "zero-physics" results indicate that the turbulent shear information terms may be of secondary importance for certain classes of flows.

Figure 8: First-Approximation Prediction of Forsnes and Abbott [6] Compared with Experimental Data of Flow Case 4400
2.4. Shear-Stress Calculations in the Present Investigation

Now that the shear-stress calculations from several previous investigations have been examined, the present investigation can proceed with some calculations of its own for compressible, turbulent boundary layers - the task which was originally proposed in Section 2.2 where the CSM and HM eddy-viscosity models were presented in detail. These two models will be examined by calculating the shear-stress profiles for adiabatic, turbulent, compressible data cases. The inputs to the eddy-viscosity models are the experimental velocity and Mach-number profiles and the velocity-profile derivative calculated by the weighted central finite-difference scheme derived in Appendix A. Other equations necessary to calculate all the variables occurring in the eddy-viscosity models are: the perfect gas law

$$
\begin{equation*}
p=\rho R T \tag{2.23}
\end{equation*}
$$

Mach number for a perfect gas

$$
\begin{equation*}
\mathrm{M}=\mathrm{u} / \sqrt{\gamma \mathrm{RT}} \tag{2.24}
\end{equation*}
$$

Sutherland's viscosity law

$$
\begin{equation*}
\frac{\mu}{\mu_{r}}=\left(\frac{T}{T_{r}}\right)^{3 / 2} \frac{T_{r}+C}{T+C} \tag{2.25}
\end{equation*}
$$

where $C=192^{\circ} \mathrm{R}, T_{r}=492^{\circ} \mathrm{R}_{\mathrm{r}}$ and $\mu_{r}=3.59 \times 10^{-7} \mathrm{slug} / \mathrm{ft}-$ sec. The present calculations for the shearmstress profiles using the CSM and HM eddy-viscosity models are shown in Figures 9, 10, and 11. The calculated velocity derivatives

$\begin{aligned} \text { Figure 9: } & \text { Calculation of Velocity Derivative and Shear stress for the } \\ & \text { Experimental Data of Coles }[24] \text { on an Adiabatic Flat Plate at } \\ & M_{e}=1.978 \text { and } \operatorname{Re}_{x}=4.33 \times 10\end{aligned}$

$\begin{aligned} & \text { Figure 10: Calculation of Velocity Derivative and Shear Stress for the } \\ & \text { Experimental Data of Coles }[241 \text { on an Adiabatic Flat Plate at } \\ & \mathrm{M}_{\mathrm{e}}=1.982 \text { and } \mathrm{Re}_{\mathrm{x}}=6.18 \times 10 \mathrm{l}\end{aligned}$

$$
\left(_{\tau--\infty}\right)_{s-} 0 \tau \times \frac{K e}{n e} \text { pue }{ }^{M} / 1
$$

$\begin{aligned} & \text { Figure 11: Calculation of Velocity Derivative and Shear Stress for the } \\ & \text { Experimental Data of Coles }[24] \text { on an Adiabatic Flat Plate at } \\ & M_{e}=2.568 \text { and } \mathrm{Re}_{\mathrm{x}}=4.84 \times 106\end{aligned}$

are also plotted to show their smooth nature near the wall where the shear-stress profiles are erratic. For a comparison with these calculations, the correct qualitative behavior of the τ / τ_{w} function near the wall is sketched in with a solid line. Figures 9 and 10 exbibit the calculations at two different Reynolds numbers for approximately the same Mach number while Figure 11 shows the calculations at another Mach number. It is seen that the results in all three figures are quite similar. Both the CSM and HM models generate erratic behavior in the shear-stress profiles near the wall, and the CSM shear-stress profile decreases to zero faster than the $H M$ profile in the outer region of the boundary layer. The faster descent of the shear-stress profile calculated by the CSM model can be explained in the following manner. An intermittency factor is built into the CSM eddy-viscosity model to account for the intermittent character of the turbulent boundary layer. The intermittency factor is employed to decrease the outer eddy-viscosity values as y increases. The HM model does not use an intermittency factor; it employs Clauser's [4] theory of a constant eddy viscosity in the outer region of the boundary layer. Although Mellor [12] noticed the shortcoming of the Clauser theory, Mellor felt that this shortcoming would not appreciably affect the boundary-layer calculations.

Before an attempt is made to use either the CSM or the HM eddy"viscosity model to predict compressible, turbulent
boundary layers, it is considered desirable to improve the shear-stress profile in the inner or wall region of the boundary layer. There seems little to choose from, between these two eddy-viscosity models, since both have proven to yield accurate predictions of the global boundary-layer parameters in Reference 9. However, two analytical factors warrant a preference for the CSM eddy-viscosity model: (1) it contains an intermittency factor which creates the qualitatively correct reduction of eddy viscosity in the outer region, and (2) it is an explicit equation for eddy viscosity which can thus be solved without iteration. Two other reports lend credence to the preference of the CSM model. Bankston and McEligot [25] made numerical predictions of heat-transfer rates in the entry region of circular ducts using several different eddy-viscosity and mixinglength models. They found the best agreement between calculations and experimental measurements with a version of the Van Driest mixing length, which is included in the CSM model. Martellucci, Rie, and Santowskii [26] calculated total-temperature and pressure profiles over a cone at Mach eight using three different eddy-viscosity models. In genexal the calculations using the CSM model agreed slightly better with the data than the calculations using either the Santowskii model or the Patankar-Spalding model. Consequently, further consideration in this report will be res. tricted to the CSM eddy-viscosity model. A major effort of
the present investigation will be directed toward improving the innex-region behavior of the CSM shear-stress profile.

2.5 Analysis of the Anomalous Shear-Stress Behavior

For a first attempt at understanding the shear-stress problem in the wall region, it is considered desirable to find out what velocity profile will give the physically correct shear-stress distribution when that velocity profile is substituted into the CSM eddy-viscosity model. The method devised to answer this question will now be described. The correct shear-stress profile is assumed to be the solid line (Figures 9, 10, and 11) in the inner region plus a faired curve through the points marked with open circles in the outer region. The equations required for the property variations are (2.23), (2.24), (2.25), and the Crocco relation relating the temperature profile to the velocity profile,
$T / T_{W}=I+\left(T_{o} / T_{W}-1\right) u / U_{e}+\left(T_{e} / T_{o}-1\right) T_{o} / T_{W}\left(u_{0} / U_{e}\right)^{2}$

Equivalent forms of equation (2.26) have been derived by Crocco [27] and Van Driest [28]. The Crocco relation has proven to agree quite well with experimental data for the flow of air over a flat plate; e.g. see Bushnell, Johnson, Harvey, and Feller [29]. To make the description of the calculation procedure more easily understandable, the working equations will be represented in functional form. The

CSM eddy-viscosity model becomes

$$
\begin{equation*}
\varepsilon=f_{1}\left(u, \frac{\partial u}{\partial y}, K_{1}\right) \tag{2.27}
\end{equation*}
$$

where f_{1} is a two layer function given by equations (2.12) and (2.16) . Rearrangement of equation (2.4) yields

$$
\begin{equation*}
\frac{\partial u}{\partial \bar{Y}}=f_{2}(\varepsilon, u, \tau) \tag{2.28}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{2}(\varepsilon, u, \tau)=\frac{\tau}{\rho(\nu+\varepsilon)} \tag{2.29}
\end{equation*}
$$

Admittedly f_{1} and f_{2} are functions of many other variables, but they will be taken as parameters, and the three arguments shown for each function are taken to be the only dependent variables once the equations for the property variations have been employed. The constant K_{1} in equation (2.27) has been included as an argument for reasons that will become apparent later, but for the present $K_{1}=0.40$ will be used. Equations (2.27) and (2.28) are readily solved. The physically correct shear-stress distribution, $\tau(y)$, is substituted into equation (2.28): then equations (2.27) and (2.28) become two equations in the two unknowns, $u(y)$ and $\varepsilon(y)$. At a given x-location these equations are first-order ordinary differential equations for u and algebraic equations for ε. These equations are solvable by Picard's method. A first guess, say $u_{1}{ }^{\prime \prime}$, is ade for the solution of $u(y)$; when $u_{1}(y)$ is inserted into the right-hand side of equations (2.27) and (2.28), these equations become two
algebraic equations in two unknowns, $\frac{\partial u(y)}{\partial y}$ and $\varepsilon(y)$ which are readily solvable, The $\frac{\partial u(y)}{\partial y}$ profile is integrated to yield a second approximation, $u_{2}(y)$: then $u_{2}(y)$ takes the previous role of $u_{1}(y)$, and the process is continued until convergence is obtained. Approximately twenty iterations were generally required to obtain convergence to six significant figures of u when $u_{1}(y)$ was taken to be the experimental velocity profile. Upon convergence the $u(y)$ profile is the desired one. When this profile is substituted into the CSM eddy-viscosity model, a physically correct shearm stress distribution is obtained.

This iterative procedure has been applied to several sets of experimental data measured by Coles [24] and Matting, Chapman, Nyholm, and Thomas [30] for the compressible flow of air over an adiabatic flat plate. The solid line curves in Figures 12 and 13 show the results of these calculations which are compared with experimental data. Figure 12 shows one of the best agreements between calculation and experiment while Figure 13 shows the worst. The best agreement occurs at the lowest Mach number, and this trend in general occurred for all the data that was examined; this trend with Mach number will be examined later in this section.

In the application of the CSM model, poor behavior of the shear-stress profile occurs only in the inner region of the boundary layer where equation (2.12) is utilized:

Figure 12: Velocity Profile Calculated by the Iterative Procedure on Eddy Viscosity with $\mathrm{K}_{1}=0.40$

Figure 13: Velocity Profile Calculated by the Iterative Procedure on Eddy Viscosity with $K_{1}=0.40$
therefore, this equation will be examined in detail. In the derivation of equation (2.10), Van Driest [13] showed that the constant K_{1} corresponds exactly to the constant K_{1} in the universal logarithmic velocity distribution in the fully turbulent region of the boundary layer

$$
\begin{equation*}
\mathrm{u}^{+}=\frac{1}{\mathrm{~K}_{1}} \ln \mathrm{y}^{+}+\mathrm{K}_{3} \tag{2.30}
\end{equation*}
$$

Equation (2.30) has been found to agree very well with experimental data for incompressible flow using $K_{1}=0.4$, but Coles [24] and Van Driest [28] have shown that equation (2.30) does not agree with compressible flow data nearly as well as it does for incompressible data. Consequently, the constant value of $K_{1}=0.4$ in the mixing-length expression is questionable for compressible flow. The same calculations as before were made to determine what velocity profile will give a correct shear-stress profile using the CSM model: only this time the value of K_{1} was optimally adjusted until the velocity profile which agreed best with the experimental data was calculated. These calculated velocity profiles with an optimum value of K_{1} are shown in Figures 14 and 15 by the broken lines where they are compared with two sets of experimental data and the corresponding calculations using $K_{1}=0.4$ (solid lines). These same calculations were performed to find the optimal values of K_{1} for several other data sets measured by Coles [24] and Matting, et al. [30], and these results are plotted for K_{1} versus Mach number in Figure 16. Although possibilities of

Figure 14: Velocity Profile Calculated by the Iterative Procedure on Eddy Viscosity for $\mathrm{K}_{1}=0.40$ and the Optimum Value of $\mathrm{K}_{1}=0.36$

Figure 15: Velocity Profile Calculated by the Iterative Procedure on Eddy Viscosity for $K_{1}=0.40$ and the Optimum Value of $K_{1}=0.316$

Figure 16: Variation of the Optimal Values of K_{1}
with Mach Number
trends for K_{I} in the parameters $C_{f}, \operatorname{Re}_{x}, \operatorname{Re}_{\theta}$, etc. were explored, none appeared except the one shown in Figure 16. Although a definite trend of decreasing K_{1} with increasing Mach number exists, the large degree of scatter in the calculated points prohibits the discovery of an accurate correlation function for K_{1} in compressible flow. Still a least-squares parabolic or linear fit to the calculated points should make a significant improvement over the $\mathrm{K}_{1}=$ 0.40 constant value.

2.6 Sensitivity of the CSM Eddy-Viscosity Model

Shear-stress profiles have been calculated by the CSM eddy-viscosity model, and the erratic behavior of these profiles in the inner region has been noted. An iterative procedure has been developed to remove the erratic behavior by generating velocity profiles which are physically compatible with the CSM model. Physically realistic shearstress profiles resulted, but little light was shed on the actual cause of the erratic behavior. That is the purpose of this section.

Recall the significance of Figure 12. The data points are the experimentally measured velocity profile, which, when substituted into the CSM model, generates a very poorly behaved shear-stress profile in the inner region. The solid line in Figure 12 is the iterated velocity profile with $K_{1}=0.40$, which, when substituted into the CSM model, generates a physically correct shear-stress distribution. The fact that two velocity profiles so nearly the
same yield shear-stress profiles so different implies that the CSM eddy-viscosity model is very sensitive to its input velocity profile. This sensitivity in the inner region can be easily analyzed with a simple example. Suppose there is a (oy) error in the value of y to be substituted into the inner region eddy-viscosity model, equation (2.12), where σ is the fractional error. Then the fractional error in the y^{2} factor in equation (2.12) is $2 \sigma+\sigma^{2}$, so a 10 percent error in y causes a 21 percent error in the y^{2} term. If in addition there is a positive 10 percent error in the $\frac{\partial u}{\partial y}$ value, then this error enters as a multiplicative factor with the 21 percent error in y^{2}, and the total contribution is an error of 33.1 percent in the eddy viscosity E. For the data case of Figure 12 the edge of the inner region occurs where $u / U_{e}=0.75$; at this point $\varepsilon_{i} / \nu=90.6$; thus, from equation (2.4) it is seen that $\varepsilon \frac{\partial u}{\partial y}$ is about 99 percent of the value of τ / ρ so that a percentage error in ε causes approximately the same percentage error in τ. With this error analysis in mind, it is seen in Figure 12 for $u / U_{e}<0.75$ that there are differences of the order of 10 to 50 percent in the y values of the two velocity profiles at a given value of u / U_{e}. This error is then compounded when these y values are substituted into the equations for ε_{i} and τ, and drastically different shear-stress profiles are the result.

2. 7 Summary

In this section a brief review of some pertinent litexature on turbulent shear information modeling is presented, and some available shear-stress calculations are examined. An anomalous behavior of the shear-stress profile is noted, and avenues of emphasis and approach are outlined and followed. Calculations of shear stress are made by two of the best known and regarded eddy-viscosity expressions, and these calculations displayed a very unrealistic behavior in the inner region of the boundary layer. The cause of this is explained by an error analysis which points out the sensitivity of an inner region eddy-viscosity expression to the velocity profile. A method is devised to correct this unrealistic behavior, and, furthermore, a correction of an inner region eddy-viscosity model is recommended.

3. BOUNDARY-LAYER PREDICTION ANALYSIS

3.1 Introduction

One of the purposes of this work is the development of a prediction procedure for two-dimensional, compressible, turbulent boundary layers. In Section 2 physical shearstress models were examined, and a particular model was developed so that it would yield well-behaved shear-stress distributions. This analysis was done entirely independent of any mathematical technique for solving the boundary-layer equations. In this section the governing equations are presented and a mathematical solution technique is formulated which will be completely independent of any physical shear model. The distinct separation of the analyses for the solution technique and for the physical shear model allows a clearer understanding of the difficulties caused by each phase of the overall prediction program. Finally in Section 4 the shear model and the solution technique will be combined into a prediction program.

3.2 Boundary-Layer Equations

The derivation of the appropriate equations has been documented in a number of references. For example, Schubauer and Tchen [31] start with the two-dimensional, compressible, Navier-Stokes equations and substitute the
sum of a time mean and a fluctuating quantity for all the instantaneous variables, for example,

$$
\begin{equation*}
z_{\text {in }}=z+z^{8} \tag{3,1}
\end{equation*}
$$

where $z_{i n}$ is the instantaneous value of a physical variable, z^{\prime} is the fluctuating component of $z_{i n}$, and z is the time mean component of $z_{i n}$. They then take the time average of the resulting equations and perform an order of magnitude analysis which results in the following governing equations for the mean properties of a two-dimensional, compressible, turbulent boundary layer:

Continuity:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho u)+\frac{\partial}{\partial y}\left(\rho v+\overline{\rho^{7} v^{8}}\right)=0 \tag{3.2}
\end{equation*}
$$

x-momentum:

$$
\begin{align*}
\frac{\partial}{\partial t}(\rho u) & +\frac{\partial}{\partial x}\left(\rho u^{2}\right)+\frac{\partial}{\partial y}(\rho u v)=-\frac{\partial p}{\partial x} \\
& +\frac{\partial}{\partial y}\left(\mu \frac{\partial u}{\partial y}-\rho \overline{u^{7} v^{8}}-u \overline{\rho^{7} v^{7}}\right) \tag{3.3}
\end{align*}
$$

y-momentum:

$$
\begin{equation*}
-\frac{\partial p}{\partial y}-\frac{\partial}{\partial y}\left(\overline{\rho v^{\prime 2}}\right)=0 \tag{3.4}
\end{equation*}
$$

Energy:

$$
\begin{align*}
& \frac{\partial}{\partial t}(\rho H)+\frac{\partial}{\partial x}(\rho H u)+\frac{\partial}{\partial y}(\rho H v)=\frac{\partial}{\partial y}\left(\mu \frac{\partial H}{\partial y}-\rho \overline{v^{3} H^{\top}}\right. \\
& \left.-\overline{\rho^{8} v^{8}} H\right)+\frac{\partial}{\partial y}\left[\left(\frac{1}{P r}-1\right) \mu \frac{\partial\left(C_{p} T\right)}{\partial y}\right]+\rho \overline{u^{8} v^{3}} \frac{\partial u}{\partial y} \tag{3.5}
\end{align*}
$$

Integration of equation (3.4) yìelăs

$$
\begin{equation*}
p=p_{e}-\overline{\rho v^{* 2}} \tag{3,6}
\end{equation*}
$$

or

$$
p=p_{e}\left(\begin{array}{ccc}
1 & \cdots M_{e}^{2} & \frac{\rho v^{2}}{} \tag{3.7}\\
& & \rho_{e} \overline{u_{e}^{2}}
\end{array}\right)
$$

since

$$
\begin{equation*}
M_{e}^{2}=\frac{\rho_{e} U_{e}^{2}}{\gamma p_{e}} \tag{3.8}
\end{equation*}
$$

For small turbulence level $\left(\overline{v^{1}} / u^{2} \ll 1\right)$ and for M_{e} of the order of one,

$$
\begin{equation*}
\mathrm{p}=\mathrm{p}_{\mathrm{e}} \tag{3.9}
\end{equation*}
$$

Equations (3.2), (3.3), (3.5), and (3.9) can be combined to yield the usual boundary-layer equations for the steady mean flow of a two-dimensional, compressible, turbulent boundary layer:

Continuity:

$$
\begin{equation*}
\frac{\partial}{\partial x}(\rho u)+\frac{\partial}{\partial y}\left(\rho v+\overline{\rho^{\top} v^{\top}}\right)=0 \tag{3.10}
\end{equation*}
$$

Momentum:

$$
\begin{equation*}
\rho u \frac{\partial u}{\partial x}+\left(\rho v+\overline{\rho^{y} v^{8}}\right) \frac{\partial u}{\partial y}=-\frac{d p}{d x}+\frac{\partial \tau}{\partial y} \tag{3.11}
\end{equation*}
$$

Energy:

$$
\begin{align*}
\rho u \frac{\partial H}{\partial x}+\left(\rho v+\overline{\rho^{8} v^{y}}\right) \frac{\partial H}{\partial y}= & \frac{\partial}{\partial y}\left[\frac{\mu}{P r}\left(1+\frac{\varepsilon}{v} \frac{P r}{P r}\right) \frac{\partial H}{\partial y}\right. \\
& \left.+\mu\left(1-\frac{1}{P r}\right) \text { u } \frac{\partial u}{\partial y}\right] \tag{3.12}
\end{align*}
$$

where

$$
\begin{gather*}
\varepsilon \frac{\partial u}{\partial y}=-\overline{u^{3} v^{8}} \tag{3.13}\\
\frac{\lambda_{t}}{C_{p}} \frac{\partial H}{\partial y}=-\rho \overline{v^{8} H^{8}} \tag{3.14}\\
P r_{t}=\frac{C_{p} \varepsilon}{\lambda_{t}} \tag{3.15}\\
\tau=\rho(\nu+\varepsilon) \frac{\partial u}{\partial y} \tag{3.16}
\end{gather*}
$$

These equations may also be found derived in equivalent forms by Cebeci and Smith [32], Herring and Mellor [8], and Schlichting [33].

At this point, the streamwise gradient of the apparent normal stresses $\frac{\partial}{\partial x}\left(\rho \overline{u^{\prime 2}}-\rho \overline{v^{\prime 2}}\right)$ have been assumed negligible as is usually done; there has been considerable discussion on the validity of this assumption for a flow near separation. For example, Goldberg [34] shows that the apparent normal stresses may not be negligible compared to the apparent shear stress for flows approaching separation; furthermore, in the discussion at the Stanford conference on turbulent boundary layers [9]. V. A. Sandborn states that the apparent shear-stress term in the equation of motion was found to be negligible but that the $\frac{\partial p}{\partial y}$ was not negligible for his experimental investigations of turbulent separation. Consequently, since it appears that the governing equations presented here are not completely valid for flows near separation, this analysis may not apply to the investigation of turbulent separation.

The appropriate boundary conditions for equations $(3.10),(3.11)$, and $(3,12)$ are

$$
\begin{gather*}
u\left(x_{0}, y\right)=u_{0}(y) \tag{3.17a}\\
u(x, 0)=0 \tag{3.17b}\\
\lim _{y \rightarrow \infty} u(x, y)=U_{e}(x) \tag{3.17c}\\
v(x, 0)=0 \tag{3.17d}\\
H\left(x_{0}, y\right)=H_{o}(y) \tag{3.17e}\\
H(x, 0)=H_{w} \text { or } \frac{\partial H}{\partial y}(x, 0)=\left(\frac{\partial H}{\partial y}\right)_{w} \tag{3.17f}
\end{gather*}
$$

and

$$
\begin{equation*}
\lim _{y \rightarrow \infty} H(x, y)=H_{e}(x) \tag{3.17g}
\end{equation*}
$$

Additional equations are needed for the property variations. The relations used in this investigation are the perfect gas equation of state

$$
\begin{equation*}
p=\rho R T \tag{2.23}
\end{equation*}
$$

and Sutherland's viscosity law

$$
\begin{equation*}
\frac{\mu}{\mu_{r}}=\left(\frac{T}{T_{r}}\right)^{3 / 2} \frac{T_{r}+C}{T+C} \tag{2.25}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{C} & =192^{\circ} \mathrm{R} \\
\mathrm{~T}_{\mathrm{r}} & =492^{\circ} \mathrm{R} \\
\mu_{r} & =3.59 \times 10^{-7} \mathrm{slug} / \mathrm{ft}-\mathrm{sec}
\end{aligned}
$$

Also, the following values of the Prandtl number and the turbulent Prandtl number are assumed (for air):

$$
\begin{align*}
\operatorname{Pr} & =0.72 \tag{3.18}\\
\operatorname{Pr}_{t} & =1.0 \tag{3.19}
\end{align*}
$$

Although these property variation equations have been used in this work, any available equations for the equation of state, viscosity, Prandtl number, or turbulent Prandtl number could be easily incorporated into the ensuing analysis. Perhaps some discussion is in order at this point on the selection of a turbulent Prandtl number of unity.

Figures 17 and 18, taken from Cebeci [35], are offered as justification for the use of $\mathrm{Pr}_{t}=1.0$. Due to the large extent of the experimental scatter in these figures, $P r_{t}=1$ was thought to be a suitable approximation until further experimental investigations of the turbulent Prandtl number have been undertaken. Cebeci is currently seeking a correlation equation for the turbulent Prandtl number; and, as mentioned previously, such a correlation could be easily utilized in the present analysis.

3.3 Mathematical Solution Technique

Mathematical methods for the solution of boundary-layer problems have historically been classified into two major divisions; integral methods and finite-difference methods. W. C. Reynolds [39] states, "The chief virtue of integral

Figure 17: Experimental Measurements of Turbulent Prandtl Number

Figure 18: Experimental Measurements from Rotta [38] for the Turbulent Prandtl Number Across the Boundary Layer of a Cooled Flat Plate, $\mathrm{M}_{\mathrm{e}}=5.1$
methods for turbulent boundary layers lies in the implicit and global manner in which the effects of turbulence can be incorporated. A disadvantage of integral methods often cited by users of differential methods is the difficulty of extension to wider classes of flows. The avoidance of local turbulence assumptions offsets this disadvantage in the view of many users of integral methods." The primary objections usually raised against finite-difference solutions are long calculation times and difficulty in obtaining mesh restrictions to assure stable solutions, but to the users of finite-difference methods, these disadvantages are offset by more exact solutions of the governing partial differential equations and by the extendability to a more general, wider, or more complicated class of flows.

In this report the Method of Weighted Residuals (hereinafter abbreviated as MWR)* is advocated as retaining many of the advantages of both the integral and finite-difference methods while eliminating many of their disadvantages. The MWR solution technique is presented in detail in Section 3.4 as related to the solution of the compressible, turbulent boundary-layer problem.

[^1]For the past several years considerable differences of opinion have occurred in the literature in attempts to categorize the MWR as either an integral or finite-difference method; for example, Spalding [42] combines the MWR with finite-difference methods into a category he calls complete theories. However, Reynolds [39] calls the MWR an integral method while Abbott, Deiwert, Forsnes, and Deboy [43] point out many similarities between the MWR and finite-difference methods. Perhaps the MWR has sufficient unique characteristics that it is in a class of its own and consequently defies the usual methods of categorization.

Two complaints which have often been brought against the MWR are: (1) the MWR cannot be easily extended to calculate complex flow situations and (2) the MWR requires a multitude of matrix inversions which can ultimately lead to the inversion of a singular matrix, implying a hidden singularity in the mathematical formulation. However, in the past decade many successful applications of the MWR have made the validity of these complaints doubtful. The following list is a sample of the applications of the MWR over a wide range of flow conditions: Bethel and Abbott [40] calculated laminar flows with pressure gradient and predicted separation points; Ero [44] calculated the shock-induced. laminar, compressible flow over a flat plate; Koob and Abbott [41] calculated the laminar time dependent flow over a suddenly accelerated flat plate; Forsnes and Abbott [6]
calculated the two-dimensional, incompressible, turbulent boundary layer with pressure gradient: Nielson, Goodwin, and Kuhn [45] calculated the laminar and turbulent shockwave interaction problem in two-dimensional, axisymmetric flow; and Bossel [46] calculated incompressible, laminar boundary layers with suction. While the number of matrix inversions can create difficulties in a specific analysis, in the formulation of the MWR for the flow problems that have been examined by Professor D. E. Abbott and his students at Purdue University, it is necessary to perform only one matrix inversion for the entire calculation of a flow case; thus, this inversion is achieved, once and for all, at the start of the flow calculations, and no further matrix inversions are required as the calculations proceed downstream. It is theoretically possible that the matrix to be inverted could be singular for a specific problem formulation, but no such difficulty has been encountered in the work at Purdue University.

In the application to turbulent boundary layers for low orders of approximation, $N<4$, the MWR has the advantage of the integral methods in that it can use global inputs, such as semi-empirical equations for the dissipation integral and other weighted integrals of the shear stress (for the turbulent information terms), but an eddyviscosity formulation can also be used for all orders of approximations $(0<N<\infty)$. Thus, the MWR has the added
flexibility of allowing the user to apply either.global or local turbulent shear inputs. Still another advantage is short machine calculation times; for example, in the work of Forsnes and Abbott [6] and Deiwert and Abbott [47] it was found that a second approximation gave good results while requiring only about one-third of the computer time used by finite-difference methods. Nevertheless, the MWR has the advantage of being able to obtain a more exact solution of the governing equations for larger N; of course, the required computer time would increase considerably. With the selection of a solution technique having been made, the next step is the application of the MWR to the governing equations of Section 3.2.

3.4 Application of the MWR Solution Technique

Strictly for computational convenience the Dorodnitsyn transformation was modified to apply to the compressible form of the equations. The transformation as modified is given by:

Dependent variables:

$$
\begin{equation*}
u^{*}=\frac{u}{U_{e}} \quad v^{*}=\frac{V}{U_{e}} \sqrt{\frac{U_{r} I_{r}}{v_{r}}} \quad H^{*}=\frac{H}{H_{e}} \tag{3.20}
\end{equation*}
$$

Property variables:

$$
\begin{equation*}
\rho^{*}=\rho / \rho_{\mathrm{e}} \quad \mu^{*}=\mu / \mu_{\mathrm{e}} \tag{3.21}
\end{equation*}
$$

Independent variables:

$$
\begin{equation*}
\xi=\frac{1}{L} \int_{0}^{x} \frac{\rho_{e}^{U} e^{U}}{\rho_{r} U_{r}} d x \quad \eta=y \frac{\rho_{e} e_{e}}{\rho_{r} U_{r}^{L}} \sqrt{\frac{U_{r}^{L}}{v_{r}}} \tag{3.22}
\end{equation*}
$$

Other variables, defined for convenience, are

$$
\begin{align*}
w^{*} & =v^{*}+u^{*} \frac{\eta\left(\rho_{e} e_{e}\right)}{\rho_{\mathrm{e}} \mathrm{U}_{\mathrm{e}}} \tag{3.23}\\
\beta & =1+\frac{\varepsilon}{v} \tag{3.24}
\end{align*}
$$

and

$$
\begin{equation*}
\rho v=\rho v+\overline{\rho^{T} v^{2}} \tag{3.25}
\end{equation*}
$$

The transformation of equations (3.10), (3.11), and (3.12) yields

Continuity:

$$
\begin{equation*}
\frac{\partial}{\partial \xi}\left(\rho * u^{*}\right)+\frac{\partial}{\partial \eta}\left(\rho{ }^{*} w^{*}\right)=0 \tag{3.26}
\end{equation*}
$$

Momentum:

$$
\begin{align*}
\rho^{*} u^{*} \frac{\partial u^{*}}{\partial \xi}+\rho *{ }^{*} * \frac{\partial u^{*}}{\partial n}= & \frac{\mathrm{u}_{\xi}}{\mathrm{U}_{\mathrm{e}}}\left(1-\rho * u^{*}\right) \\
& +\frac{\mu_{e}}{\mu_{r}} \frac{\partial}{\partial n}\left(\mu^{*} \beta \frac{\partial u^{*}}{\partial n}\right) \tag{3.27}
\end{align*}
$$

Energy:

$$
\begin{align*}
& \rho^{*} u^{*} \frac{\partial H^{*}}{\partial \xi}+\rho^{*} w^{*} \frac{\partial H^{*}}{\partial \eta}=-\rho^{*} u^{*} H^{*} \frac{{ }^{H} e_{\xi}}{H_{e}} \\
&+\frac{\partial}{\partial \eta}\left[\frac{\mu_{e}}{\mu_{r}} \frac{\mu^{*}}{\operatorname{Pr}}\left(1+\frac{\varepsilon}{v} \frac{P r}{P r}\right) \frac{\partial H^{*}}{\partial \eta}\right. \\
&\left.\quad+\frac{\mu_{e}}{\mu_{r}} \mu^{*}\left(1-\frac{1}{\operatorname{Pr}}\right) \frac{U_{e}^{2}}{H_{e}} u * \frac{\partial u^{*}}{\partial \eta}\right] \tag{3.28}
\end{align*}
$$

To solve the above equations an historically proven

MWR formulation is used for the momentum equation. For the treatment of the enexgy equation, the method developed by Ero [44] for shock-induced laminar flow over a flat plate was considered. Although this method generated a simplified system of equations solvable with short computer run-times for Ero's problem, it created a complicated formulation requiring long computer times for the present problem which involves pressure gradient and turbulence terms. Consequently, an entirely new treatment of the energy equation has been developed. This new treatment is quite analogous to that of the momentum equation and is therefore easily understood in concept and application once the handling of the momentum equation has been mastered. Thus, directly parallel analyses for the momentum and energy equations are developed below.

In following the historically proven formulation, the continuity equation (3.26) is multiplied by a weighting function $h_{i}\left(u^{*}\right)$, to be specified later, and the momentum equation (3.27) is multiplied by $\frac{d h_{i}}{d u^{*}}$, and the resulting two equations are added, yielding

$$
\begin{align*}
\frac{\partial}{\partial \xi}\left(h_{i} \rho^{*} u^{*}\right) & +\frac{\partial}{\partial \eta}\left(h_{i} \rho^{*} w^{*}\right)=h_{i}^{\prime}\left(u^{*}\right) \frac{U_{e}}{U_{e}}\left(1-\rho u^{*}{ }^{2}\right) \\
& +\frac{\mu_{e}}{\mu_{r}} \frac{\partial}{\partial \eta}\left(\mu^{*} \beta \frac{\partial u^{*}}{\partial \eta}\right) h_{i}^{\prime}\left(u^{*}\right) \tag{3.29}
\end{align*}
$$

Similarly, the continuity equation (3.26) is multiplied by a weighting function $f_{i}\left(H^{*}\right)$, to be specified later, and the energy equation (3.28) is multiplied by $\frac{d f_{i}}{d H^{*}}$, and the
resulting equations are added. yielding

$$
\begin{align*}
\frac{\partial}{\partial \xi}\left(\rho^{*} u^{*} f_{i}\right) & +\frac{\partial}{\partial n}\left(\rho * W^{*} f_{i}\right)=-f_{i}^{*} p_{u * G *}^{H_{e}} \frac{e_{\xi}}{H_{e}} \\
& +f_{i} \frac{\partial}{\partial \eta}\left[\frac{\mu_{e}}{\mu_{r}} \frac{\mu^{*}}{P r}\left(1+\frac{\varepsilon}{v} \frac{P r}{P_{r}}\right) \frac{\partial H^{*}}{\partial \eta}\right. \\
& \left.+\frac{\mu_{e}}{\mu_{r}} \mu *\left(1-\frac{1}{P r}\right) \frac{U_{e}^{2}}{H_{e}} u^{*} \frac{\partial u^{*}}{\partial \eta}\right] \tag{3.30}
\end{align*}
$$

Equation (3.29) is integrated over the domain of interest $(0, \infty)$ of the variable η, and the independent variables (ξ, η) are transformed to (ξ, u^{*}) so that in reality all integrations are taken over the interval $(0,1)$ in u^{*}, thus eliminating the problem of integration over a semi-infinite interval. For details of this transformation, see Appendix C of Koob and Abbott [41]. For convenience a new variable is defined

$$
\begin{equation*}
\theta=\left(\frac{\partial u^{*}}{\partial \eta}\right)^{-1} \tag{3.31}
\end{equation*}
$$

The integrated form of equation (3.29) becomes

$$
\begin{align*}
& \frac{d}{d \xi} \int_{0}^{l} h_{i} \rho * u^{*} \theta d u^{*}-\frac{U_{e}}{U_{e}} \int_{0}^{1} h_{i}^{:}\left(1-\rho^{*} u^{2}\right) \theta d u * \\
& \quad+\frac{\mu_{e}}{\mu_{r}} \frac{h_{i}^{\prime}(0) \rho_{w}{ }^{*} \mu_{w}^{*}}{\rho_{w}^{*} \theta(\xi, 0)}+\frac{\mu_{e}}{\mu_{r}} \int_{0}^{1} \frac{\rho^{*} \mu^{*} \beta h_{i}^{\prime \prime} d u^{*}}{\rho^{*} \theta}=0 \tag{3.32}
\end{align*}
$$

by requiring $h_{i}(1)=0$ 。
Equation (3.30) is now handled in a very similar manner; it is integrated with respect to η, and the independent variables (ξ, η) are transformed to (ξ, H^{*}) so that
in reality all integrations are taken over the finite interval ($H_{W}{ }^{*}{ }^{\prime}$ l) in the variable H^{*}. For convenience another new variable is defined

$$
\begin{equation*}
X=\left(\frac{\partial H^{*}}{\partial \eta}\right)^{-1} \tag{3.33}
\end{equation*}
$$

and the final resulting equation is

$$
\begin{align*}
& \frac{d}{d \xi} \int_{H_{W}^{*}}^{l} \rho^{*} u^{*} f_{i} \chi d H^{*}=-\frac{{ }^{H} e_{\xi}}{H_{e}} \int_{H_{w}^{*}}^{1} f_{i}^{\prime} \rho^{*} u^{*} H^{*} \chi d H^{*} \\
& -f_{i}^{\prime}\left(H_{w}^{*}\right) \frac{\mu_{e}}{\mu_{r}} \frac{\mu_{w}^{*}}{\operatorname{Pr}} \frac{1}{\lambda_{w}}-\int_{H_{w}^{*}}^{1}\left[\frac{\mu_{e}}{\mu_{r}} \frac{\mu^{*}}{P r}\left(1+\frac{\varepsilon}{v} \frac{\operatorname{Pr}}{P r}\right) \frac{1}{\chi}\right. \\
& \left.\quad+\frac{\mu_{e}}{\mu_{r}} \mu^{*}\left(1-\frac{1}{\operatorname{Pr}}\right) \frac{U_{e}^{2}}{H_{e}} u^{*} \frac{1}{\Theta}\right] f_{i}^{\prime \prime} d H * \tag{3.34}
\end{align*}
$$

with the restriction that $f_{i}(1)=0$. The resulting equations to be solved for θ and X are equations (3.32) and (3.34), which are integro-differential equations that have been integrated out of their u^{*} and H^{*} variations until only ordinary differential equations in ξ remain.

3.5 Approximating and Weighting Functions

Approximating functions for groupings of variables involving X and θ must be chosen. These groupings should be chosen to simplify algebraic manipulation as well as to reduce computer calculation time. In Reference 44, $\rho * \theta$ was found to be a computationally convenient group, and it is seen to naturally arise many times in equation (3.32), while in the present work $\rho^{*} u * \chi$ was discovered to be another
computationally convenient group. In selecting the form of the approximating functions, the perturbation procedure developed in Koob and Abbott [41] was followed where the initial distribution of a group in one variable is perturbed by a polynomial in the same variable which has coefficients that are a function of the other variable, for example

$$
\begin{equation*}
\rho^{*} \theta\left(u^{*}, \xi\right)=C_{j}(\xi) \phi_{j}\left(u^{*}\right) \tag{3.35}
\end{equation*}
$$

where

$$
\begin{align*}
& \phi_{j}\left(u^{*}\right)=P_{j-1}\left(2 u^{*}-1\right) \frac{F\left(u^{*}\right)}{1-u^{*}} \tag{3.36}\\
& \rho^{*} u^{*} \chi\left(H^{*}, \xi\right)=D_{j}(\xi) \omega_{j}\left(H^{*}\right) \tag{3.37}
\end{align*}
$$

where

$$
\begin{align*}
& \omega_{j}\left(H^{*}\right)=P_{j-1}\left(2 H^{*}-1\right) \frac{G\left(H^{*}\right)}{1-H^{*}} \tag{3.38}\\
& \frac{F\left(u^{*}\right)}{1-u^{*}}=\rho^{*} \theta\left(u^{*}, \xi_{o}\right) \tag{3.39}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{G\left(H^{*}\right)}{1-u^{*}}=\rho^{*} u^{*} \chi\left(H^{*}, \xi_{o}\right) \tag{3.40}
\end{equation*}
$$

$P_{j-1}\left(2 u^{*}-1\right)$ is the Legendre polynomial of ($j-1$) order with argument (2u*-1). Repeated subscripts imply summation from $j=1$ to N, where N is the order of the approximation.

The prime considerations in selecting the form of the weighting functions are that the weighting functions should be an orderly successive subset of a complete set of functions to obtain solutions that converge most rapidly for successive approximations (see Bethel and Abbott [40])
and that the weighting functions should simplify the evaluation of the integrals in equations (3.32) and (3.34) as much as possible. The weighting functions chosen for this work are

$$
\begin{align*}
& h_{i}\left(u^{*}\right)=\left(1-u^{*}\right) P_{i-1}\left(2 u^{*}-1\right) \tag{3.41}\\
& f_{i}\left(H^{*}\right)=\left(1-H^{*}\right) P_{i-1}\left(2 H^{*}-1\right) \tag{3.42}
\end{align*}
$$

The form of the weighting function $h_{i}\left(u^{*}\right)$ was selected because it has proven to work well in the incompressible work of Deiwert and Abbott [47], and its computational advantages carry over to the compressible regime. No precedent has been set for the selection of $f_{i}\left(H^{*}\right)$; due to the analogous manner in which the momentum and energy equations were treated, the selection of $f_{i}\left(H^{*}\right)$ was taken to have the same functional form as $h_{i}\left(u^{*}\right)$. This achieved the same computational advantages for the energy equation treatment as were obtained for the momentum equation*. Upon substitution of equations (3.35) and (3.37) into equations (3.32) and (3.34) one obtains

[^2]\[

$$
\begin{align*}
& \frac{d C_{j}}{d \xi} \int_{0}^{1} h_{i} u^{*} \phi_{j} d u^{*}-\frac{e_{\xi}}{U_{e}} C_{j} \int_{0}^{1} h_{i} \frac{\left(1-\rho^{*} u^{*}\right)}{\rho^{*}} \phi_{j} d u * \\
& \quad+\frac{\mu_{e}}{\mu_{r}} \frac{h_{i}^{\prime}(0) \rho_{w}^{*} \mu_{w}^{*}}{C_{j} \phi_{j}(0)}+\frac{\mu_{e}}{\mu_{r}} \int_{0}^{1} \frac{\rho^{*} \mu^{*} \beta h_{1}^{\prime \prime}}{\rho^{*} \theta} d u^{*}=0 \tag{3.43}
\end{align*}
$$
\]

and

$$
\begin{align*}
& \frac{d D_{j}}{d \xi} \int_{H_{w}^{*}}^{1} f_{i} \omega_{j} d H^{*}=-\frac{e_{\xi}}{H_{e}} D_{j} \int_{H_{w}^{*}}^{1} f_{i}^{*} H^{*} \omega_{j} d H^{*} \\
& \quad-f_{i}^{\prime}\left(H_{w}^{*}\right) \frac{\mu_{e}}{\mu_{r}} \frac{\mu_{w}^{*}}{P r} \frac{1}{X_{w}}-\int_{H_{w}^{*}}^{1}\left[\frac{\mu_{e}}{\mu_{r}} \frac{\mu^{*}}{P r}\left(1+\frac{\varepsilon}{v} \frac{P r}{P r_{t}}\right) \frac{\rho^{*} u^{*}}{D_{j} \omega_{j}}\right. \\
& \left.\quad+\frac{\mu_{e}}{\mu_{r}} \mu^{*}\left(1-\frac{1}{\operatorname{Pr}}\right) \frac{U_{e}^{2}}{H_{e}} \frac{u^{*} \rho^{*}}{C_{j} \phi_{j}}\right] f_{i}^{\prime \prime} \quad d H^{*} \tag{3.44}
\end{align*}
$$

To simplify the notation in equations (3.43) and (3.44), some matrices will be defined as follows:

$$
\begin{align*}
& A_{i j}=\int_{0}^{1} h_{i} u^{*} \phi_{j} d u^{*} \tag{3.45}\\
& I_{i j}=\int_{0}^{1} h_{i}^{\prime} \frac{\left(1-\rho^{*} u^{*}\right)}{\rho^{*}} \phi_{j} d u^{*} \tag{3.46}\\
& B_{i}=\frac{\mu_{e}}{\mu_{r}} \frac{h_{i}^{\prime}(0) \rho_{w}^{*} \mu_{w}^{*}}{C_{j} \phi_{j}(0)} \tag{3.47}\\
& g_{i}=\int_{0}^{1} \frac{\rho^{*} \mu^{*} \beta h_{i}}{\rho^{*} \theta} d u^{*} \tag{3.48}\\
& J_{i j}=\int_{H_{W}^{*}}^{f_{i} \omega_{j} d H^{*}} \tag{3.49}\\
& K_{i j}=\int_{W_{i}^{*}}^{1} f_{i}^{3} H^{*} \omega_{j} d H^{*} \tag{3.50}
\end{align*}
$$

$$
\begin{align*}
L_{i}= & f_{i}^{\prime}\left(H_{w}^{*}\right) \frac{\mu_{e}}{\mu_{r}} \frac{\mu_{w}^{*}}{P r} \frac{1}{X_{W}} \tag{3.51}\\
M_{i}= & \int_{H_{W}^{*}}^{1}\left[\frac{\mu_{e}}{\mu_{r}} \frac{\mu^{*}}{P r}\left(1+\frac{\varepsilon}{v} \frac{P r}{P r_{t}}\right] \frac{\rho^{*} u^{*}}{D_{j} \omega_{j}}\right. \\
& +\frac{\mu_{e}}{\mu_{r}} \mu^{*}\left(1-\frac{1}{P r} \int \frac{U^{2}}{H_{e}} \frac{u^{*} \rho^{*}}{C_{j} \phi_{j}}\right] f_{i}^{\prime \prime} d H^{*} \tag{3.52}
\end{align*}
$$

Using the above definitions, equations (3.43) and (3.44) in matrix notation become

$$
\begin{equation*}
A_{i j} \frac{d C_{j}}{d \xi}-\frac{U^{e_{\xi}}}{U_{e}} I_{i j} C_{j}+B_{i}+\frac{\mu_{e}}{\mu_{r}} g_{i}=0 \tag{3.53}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{i j} \frac{d D_{j}}{d \xi}=-\frac{{ }^{H} e_{\xi}}{H_{e}} K_{i j} D_{j}-L_{i}-M_{i} \tag{3.54}
\end{equation*}
$$

Multiplication of equation (3.53) by the inverse matrix of $A_{i j}$ and equation (3.54) by the inverse of $J_{i j}$ yields

$$
\begin{equation*}
\frac{d C_{k}}{d \xi}=\frac{U_{\xi}}{U_{e}} A_{k i}^{-1} I_{i j} C_{j}-A_{k i}^{-1} B_{i}-\frac{\mu_{e}}{\mu_{r}} A_{k i}^{-1} g_{i} \tag{3.55}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d D_{k}}{d \xi}=-\frac{{ }^{H} e_{\xi}}{H_{e}} J_{k i}^{-1} K_{i j} D_{j}-J_{k i}^{-1} L_{i}-J_{k i}^{-1} M_{i} \tag{3.56}
\end{equation*}
$$

It should be noted here that $A_{i j}$ and $J_{i j}$ are constant matrices for a given flow case and consequently only have to be inverted once for any particular flow calculation as was previously mentioned. Further examination reveals that $K_{i j}$ is also a constant matrix while $I_{i j}$, B_{i}, g_{i}, L_{i} and M_{i} are variable matrices and must be evaluated at each
ξ-location. Equations (3.55) and (3.56) are the nonlinear ordinary differential equations to be solved for C_{k} and D_{k} which completely specify the desired solution variables as shown in Section 3.7.

3.6 Initial Conditions

Initial conditions must be obtaineú for the C_{k} and D_{k} coefficients before the solution of equations (3.55) and (3.56) can be found. These initial conditions can be obtained quickly and simply by combining equations (3.35), (3.36), and (3.39) into

$$
\begin{equation*}
\rho^{*} \theta\left(u^{*}, \xi\right)=C_{j}(\xi) P_{j-1}\left(2 u^{*}-1\right) \rho * \theta\left(u^{*}, \xi_{o}\right) \tag{3.57}
\end{equation*}
$$

Evaluation of equation (3.57) at ξ_{o} yields

$$
\begin{equation*}
1=C_{j}\left(\xi_{o}\right) P_{j-1}\left(2 u^{*}-1\right) \tag{3.58}
\end{equation*}
$$

Recalling that $P_{o}\left(2 u^{*}-1\right)=1$ and that $P_{j-1}\left(2 u^{*}-1\right)$ is a linearly independent set of functions, it is seen that

$$
\begin{equation*}
C_{1}\left(\xi_{0}\right)=1 \tag{3.59}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{j}\left(\xi_{0}\right)=0 \quad \text { for } \quad j \neq 1 \tag{3.60}
\end{equation*}
$$

In the same manner it is noted that

$$
\begin{equation*}
\rho^{*} u^{*} \chi\left(H^{*}, \xi\right)=D_{j}(\xi) P_{j-1}\left(2 H^{*}-1\right) \rho^{*} u^{*} \chi\left(H^{*}, \xi_{0}\right) \tag{3.61}
\end{equation*}
$$

and

$$
\begin{equation*}
I=D_{j}\left(\xi_{o}\right) P_{j-1}\left(2 H^{*}-1\right) \tag{3.62}
\end{equation*}
$$

thus

$$
\begin{equation*}
D_{1}\left(\xi_{0}\right)=1 \tag{3.63}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{j}\left(\xi_{0}\right)=0 \quad \text { for } \quad j \neq 1 \tag{3.64}
\end{equation*}
$$

Quite simply the coefficients have been specified at the initial location ξ_{0} without any dependence on the physical initial conditions (velocity and temperature profile), since the initial velocity and temperature profiles are the basis for the approximating functions.

3.7 Calculation of the Desired Solution Variables from the Coefficients $\mathrm{C}_{\mathrm{k}}(\xi)$ and $\mathrm{D}_{\mathrm{k}}(\xi)$

Some of the desired outputs of a boundary-layer prediction technique are skin-friction coefficient C_{f}, displacement thickness $\delta *$, momentum thickness θ, velocity profile $u(y)$, temperature profile $T(y)$, heat transfer at the wall q_{w}, and various other thickness and shape parameters. The derivation of these desired outputs is shown below. First, from the solutions of equations (3.55) and (3,56) the $C_{k}(\xi)$ and $D_{k}(\xi)$ coefficients are known; thus, from equations (3.35) and (3.37), $\rho^{*} \theta\left(u^{*}, \xi\right)$ and $\rho^{*} u^{*} \chi\left(H^{*}, \xi\right)$ are known. Using the identity

$$
\begin{equation*}
\frac{\theta}{u^{*} X}=\frac{\rho^{*} \theta\left(u^{*}, \xi\right)}{\rho^{*} u^{*} \chi\left(H^{*}, \xi\right)} \tag{3.65}
\end{equation*}
$$

and after some algebraic manipulation and integration over n, equation (3.66) is obtained.

$$
\begin{equation*}
\int_{0}^{\eta} \rho * u * \chi\left(H^{*}, \xi\right) \frac{\partial H^{*}}{\partial \eta} d \eta=\int_{0}^{\eta} u * \rho * \theta(u *, \xi) \frac{\partial u^{*}}{\partial n} d \eta \tag{3.66}
\end{equation*}
$$

Upon change of the variable of integration, equation (3.66) becomes

$$
\begin{equation*}
\int_{H_{w}^{*}}^{s} \rho^{*} u^{*} \chi\left(H^{*}, \xi\right) d H^{*}=\int_{0}^{u^{*}} \rho^{*} \theta(u *, \xi) u * d u * \tag{3.67}
\end{equation*}
$$

which yields $H^{*}\left(u^{*}\right)$ at a specified value of ξ. From this $H^{*}\left(u^{*}\right)$ function, $\rho^{*}\left(u^{*}\right)$ is immediately obtained by use of the definition

$$
\begin{equation*}
H^{*}=\left(C_{p} T+u^{2} / 2\right) / H_{e} \tag{3.68}
\end{equation*}
$$

and the perfect gas law

$$
\begin{equation*}
\rho^{*}=\frac{\rho_{e^{p}} e}{R T} \tag{3.69}
\end{equation*}
$$

Now using the identity

$$
\begin{equation*}
\theta=\frac{\rho^{*} \theta\left(u^{*}, \xi\right)}{\rho^{*}\left(u^{*}\right)} \tag{3.70}
\end{equation*}
$$

with some algebraic manipulation and integration, one obtains

$$
\begin{equation*}
\eta=\int_{0}^{u *} \frac{\rho^{*} \Theta\left(u^{*}, \xi\right)}{\rho^{*}\left(u^{*}\right)} d u^{*} \tag{3.71}
\end{equation*}
$$

which gives the velocity profile at a given ξ location in the form of $\eta\left(u^{*}\right)$ instead of the usual form $u^{*}(\eta)$. The total-enthalpy profile is obtained by incorporating the $\eta\left(u^{*}\right)$ function of equation (3.71) into the $H^{*}\left(u^{*}\right)$ function given by equation (3.67). Using

$$
\begin{align*}
C_{f} & =\frac{\tau_{W}}{\frac{1}{2} \rho_{e} U_{e}^{2}} \tag{3,72}\\
\tau_{W} & =\left.\mu_{w} \frac{\partial u}{\partial y}\right|_{w} \tag{3.73}\\
\theta & =\left(\frac{\partial u^{*}}{\partial \eta}\right)^{-1} \tag{3.31}
\end{align*}
$$

and the approximation function for $\theta_{\text {, }}$ equation (3.35), one obtains

$$
\begin{equation*}
C_{f}=\frac{2 \mu_{W} \rho_{W}^{*}}{\rho_{r} U_{r}^{L}} \frac{\sqrt{R e_{r}}}{(-1)^{j-1} C_{j} F(0)} \tag{3.74}
\end{equation*}
$$

From the definitions of displacement thickness and momentum thickness,

$$
\begin{equation*}
\delta^{*}=\int_{0}^{\delta}\left(1-\rho^{*} u^{*}\right) d y \tag{3.75}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta=\int_{0}^{\delta} \rho * u *(1-u *) d y \tag{3.76}
\end{equation*}
$$

one obtains

$$
\begin{equation*}
\delta *=\frac{L}{\sqrt{R_{r}}} \int_{0}^{1}(1-\rho * u *) \theta d u * \tag{3.77}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta=\frac{L}{\sqrt{R_{e}}} \int_{0}^{I} u^{*}\left(1-u^{*}\right) \rho * \theta d u^{*} \tag{3.78}
\end{equation*}
$$

For the heat transfer at the wall

$$
\begin{equation*}
q_{w}=-\left.k \frac{\partial T}{\partial y}\right|_{w} \tag{3.79}
\end{equation*}
$$

one obtains

$$
\begin{equation*}
q_{w}=-k \frac{\rho_{e}^{U} e^{U}}{\rho_{r} U_{r}^{L}} \frac{\sqrt{\mathrm{Re}_{r}}{ }^{H} e_{\mathrm{e}}}{\mathrm{C}_{\mathrm{p}} X\left(\mathrm{H}_{\mathrm{w}}^{*}{ }^{*} \xi\right)} \tag{3.80}
\end{equation*}
$$

Further derivations for shape parameters and higher order thickness parameters can be performed easily.

3.8 Analysis of Experimental Data

In the search for sets of experimental data on supersonic, compressible, turbulent boundary layers with which to compare theoretical calculations, the task is more in the line of discovery than selection. Add the further restriction of moderate Mach numbers, say $M_{e}<6$, which is required for the validity of the governing equations and the eddyviscosity model used in this investigation, and the available experimental data shrinks to a few isolated data sets for flat-plate type flows - flow over a flat-plate model, flow along hollow cylinders, and flow on wind tunnel walls and only a handful of data for pressure-gradient flows. Johnson and Bushnell [48] have made a rather exhaustive tabulation of experimental data for the flat-plate type flows while a couple of the pressure-gradient data cases for moderate Mach numbers are available in the reports by Pasiuk, Hastings, and Chatham [49] and by Winter, Smith, and Rotta [50].

An additional complication arises in comparing calculated results with experimental data in that the majority of the experimental data is for the adiabatic flat-plate case and as reported by any given author was taken by holding the streamwise measuring station and the freestream Mach number fixed while the Re_{y} parameter was varied by changing the pressure level, and consequently the
free-stream density, in the wind tunnel. The measurements were made in this manner due to the complications arising from the reflection of shock waves inside the wind tunnel. Consequently, when such data is presented as a plot of C_{f} versus $R e_{x}$ at a constant value of M_{e}, it represents the variation of C_{f} with a change in pressure level instead of with a change in x - the normal case for incompressible data. Since prediction schemes are designed to calculate the development of a boundary layer with increasing x, some method must be devised to compare the calculated results with this type of experiment.

Cebeci, Smith, and Mosinskis [1] devised a method which consists of starting their calculations at the leading edge of the adiabatic flat plate where the flow is assumed to be laminar and then arbitrarily specifying the flow to be turbulent at the next x-station which is arbitrarily assumed to be at $x=0.001 \mathrm{ft}$. The calculations are then carried out downstream until the calculated value of $\operatorname{Re}_{\theta}$ reaches the experimental value, and at that point the calculated boundary-layer parameters are compared with the experimental measurements. Despite their rather harsh assumptions that the laminar region is 0.001 ft . long for all flow cases and that there is no transition region, their calculations of boundary-layer parameters agree very well with experiment. Herring and Mellor [8] have devised a scheme whereby they carry out calculations by assuming U_{e}
and $\delta *$ to be linear in x and the ($\rho^{*} u^{*}$) and H profiles to be independent of $x:$ after performing calculations in this manner up to within two or three x-steps of the point where the experimental data is giveng they relax their above assumptions and continue the calculations through the final two or three x-steps up to the data point and at that x location compare their calculations with the experimental data for the boundary-layer parameters and profiles. Herring and Mellor's method of comparing their calculations with experimental data that has been obtained at one x-location can thus be characterized as an elaborate initialization procedure; indeed, they use an iteration on this procedure to get the initial conditions for their calculations when they are computing a flow which has been measured at various x-locations.

There is another possible approach by which calculations can be compared with the experimental data measured at one x -location, and this approach is a better indication of the ability of a calculation technique to predict the behavior of a turbulent, compressible boundary layer. This method will be explained after a brief introduction of some experimentally observed trends which underlie the basis for this new approach. The chief experimental observation noted by Matting et al. [30] is the one shown by Figure 19 which is a comparison of faired curves through experimental data for adiabatic flat plates. All of the data for $M_{e} \geq 2.54$ was obtained by holding the streamwise measuring station and the

Figure 19: Comparison of Direct Force Measurements of Turbulent Skin Friction
free-stream Mach number fixed while Re_{x} was varied by changing the pressure level in the wind tuned. In Figure 19, x is the distance between the transition point and the location of the measuring station; the transition point is assumed to be the point of maximum C_{f}. The parameter x was used because, to obtain some type of universal relationship involving Reynolds number, it is necessary to obtain a virtual origin for the turbulent boundary layer so that the length parameter in the Reynolds number is independent of the length of the laminar region. Figure 19 implies that the resulting $C_{f}-\operatorname{Re}_{\mathrm{X}}$ relationship is a universal one, and this fact can now be used in comparing analytical and empirical results. The calculations are started for a given data Mach number by generating initial conditions at the lowest experimental value of $R e_{X^{\prime}}$ then the calculations are continued downstream and the calculated values of C_{f} are compared with the empirical values at the experimental points where $R e_{x}$ is known.

Further examination of the experimental data shows that there is no possibility for a direct comparison between the measured and predicted values of the boundary-layer thickness parameters (δ, δ^{*}, and θ): the measured values of the thickness parameters generally decrease with increasing Re_{x}, while the predicted values increase. The reason for the discrepancy between the predicted and experimental results is easily understood if we revert to the incompressible turbulent boundary-layer case where a simple analytical computation can be performed. The one-seventh power velocity
law and the momentum integral equation combine to give an ordinary differential equation for δ which upon integration yields

$$
\begin{equation*}
\frac{\delta(x)}{x}=0.37\left(\frac{U e^{x}}{v}\right)^{-1 / 5} \tag{3.81}
\end{equation*}
$$

for the boundary-layer thickness on a flat plate. This result shows that if $R e_{\mathrm{X}}$ is caused to increase by increasing x, then δ also increases, as is the case for the predicted results; but if $R e_{x}$ is made to increase by increasing the value of U_{e} / v, then δ decreases, as in the case of the experimental data. While this analysis is not directly applicable to compressible flow, it suggests a possible rationale for the aforementioned discrepancy which is consistant with evidence for compressible flow.

Although it is not possible to directly compare the boun-dary-layer thickness parameters, the velocity profiles (in the form of u / U_{e} versus y / θ) and the Mach-number profiles (in the form of M / M_{e} versus y / θ) may be compared, since these profiles form nearly universal functions (see Schlichting [33]*). These functions are not exactly universal in that all data points do not fall on exactly the same curve; in particular, there is considerable deviation near the wall; however, such a deviation might also be caused by probe

[^3]interference close to the wall. In any event. for lack of a more reliable comparison, the u / v_{e} versus y / θ and M / M_{e} versus y/ θ profiles are utilized in this work for a comparison between theory and experiment. The measured value of θ is used in the experimental profiles and the calculated value of θ is used in the predicted profiles. It will be shown in Section 4 that the present MWR calculations agree not only with the experimental data but also with the finitedifference calculations of Cebeci. Smith and Mosinskis [1].

3.9 Summary

In Section 3 the mathematical modeling of the physical problem - compressible, turbulent boundary layers - is presented, and solution techniques for the governing equations are discussed. The selection of the MWR solution procedure is discussed, and the details of its application to the governing equations are presented. Upon the introduction of a shear model into the resulting equations, the prediction analysis for compressible, turbulent boundary layers is completed. A search for experimental results to compare with the analytical predictions is undertaken, and the available data is found to be taken in a manner different than that assumed in developing the prediction program. Two procedures, developed by other investigators for comparing the data with predictions, are examined while a somewhat different procedure is developed and suggested as a proper indication of the ability of a prediction scheme.
4. COMPARISON OF CALCULATED AND EXPERTMENTAT RESULTS

Abstract

4.I The Numerical Solution Procedure

The appropriate MWR equations governing the flow over an adiabatic flat plate have been programmed for a CDC 6500 computer. The Crocco equation relating temperature to velocity has been used instead of the complete energy equation, since, as explained in Section 2.5^{*}, the Crocco equation is quite adequate for the adiabatic flat-plate case. A numerical solution was obtained for equations (3.55), which are a system of N first-order ordinary differential equations where N is the order of the desired approximation. Equations (2.23) to (2.26) were used for the property variations while several different turbulent shear models were employed to evaluate the turbulent shear terms in the governing equations. This MWR formulation was used to predict the flows over adiabatic flat plates at four different free-stream Mach numbers. Skin friction variation, velocity profiles and Mach-number profiles were computed and compared with experimentally measured values. In programming the solution for the $\mathbb{M W R}$ equations, two methods were used to solve the first-order system of

[^4]ordinary differential equations, equations (3.55); they are Mamming's modified exedictommorrector method and the fourthw
 details of these methods). Both methods worked quite well; however Hamming ${ }^{\text {s }}$ method was slightly faster; and, therew fore, it was used in obtaining the results presented in this paper. The resultant computer program used to solve the system of equations is presented in Appendix B. The calculation time on a CDC 6500 computer for an entire flow case was generally about 20, 150, and 350 seconds for the first, second, and third approximations respectively. The time for a second approximation was the same order as the time required by the CSM [1] finite-difference methods. Usually the MWR takes considerably less calculation time than does a finite-difference method; however, in the present work the calculation times of the two techniques were comparable because an eddy-viscosity model was used which required calculation of velocity and eddy-viscosity profiles at every ξ-location and because the sensitivity of the eddyviscosity model necessitated a very small $\Delta \xi$ step size (as will be explained in Section 4.4). Nevertheless, a potential reduction of the MWR calculation time by an order of magnitude is indicated in Section 4.4

4.2 The MWR Results Using the CSM Eddy-Viscosity Model

The results of this section are obtained using the CSM eddy-viscosity model in the third approximation formulation of the MWR*. To obtain starting velocity and shear-stress distributions, the iteration procedure described in Section 2.4 and Section 2.5 is used. However, no smoothing or iteration (of any variahle) is employed downstream.

The first comparison is for the flow over an adiabatic flat plate with the following values of the parameters:

$$
\begin{aligned}
\mathrm{M}_{\mathrm{e}} & =2.54 \\
\mathrm{U}_{\mathrm{e}} & =1931 \mathrm{ft} / \mathrm{sec} \\
\mathrm{~T}_{\mathrm{w}} & =519.3^{\circ} \mathrm{R} \\
\mathrm{~L} & =8.194 \mathrm{ft}
\end{aligned}
$$

The MWR predicted results are compared with the experimental measurements of Coles [24] and with some analytical results of Cebeci, Smith, and Mosinskis [1]. The starting velocity and shear-stress profiles, obtained by the iterative procedure of Section 2.4 and Section 2.5, are given in Figures . 20 to 23. Figure 20 displays the shear-stress and

[^5]

Figure 20: Calculations of Velocity Derivative and Shear Stress by the CSM Eddy-Viscosity Model Without Iteration for the Experimental Data of Coles [24], $M_{e}=2.54, \operatorname{Re}_{x}=0.63 \times 10^{\circ}$

Figure 21: Comparison of the Iterated ${ }^{\text {Starting Profile with Experimental Data, }}$

Figure 22: Comparison of the Velocity-Derivative Profile Calculated with and without Iteration, $M_{e}=2.54, \operatorname{Re}_{x}=0.63 \times 10^{\circ}$

Figure 23: Comparison of the Eddy-Viscosity Profile with and without Iteration, $M_{e}=2,54$, $R e_{x}=0.63 \times 10^{6}$
velocity-derivative distributions which were calculated from the experimental data by the procedure of Section 2.4. Figure 21 shows the velocity profile after iteration compared with the experimental profile. Figure 22 compares the velocity-derivative profiles before and after iteration while the eddy-viscosity profiles before and after iteration are shown in Figure 23. The profiles after iteration are the input, starting profiles for the MWR solution technique. Figure 24 displays the MWR skin-friction variation, the experimental values, and one result of the CSM calculations. The one CSM calculated value is in error 3.31 percent. (For the purpose of calculating errors the experimental values are assumed to be correct.) The maximum error in the MWR solution is 3.5 percent at $\operatorname{Re}_{x}=4.21 \times 10^{6}$. Figures 25 and 26 present the velocity and Mach-number profiles at the initial x-station and two downstream stations. The MWR calculated profiles agree fairly well with the experimental data while the CSM profiles at $\operatorname{Re}_{\mathrm{x}}=4.21 \times 10^{6}$ are slightly better than the MWR calculations.

A second case was considered for an adiabatic flat plate with

$$
\begin{aligned}
M_{e} & =2.95 \\
U_{e} & =2140 \mathrm{ft} / \mathrm{sec} \\
\mathrm{~T}_{\mathrm{W}} & =551^{\circ} \mathrm{R} \\
\mathrm{~L} & =13.5 \mathrm{ft}
\end{aligned}
$$

The predicted results wexe then compared with the experimental

Figure 24: Comparison of Skin-Friction Calculations with Experiment, $M_{e}=2.54$

Figure 25: Comparison of Velocity-Profile Calculations with Experiment, Me $=2.54$
Figure 26: Comparison of Mach-Number Profile Calculations with Experiment, $M_{e}=2.54$
measurements of Matting, Chapman, Nyholm, and Thomas [30] and with some analytical calculations of Cebeci. Smith, and Mosinskis [1]. Figuxe 27 shows the comparisons for the variation of the skin-friction coefficient. The CSM calculations and the MWR predictions agree very well with the experimental data. The maximum error in the MWR solution is 2.23 percent at $\operatorname{Re}_{\mathrm{x}}=20 \times 10^{6}$ while the maximum error of the CSM calculations is 2.6 percent at $R e_{x}=9 \times 10^{6}$. Figures 28 and 29 show comparisons of the velocity and Machnumber profiles at the initial x-location and a downstream location. The calculated profiles agree quite well with the experimental data. The MWR predictions are slightly better than the CSM calculations at the lower Reynolds number and at the outer edge of the thermal boundary layer.

A third case was considered for an adiabatic flat plate with

$$
\begin{aligned}
\mathrm{M}_{\mathrm{e}} & =3.69 \\
\mathrm{U}_{\mathrm{e}} & =2202 \mathrm{ft} / \mathrm{sec} \\
\mathrm{~T}_{\mathrm{W}} & =516^{\circ} \mathrm{R} \\
\mathrm{~L} & =8.647 \mathrm{ft}
\end{aligned}
$$

Figure 30 shows the MWR calculations for skin-friction variation compared with the experimental data of Coles [24] and with the one calculated value of Cebeci, Smith, and Mosinskis 11. The one value from the CSM results was essentially identical to the experimentally measured value. The maximum exror in the MWR results is 7.25 percent at $\mathrm{Re}_{\mathrm{x}}=6.35 \times 10^{6}$.

Figure 27: Comparison of SkinwFriction Calculations with Experiment, $\mathrm{M}_{\mathrm{e}}=2.95$

Figure 29:

2. 95

Figure 30: Comparison of Skin-Friction Calculations with Experiment, $M_{e}=3.69$

Figures 31 and 32 show the predicted and experimentally measured velocity and Mach number profiles at the starting location and two downstream locations. The agreement between the MWR predictions and the experimental data is only fair for the Mach-number and velocity profiles at the downstream locations, but the CSM profiles are only fair a1so. The difference between the predicted and experimental profiles might be attributed to the experimental investigation, since a slight inflection point is noticeable in the experimental Mach-number profiles near a value of $y / \theta=7$. Such inflections can be caused by external flow disturbances. The fourth test case was for an adiabatic flat plate with

$$
\begin{aligned}
\mathrm{M}_{\mathrm{e}} & =4.2 \\
\mathrm{U}_{\mathrm{e}} & =2360 \mathrm{ft} / \mathrm{sec} \\
\mathrm{~T}_{\mathrm{w}} & =539.08^{\circ} \mathrm{R} \\
\mathrm{~L} & =22.39 \mathrm{ft}
\end{aligned}
$$

Figure 33 compares the skin-friction calculations with the Cebeci-Smith-Mosinskis [1] predictions and with the experimental measurements of Matting, Chapman, Nyholm, and Thomas [30]. The MWR skin-friction calculation is considerably better than the CSM prediction: the maximum error of the CSM prediction is 10.3 percent occurring at $\operatorname{Re}_{\mathrm{x}}=35 \times 10^{6}$ while the maximum error of the MWR calculation is 3.75 percent at $\mathrm{Re}_{\mathrm{X}}=96 \times 10^{6}$. Figures 34 and 35 show comparisons Eor velocity and Mach-number profiles at the initial

Figure 31: Comparison of Velocity-Profile Calculations with Experiment, $M_{e}=3.69$

Figure 32: Comparison of Mach-Number Profile Calculations with Experiment, $M_{e}=3.69$

Figure 33: Comparison of Skin-Friction Calculations with Experiment, $M_{e}=4.2$

Figure 34: Comparison of Velocity-Profile Calculations with Experiment, $M_{e}=4.2$

Figure 35: Comparison of Mach-Number Profiles with Experiment, $M_{e}=4.2$
x-location and two downstream locations. The profile comparisons are somewhat inconclusive, since the MWR results are better than the CSM results at some x-locations and in some regions of the boundary layer while the opposite is the case at other x-locations and in other regions of the boundary layer. Overall the calculated profiles of the MWR and CSM methods agree well with the experimental measurements.

4.3 Reliability of the Calculations

The MWR results in Figures 24 through 35 agree quite well with the experimental data and in general are as accurate as the Cebeci-Smith-Mosinskis [1] predictions. The convergence properties displayed by the first three MWR approximations are also particularly satisfying (see Appendix C).

In Section 2 special attention was directed to the shear-stress profiles as a possible key to improving the prediction of the boundary-layer parameters for turbulent flow. For this reason, the shear-stress profiles calculated by the MWR technique will be carefully examined. Initially, however, the calculation procedure should be re-emphasized. First, the starting conditions are obtained by the iterative procedure of Section 2.5: this provides a properly behaved shearastress profile at the initial streamwise location. Second, with these initial conditions the MWR technique calculates the boundary-layer variables at the downstream
locations; no iteration or moothing is used on the CSM eddy-viscosity model at ary downstream position. Following this procedure Figure 36 shows the calculated shear-stress profiles from the MWR solution for the flow with $M_{e}=2.54$, and Figure 37 shows the corresponding eddywiscosity profiles. It is seen that a rather large oscillation in the shear-stress profiles exists at the downstream locations, and the magnitude of this oscillation increases as the calculations proceed downstream. In Figure 37 the match point between the inner and outer eddy-viscosity expressions occurs at $y / \delta=0.18$; therefore, the oscillatory behavior in Figure 36 exists entirely within the inner region. It is thus very likely that the oscillations in shear stress can be attributed to a sensitivity of the inner-region equation of the CSM eddy-viscosity model (see Section 2.5) . Nevertheless, it is important to recall how well the skin friction coefficient, Mach-number profiles, and velocity profiles have been calculated even with the simultaneous development of an oscillatory behavior of the shear-stress profile, at least for the particular flows considered. On the other hand, it is possible that the gross parameters would not be predicted as well for a more difficult flow, say one with a suddenly changing pressure gradient. For such a case, the eddy-viscosity profile might have to be smoothed at every xwstation to obtain satisfactory predictions.

Another racher microscopic but very important result

Figure 36: MWR Calculation of Shear-Stress Profiles Using the CSM Eddy-Viscosity

Figure 37: MWR Calculation of Eddy-Viscosity Profiles Using the CSM Eddy-Viscosity Model, $M_{e}=2.54$
occurs in the skin-iriction prediction near the starting region of the calculations. In fact this result is so close to the starting point that it is not observable on the scales of the previous graphs of skin-friction coefficient. Consequently, the starting region of the skin-friction graph has been magnified greatly, and the results of the MWR solution for the $M_{e}=2.54$ flow are shown in Figure 38. The peak in Figure 38 is caused by inaccuracies in evaluating the g_{i} vector at the initial streamwise location. These inaccuracies cause the calcul.ated value of $\mathrm{dC}_{\mathrm{f}} / \mathrm{dRe} \mathrm{X}_{\mathrm{x}}$ to be positive initially, but as the calculation program proceeds downstream, it reverses the skin-friction curve which then follows the trend of the experimental data. Thus, when the initial conditions are rather incompatible with the governing equations, the prediction program corrects these incompatibilities in a very small streamwise distance - a very desirable characteristic of a prediction technique. The mechanism in the prediction program which generates the rapid, corrective response is probably closely related to the sensitivity of the CSM eddy-viscosity model. Perhaps any incorrect behavior in the boundary-layer calculations is quickly sensed by the CSM model, and a corrective response in the form of a shear-stress profile is immediately input to the governing equations at the next calculation step. The same mechanism which was previously blamed for the troublesome sensitivity of the CSM eddy-viscosity model

Figure 38: A Greatly Magnified View of the Calculations in the Starting Region, $M_{e}=2.54$
is now being suggested as a probable cause for the proper responsiveness of the prediction program. Perhaps the combination of the defining equations for eddy viscosity with the boundary-layer equations generates a sensitivity which must be accommodated in any calculation procedure. This sensitivity may even be necessary for the predictions to display the proper response to numerical disturbances.

Responses analogous to the peak in Figure 38 have been noticed by other investigators. For example, in calculating compressible, turbulent boundary layers by a finite-difference method, Herring and Mellor [8] generate what they call reset initial profiles by making various assumptions on the development of the flow which generated the initial experimental profiles; then in Herring and Mellor's words, "Since there was a slight discontinuity in values like C_{f} and δ * between the reset profile and the first profile moving forward, it was found best to allow space to calculate profiles at two or three stations before the initial station." Thus, initial disturbances are not uncommon in prediction programs for turbulent boundary layers.

[^6]satisfactory. In Section 4.3 these oscillations were attributed to the sensitivity of the csM eddy -viscosity model. It would be instructive to see if any shear models could be constructed which would be devoid of oscillations, but would still yield accurate predictions of the boundarylayer parameters. Consequently, the task was undertaken to predict the compressible, turbulent boundary layer with the MWR using alternative shear--stress models which, by construction, would yield well-behaved shear-stress profiles.

As a first attempt, a very simple-minded approach was used even though it could only conceivably be expected to work for the flat-plate flows. In the inner region of the boundary layer, denoted by subscript i, the shear stress was assumed to be a constant,

$$
\begin{equation*}
\tau_{i}=\tau_{w} \tag{4.1}
\end{equation*}
$$

while in the outer region the CSM eddy-viscosity model was employed, since it yields well-behaved shear-stress profiles there. The junction between the inner and outer regions was defined as the point where the shear stress from the inner-region model equaled the shear stress from the outerregion model. The MWR predicted skin-friction results with this shear model are shown in Figure 39 for a second approximation. These are the results for flow over an adiabatic flat plate at ${ }_{e}=2.54$. The calculations are shown with and without the initialization procedure of

Figure 39: Skin-Friction Calculation from an MWR Second Approximation Using the Inner-Region Shear Model of Equation (4.1) $\mathrm{m}_{\mathrm{e}}=2.54$

Appendix D where a proceduce kas been developed to artificially match the experimental and calculated values of $\mathrm{dC}_{f} / \mathrm{dRe}_{\dot{X}}$ at $\mathrm{X}_{0}{ }^{\circ}$

In hopes of obtaining better skin-friction predictions, a slightly more sophisticated shear-stress model was next considered for the inner region,

$$
\begin{equation*}
\tau_{i}^{*}=1-2.3978 \mathrm{y}^{*}+2.9266 \mathrm{y}^{*^{3}} \tag{4.2}
\end{equation*}
$$

where $\tau_{\dot{i}}^{*}=\tau_{i} / \tau_{W}$ and $Y^{*}=y / \delta$. Equation (4.2) was obtained from an analytical curve fit to the inner-region shear-stress results of Bradshaw [54] on a flat plate in incompressible, turbulent flow. In the outer region the CSM model was again used, and the junction between the two regions was defined as the point where the shear-stress values from the inner and outer equations were equal. The MWR predicted skin-friction results with this shear model are shown in Figure 40 for a second approximation. The calculations were again made for flow over an adiabatic flat plate at $M_{e}=2.54$. The predictions are shown both with and without the $\mathrm{dC}_{\mathrm{f}} / \mathrm{dRe}_{\mathrm{x}}$ initialization of Appendix D . The predictions using equation (4.2) are no better than those using equation (4.1); in fact, the results are nearly identical.

In another attempt to improve the skin-friction calculations, a much more sophisticated shear-stress equation Was developed and employed in the prediction program. The

Figure 40: Skin-Friction Calculation from an MWR Second Approximation Using the Inner-Region Sheax Model of Equation (4.2), $M_{e}=2.54$
idea for this model arose from the work of Clauser [4] where he developed umversal velocity orofiles for incompressible, turbulent flow over a flat plate. He developed universal correlation functions separately for the inner and outer regions and argued that there must be a parameter tying these two regions together in an overlap region. He chose the shear stress at the wall for the joining parameter. Perhaps the trouble with the two previous alternate shear models was the rough manner in which the separate functions for the two regions were joined; consequently, a model was developed which links the inner and outer regions and has a smooth junction between the two regions.

For this model, it is assumed that a fourth-order polynomial of the form

$$
\begin{equation*}
\tau_{i}^{*}\left(y^{*}\right)=b_{0}+b_{1} y^{*}+b_{2} y^{*^{2}}+b_{3} y^{*^{3}}+b_{4} y^{*^{4}} \tag{4,3}
\end{equation*}
$$

can satisfactorily model the shear-stress behavior in the inner region. The b_{i} coefficients are constants at a specified x-station and are determined from the following relations:

$$
\begin{align*}
& \tau_{\dot{i}}^{*}(1)=0 \tag{4.4}\\
& \frac{\partial \tau_{\dot{i}}^{*}(1)}{\partial y^{*}}=0 \tag{4,5}\\
& \tau_{\dot{i}}^{*}(0)=1 \tag{4.6}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial \tau_{i}^{*}(0)}{\partial y^{*}}=\frac{\delta}{\tau_{W}} \frac{d p}{d x} \tag{4,7}\\
& \frac{\partial \tau_{i}^{*}\left(y_{m}^{*}\right)}{\partial y^{*}}=\frac{\partial \tau_{o}^{*}\left(y_{m}^{*}\right)}{\partial y^{*}} \tag{4,8}
\end{align*}
$$

Where subscript i denctes the inner region subscript o the outer region, and y_{m}^{*} is the value of y^{*} at the match point between the two regions. Equations (4.4) through (4.7) satisfy four relevant boundary conditions: equation (4.7) is obtained from the evaluation of the x-momentum equation (3.11) at $y^{*}=0$, and equation (4.8) is the matching condition which creates a smooth junction between the inner and outer functions. The CSM eddy-viscosity equation was again used in the outer region, and the combined shear model was incorporated into the MWR prediction program. Again, the skin-friction variation was calculated for an MWR second approximation for flow over an adiabatic flat plate with $M_{e}=2.54$ and is shown in Figure 41. Both the calculations with and without the $\mathrm{CC}_{\mathrm{f}} / \mathrm{dRe}_{\mathrm{X}}$ initialization procedure are shown, and it is seen that these results are slightly worse than those from the simpler shear models of Figures 39 and. 40 .

Summarizing, the skin-friction coefficient predictions from three alternate shear models show a maximum errox in the MWR calculations between 16 percent and 27 percent in Figures 39,40 , and 41 . In contrast, the maximum exror in a second approximation of the MWR calculations for skin

Figure 41: Skin-Friction Calculation from an MWR Second Approximation Using the Innex-Region Shear Model of Equation (4.3), $M_{e}=2.54$
friction using the CSM eddy-viscosity model is 10.8 percent as seen in Appendix C. Although the calculations with the alternate shear models are not too bad, nevertheless they are not nearly as good as the predictions with the CSM model. In Figures 39, 40, and 41 the calculations with the alternate shear models, but without the $d C_{f} / d R e_{x}$ initialization of Appendix D, start very poorly but then level off and approach the experimental data as $R e_{x}$ increases. At first this characteristic was thought to be an incompatibility between the sterting conditions and the governing differential equations; consequently the analysis of Appendix D was performed to allow the skin-friction variation to start properly. However, the calculated results in Figures 39,40 , and 41 with the $\mathrm{dC}_{\mathrm{f}} / \mathrm{dRe}_{\mathrm{x}}$ initialization procedure are no better than the results without the initialization procedure: the region of inaccurate calculation is just shifted from low $R e_{x}$ to high $R e_{x}$. It seems that the alternate inner-region models simply do not contain enough physical make-up of the inner layer to be adequately responsive to the developing boundary layer. The hope of using a polynomial in y for the inner shear-stress equation and still calculating the skin friction as accurately as the predictions with the CSM eddy-viscosity model has consequently been abandoned at the present time. There would be, however, a very practical advantage to obtaining a smoothly varying shear-stress formulation;
namely in providing an order of magnitude reduction in machine calculation time. This contention can be illustrated by considering, as an approximation and with no special claims being made concerning its physical basis, a single polynomial representation for the shear stress across the complete viscous layer. In Section 4.3 it is seen that the calculated shear-stress profiles oscillate in the inner region of the boundary layer when the CSM eddy-viscosity model is used in the MWR prediction program. Complications of these oscillations are believed to propagate into the solution of the ordinary differential equations for the C_{j} coefficients and to require a very small step size in the ξ-direction (which consequently increases the computer time) in order to obtain accurate solutions for the C_{j}. To verify that the CSM eddy-viscosity model, with its shear-stress oscillations, necessitates the small $\Delta \xi$, steps, the task is undertaken to predict the compressible, turbulent boundary-layer behavior by using still another shear-stress model which, by construction, will yield smooth shear-stress profiles with no oscillations.

A similarity approach, comparable to that of Chi and Chang [55] and Ross and Robertson [56], is chosen across the entire boundary layer by assuming shear-stress similarity in the nondimensional coordinates τ / τ aegree polynomial of the form

$$
\tau^{*}\left(y^{*}\right)=a_{0}+a_{1} y^{*}+a_{2} y^{*^{2}}+a_{3} y^{*^{3}}
$$

is selected where the coefficients of the polynomial are found by the following boundary conditions:

$$
\begin{align*}
& \tau^{*}(1)=0 \tag{4.9}\\
& \frac{\partial \tau^{*}(1)}{\partial y^{*}}=0 \tag{4.10}\\
& \tau^{*}(0)=1 \tag{4.11}\\
& \frac{\partial \tau^{*}(0)}{\partial Y^{*}}=\frac{\delta}{\tau_{w}} \frac{d p}{d x} \tag{4.12}
\end{align*}
$$

The resulting equation for shear stress is

$$
\begin{equation*}
\tau^{*}\left(y^{*}\right)=\frac{\delta}{\tau_{w}} \frac{d p}{d x} y^{*}\left(y^{*}-1\right)^{2}+y^{2}\left(2 y^{*}-3\right)+1 \tag{4.13}
\end{equation*}
$$

The behavior of this equation is shown in Figure 42. Equation (4.13) is not proposed as an accurate quantitative description of the physical phenomena by means of which the predicted boundary-layer parameters can be improved; but rather it is proposed as a qualitatively correct, simple, and smooth analytical expression which can be used to study the restriction on the step size $\Delta \xi$ and therefore the machine computation time.

Boundary-layer calculations were performed by the MWR technique for flow over an adiabatic flat plate using equation (4.13) for the shear-stress model. The skin-friction results at $M_{e}=2.54$ are shown in Figure 43 for the second approximation with and without the $\mathrm{dC}_{\mathrm{f}} / \mathrm{dRe}_{\mathrm{X}}$ initialization

Figure 42: Shear-Stress Profiles Calculated from Equation (4.13)

Figure 43: Skin-Friction Calculation from an MWR Second Approximation Using the Shear Model of Equation $(4.13), M_{e}=2.54$
procedure. These results are considerably worse than those of the alternate shear models which used separate formulations for the inner and outer regions, since the maximum error of the calculations in Figure 43 is 50 percent. These calculations were made using various values of the step size $\Delta \xi$. Values of $\Delta \xi$ equal to $0.001,0.01$, and 0.03 all gave results for the \mathbb{C}_{j} coefficients which were identical to five significant figures whereas the calculations for the C_{j} coefficients using the entire CSM model, Section 4.2, required $\Delta \xi$ values of 0.001 and smaller for successive solutions to agree to three significant figures. The results obtained by varying $\Delta \xi$ indicate that the sensitivity and oscillation of the CSM eddy-viscosity model require the use of the very small step size of $\Delta \xi=0.001$, which consequently inflates the machine calculation time. For example, if a step size of $\Delta \xi=0.01$ could be used instead of 0.001 with the CSM model in Section 4.2 , then the average calculation time for the second approximation of the MWR would be decreased from 150 seconds to less than 19 seconds on a CDC 6500 computer. Thus the requirement of the small step size is attributed to the sensitivity of the CSM eddyviscosity model, and the potential for accurate predictions of the boundary-layer parameters with an order-of-magnitude reduction in computer time is indicated when a smoothly behaved shear model is found which adequately describes the physical phenomena.

Abstract

A.5 Summary

The numerical solution procedure for calculating com pressible, turbulent boundary Layexs with the kWR technique was described. Solutions were obtained using the CSM eddyviscosity model for compressible flow of aix over an adiabatic flat plate at four different Mach nambers. The calculated results agreed well with the experimental data, and in general, the results predicted by the MWR were at least as good as the results predicted by the Cebeci-SmithMosinskis [l] finite-cifference method. The machine calculation time for a second approximation of the MWR was of the same order as the CSM method, but a potential reduction in calculation time by an order of magnitude appears to be possible if a smoothly varying and physically correct shearstress model can be found. Despite good predictions of skin-friction coefficient and velocity and Mach-number profiles, oscillations in the calculated shear-stress profiles were found to develop at the downstream locations. These oscillations were attributed to the sensitivity of the inner-region equation of the CSM eddy-viscosity model. A nearly microscopic peak in some of the skin-friction calculations was detected near the starting region, and the cause of the peak was found to be slight inaccuracies in the starting values of the shear integrals g_{i}.

Alternate shear-stress models were developed and employed in place of the CSM eddy-viscosity model in the

hope that an improvement of the qualitative behavior of the shear-stress profile would improve the boundary-layer predictions. This was not the case: the predictions using the alternate shear models were considerably worse than those using the CSM eddy ${ }^{-v i s c o s i t y ~ m o d e l . ~ S o m e ~ i m p o r t a n t ~}$ information, however, did result from the use of the alternate shear models. With a similarity model for shear stress, a much larger $\Delta \xi$ step size could be used than that required by the CSM eddy-viscosity model. The resulting machine computation times were consequently reduced by an order of magnitude. Thus the door is opened for the development of a calculation procedure which will predict accurate boundarylayer parameters while requiring a very small machine time. The only missing ingredient is an alternate shear-stress model which will generate results as accurate as those from the CSM model while permitting a much larger step size $\Delta \xi$ than that required by the CSM model.
5. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

5.1 Summary

The two main goals of this work are: (1) the examination and selection of turbulent shear information models to be used in a boundary-layer calculation procedure and (2) the development of a calculation procedure for twodimensional, compressible, turbulent boundary layers.

First, calculations employing various turbulent shear models that have occurred in the literature were noted and compared; and two models were selected for further study in the present investigation. The CSM eddy-viscosity model was ultimately chosen to be incorporated into a prediction program. An iterative procedure was applied at the initial calculation station to correct the erratic behavior of the initial shear-stress profile, and a constant in the CSM model was modified.

Second a calculation procedure was developed by applying the MWR solution technique to the governing equations for two-dimensional, compressible, turbulent boundary layers. A computer program was written for this solution procedure, and the numerical results were compared with the axperiments of Coles [24] and Matting et al. [30] and with the finite-difference solutions of cebeci et al. [1] for
the flow of air over an adiabatic flat plate.
Finally, a sheax-stxess similaxity approach was undertaken to eliminate the effects of the anomalous shear-stress oscillations which arose when the CSM eddy-viscosity model was employed in the prediction program. By means of this similarity approach the effect of the shear-stress oscillations on the accuracy of the predicted boundary-layer parameters and on the required computation time was studied.

5.2 Conclusions

1. Many eddy-viscosity models yield qualitatively incorrect shear-stress profiles in the inner region of the turbulent boundary layer as is seen by results from previous investigations in the literature as well as by results calculated in the present investigation.
2. An exror analysis on the CSM eddy-viscosity model produces a very plausible explanation for the anomalous sheax-stress behavior by indicating the strong sensitivity of the model to the velocity profile and to the first y-derivative of the profile.
3. The CSM eddy-viscosity model is one of the best known and highly regarded turbulent shear models in the turbulent boundary-layer literature and therefore is employed in the prediction program of this investigation.
4. A significant improvement of the CSM eddy-viscosity model is achieved in compressible flow by allowing the
constant k_{1} to bocoms a functur of sach number: but due to the large gegteg of scatcez in the caiculated values of K_{1}, this function 上e not as yet wellwdefined.
5. The present method fox comparing turbulent compressible boundary-iayer calculations with experimental data (measured at a fixed x-location and fixed Mach number) is a better indication of the ability of a prediction program than two methods of comparison developed by other investigators.
6. From the boundary-layer predictions with the CSM eddyviscosity model, it is seen that:
(i) The convergence properties of the MWR solution are very well-behaved, and a second approximation is sufficient for most engineering purposes.
(ii) The predicted results for velocity and Mach-number profiles and skin-friction coefficient agree with both experiment and the CSM finite-difference predictions. The resulting calculation times for the MWR second approximation and the CSM method are of the same order.
(iii) Although the proposed iterative procedure creates a smooth shear-stress distribution initially, it is nevertheless found that shear--stress oscillations develop in the inner region of the boundary layer as the calculations proceed to downstream locations. The cause of these oscillations is probably a result of the sensitivity of the csM model to the velocity profile.
7. The use of polymomial expressions for shear stress eliminated the oscillations in the shear-stress profiles: the use of these expressions also reduced the computer time by an order of magnituae. a shear mocel mhich yields smooth shear-stress profiles, however, has not been found which also yields results of acceptable accuracy.

5.3 Recommendations

Considering the success of the present formulation for compressible, adiabatic, flat-plate flow calculations, this formulation should be extended to pressure-gradient and heat transfer cases. The major obstacle in this extension is in obtaining a smooth and proper shear-stress distribution at the initial calculation station. It is reasonable to expect that the indtialization procedure of Hirst and Reynolds [57] or Bradshaw [58] could be extended to compressible flow for this purpose, and the necessary modifications could be made in the program for the initialization procedure and for the handling of the complete energy equation.

In this work several alternate shear models were developed in an attempt to rid the prediction results of the oscillatory shearmstress behavior, but as a result considerable accuracy in the predicted boundary-layer parameters was sacrificed. However, this approach could be very rewarding: if a shear model (devoid of any oscillatory behaviory can be found which adequately models the physical situation, then an accurate prediction program can be developed which will require very small machine calculation
times. An alternative to developing a new oscillatorymfee model is the modivicution of ar existing model. For example, a simple and practical. (though rigorously unpleasing) approach is the numerical smoothing of the oscillations of an existing model at every streamwise station. Such a smoothing procedure could lead to significant improvements in the predicted boundary-layer parameters and to a reduc* tion in computer time. Thus, if one has explicit and physically well-based ideas for the development of a smoothly behaved shear model which will accurately model the physical phenomena, then he should pursue these ideas. However, if one lacks such specific ideas, he would be well-advised to modify some existing shear model in an attempt to reduce its erratically behaved shear-stress profiles.

Previously it was noted that a significant improvement could be made in the CSM eddy-viscosity model if the constant K_{1} was allowed to become a function of Mach number. However, due to a large degree of scatter in the calculated values, this functional form was not accurately defined. The accurate specification of this functional form then is obviously an area for further study. It might be possible, for example, to determine the functional form of K_{1} from extensive experimental data for the turbulent shear stress and the corresponding mean velocity profiles. This approach should be pursued only after more extensive data is available for turbulent shear stress.

1. Cebeci. T", Smith A.M.O., and Mosinskis, G. "Calculation of Compressible Aaiabatic Turbulent Boundary Layers". AIAA Paper No. 69-687, 1969.
2. Boussinesq, J. "Theory de l'ecoulement Tourbillant", Mém. Prếs. par div. Sav. 23, Paris, 1877.
3. Hinze, J. O. Turbulence: An Introduction to its Mechanism and Theory, McGraw-Hill Book Company, New York, 1959.
4. Clauser, F. H., "The Turbulent Boundary Layer", Advances in Applied Mechanics, 4, Academic Press, 1956.
5. Laufer, J., "Thoughts on Compressible Turbulent Boundary Layers", Compilation of Papers Presented at Syniposium on Compressible Turbulent Boundary Layers, NASA-Langley Research Center, 1968.
6. Forsnes, V. G. and Abbott, D. E., "A Unified Comparison of Local and Global Turbulent Shear Stress Models Utilized in the Prediction of Two-Dimensional, Incompressible Turbulent Boundary Layers", Technical Report FMTR 69-4. School of Mechanical Engineering, Purdue University, 1969.
7. Alber, I. E. and Coats, D. E., "Analytical Investigations of Equilibrium and Nonequilibrium Compressible Turbulent Boundary Layers", Dynamic Science, Technical Report DYN-1-PU, 1969.
8. Herring, H. J. and Mellor, G. L., "A Method of Calculating Compressible Turbulent Boundary Layers", NASA CR-1144. 1968.
9. Kline, S. J., Morkovin, M. V., Sovran, G., and Cockrell, D. I., (eds.), proceedings, Computation of Turbulent Boundary Layers - -1968 AFOSR-IFP Stanford Conference. Volume 1: Methods, Predictions, Evaluation and Elow Structure, Thermosciences Division" Department of Mechanical Engineering, Stanford University, 1968.
10. Cebeci, T., "The Behavior of Turbulent Flow Near a Porous Wall with Pressure Gradient", Douglas Aircraft Company, Report NO. DAC 70014, 1969.
11. Cebeci, T., and Mosinskis, G. J., "Calculation of Heat and Mass Transfer in Turbulent Flows at Low Mach Numbers", Douglas Aircraft Company, Report No. DAC 70015. 1969.
12. Mellor, G. L., "The Effect of Pressure Gradients on Turbulent Flow Near a Smooth Wall", Journal of Fluid Mechanics, 24, 1966.
13. Van Driest, E. R., "On Turbulent Flow Near a Wall", Journal of the Aeronautical Sciences, 23, 1956.
14. Klebanoff, P. S., "Characteristics of Turbulence in a Boundary Layer with Zero Pressure Gradient", NACA TN 3178, 1954.
15. Laufer, J., "The Structure of Turbulence in Fully Developed Pipe Flow", NACA Report No. 1174, 1954.
16. Van Dyke, M., Perturbation Methods in Fluid Mechanics, Academic Press, New York, 1964.
17. Dvorac, F., Private Communication.
18. Coles, D. E. and Hirst, E. A., Proceedings, Computation of rurbulent Boundary Layers - 1968 AFOSR-IFP Stanford Conference, Volume II: Compiled Data, Thermosciences Division, Department of Mechanical Engineering, Stanford University, 1968.
19. Mellor, G. L, and Herring, H. J., "Two Methods of Calculating Turbulent Boundary-Layer Behavior Based on Numerical Solutions of the Equations of Motion", see Reference 9.
20. Michel, R., Quemard, C., and Durant, R., "Hypothesis on the Mixing Length and Application to the Calculation of the Turbulent Boundary Layers", see Reference 9.
21. Ng, K. H., Patankar, S. V., and Spalding, D. B., "The Hydrodynamic Turbulent Boundary Layer on a Smooth Wall, Calculated by a Finite-Difference Method", see Reference 9.
22. Cebeci, T. and Smith, A.M.O. "A Finite-Difference Solution of the Incompressible Turbulent BoundaryLayer Equations by an Eddy-Viscosity Concept", see Reference 9.
23. Cebeci, T. and Smith, A.M.O., "A Finitemifference Solution of the Incompressible Turbulent Boundary Layer Equations by an Eddy-Viscosjty Concept", Douglas Aircxaft Company, Report No. DAC $-67130,1968$.
24. Coles, D.E. "Measurements in the Boundary Layer on a Smooth Flat Plate in Supersonic Flow, III. Measurements in a Flat Plate Boundary Layer at the Jet Propulsion Laboratory" Jet Propulsion Laboratory. California Insitiute of Technology, Report No. 20-71, 1953.
25. Bankston, C. A. and Mceligot, D. Mo. "Turbulent and Laminar Heat Transfer to Gases with Varying Properties in the Entry Region of Circular Ducts" Inter national Joumal of Eear and Mass Transfer, 13, 1970.
26. Martellucci, A., Rie, G_{H}, and Sontowski, J. J. "Evaluation of Several Eddy Viscosity Models Through Comparison with Measurements in Hypersonic Flows", AIAA Paper No. 69-688, 1969.
27. Crocco, L.. "Su di un Valore Massimo del Coefficiente di Transmissione del Calose da una Limina Piana a un Fluido Seconente" Rendiconti R. Accademia dei Lincei, 14, 1931.
28. Van Driest, E. R_{0} "Turbulent Boundary Layer in Compressible Fluids ${ }^{33}$, Journal of the Aeronautical Sciences, 18. 1951.
29. Bushnell, D. M., Johnson, C. B., Harvey, W. D., and Feller, W. F. "Comparison of Prediction Methods and Studies of Relaxation in Hypersonic Turbulent Nozzlew Wall Boundary Layers": NASA TN D-5433, 1969.
30. Matting, F. W. Chapman, D. Ro, Nyholm, J. Ro, and Thomas, A. G., "Turbulent Skin Friction at High Mach Numbers and Reynolds Numbers in Air and Helium". NASA TR R $\quad 82,1961$.
31. Schubauer, G. B. and Tchen, C. M. Turbulent Flow, NO. 9, Princeton Aeronautical Paperbacks. Coleman DuP. Donaldson. General Editors Princeton University Press, 1961.
32. Cebeci, T. and Smith. A.M.O. "Mumerical Solution of the Turbulext Donndary Waser Equathones", Douglas Aircraft Company, Report No. DAC 33735. 1967.
33. Sch1ichting, H. Boundary Layer Theory, Sixth Edition, McGraw-Hill Book Company, New York, 1968.
34. Goldberg, P., "Upstream History and Apparent Stress in Turbulent Boundary Layers", M.I.T. Gas Turbine Laboratory Report No. 85, 1966.
35. Cebeci, T. Eecture Notes.
36. Ludwieg. H. . "Bestimung des Verhaltnisses der Austanschkoeffizienten fur Warme and Impuls bei Turbulenten", Grenzschichten, Z. Flugwiss, 4, 1956.
37. Johnson, D. S., "Velocity and Temperature Fluctuation Measurements in a Turbulent Boundary Layer Downstream of a Stepwise Discontinuity in Wall Temperature", Journal of Applied Mechanics Transactions ASME, Series E, 26, 1959.
38. Rotta, J. C., "Recent Developments in Calculation Methods for Turbulent Boundary Layers with Pressure Gradients and Heat Transfer", Journal of Applied Mechanics, Paper No. 66-APM-F, 1966.
39. Reynolds, W. C., "A Morphology of the Prediction Methods", see Reference 9.
40. Bethel, H. E. and Abbott, D. E., "On the Convergence and Exactness of Solutions of the Laminar Boundary Layer Equations Using the N -Parameter Integral Formulation of Galerkin-Kantorovich-Dorodnitsyn", Technical Report FMTR-66-2, School of Mechanical Engineering, Purdue University, 1966.
41. Koob, S. J. and Abbott, D. E., "An Integral Differential Difference Method Analysis of Viscous Flow Over an Impulsively Accelerated Semi-Infinite Plate", Technical Report FMTR-68-2, School of Mechanical Engineering, Purdue University, 1968.
42. Spalding, D. B., "Theories of the Turbulent Boundary Layer ${ }^{11}$, Applied Mechanics Reviews, 20, 8, 1967.
43. Abbott, D. E., Deiwert, G. S., Forsnes, V. G., and Deboy, G. R., "Application of the Method of Weighted Residuals to the Turbulent Boundary Layer Equations: Part I: The Method of Weighted Residuals as a Solution Technique. Part II: A Two-Parameter Prediction Technique": see Reference 9.
44. Ero, M.I.O. "Shock Induced Unsteady Flow of a Compressible Real Gas Over a Flat Plate", Ph.D. Thesis, Purdue University. 1968.
45. Nielson. J. N. N_{i} Goodwin, F. K., and Kuhn, G. D. "Review of the Method of Integral Relations Applied to Viscous Interaction Problems Including Separation" Nielson Engineering and Research, Inc., Paper No. 7, 1969.
46. Bossel, H. H. "Boundary Layer Computation by an NParameter Integral Method Using Exponentials", University of California, Santa Barbara, Report UCSB-ME-69-8: 1969.
47. Deiwert, G. S. and Abbott, D. E., "Analytical Prediction of the Incompressible Turbulent Boundary Layer with Arbitrary Pressure Distribution", Journal of Hydronautics, $\underline{4}^{2}$ 1, 1970.
48. Johnson, C. B. and Bushnell, D. M., "Power Law Velocity-Profile-Exponent Variations with Reynolds Number, Wall Cooling, and Mach Number in a Turbulent Boundary Layer", NASA TN D-5753, 1970.
49. Pasiuk, L., Hastings, S. M., and Chatham, R., "Experimental Reynolds Analogy Factor for a Compressible Turbulent Boundary Layer with a Pressure Gradient", NOLTR 64-200, 1965.
50. Winter, K. Go, Smith, K. G., and Rotta, J. C., "Turbulent Boundary Layer Studies on a Waisted Body of Revolution in Subsonic and Supersonic Flow", AGARDograph 97, Part I, 1965.
51. Schultz-Grunow, F., "New Frictional Resistance Law for Smooth Plates", NACA TM 986, 1941.
52. Smith, D. W. and Walker, J. H. "Skin-Friction Measurements in Incompressible Flow", NACA TN 4231, 1958.
53. Ralston, A. and Wilf, H, S. . Mathematical Methods for Digital Computers, Wiley, New York/London, 1960.
54. Bradshaw, P. and Ferris, D. H., "The Effect of Initial Conditions on the Development of Turbulent Boundary Layers ${ }^{\text {s }}$, National Physical Laboratory, Aero Report 1223. 1967.
55. Chi, S. W. and Chang, C. C. ${ }^{38}$ Effective Viscosity in a Turbulent Boundary Layer", AIAA Journal, 7, 1 , 1969.
56. Ross, D. and Robertson, J. M., "Shear Stress in a Turbulent Boundary Layer", Journal of Applied Physics, 21, 6, 1950.
57. Hirst, E. A. and Reynolds, W. C., "An Integral Prediction Method for Turbulent Boundary Layers Using the Turbulent Kinetic Energy Equation", see Reference 9.
58. Bradshaw, P. and Ferriss, D. H., "Derivation of a Shear-Stress Transport Equation from the Turbulent Energy Equation", see Reference 9.

APPENDIX A

DIFFERENTIATION FORMULA FOR A FUNCTION TABULATED AT VARIABLY-SPACED VALUES OF THE ARGUMENT

A. 1 Analysis

Assume a function is given at several points as shown in Figure Al. Let

$$
\begin{equation*}
\Delta r_{+}=r_{i+1}-r_{i} \tag{A.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta r_{-}=r_{i}-r_{i-1} \tag{A.2}
\end{equation*}
$$

Now expanding W in a Taylor series about the point r_{i} and evaluating the series at r_{i-1} and r_{i+1} yields

$$
\begin{equation*}
W_{i-1}=W_{i}-\Delta r_{-} \frac{\partial W_{i}}{\partial r}+\frac{\Delta r_{-}^{2}}{2!} \frac{\partial^{2} W_{i}}{\partial r^{2}}-\frac{\Delta r^{3}}{3!} \frac{\partial^{3} W_{i}}{\partial r^{3}}+\ldots \tag{A.3}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{i+1}=W_{i}+\Delta r_{+} \frac{\partial W_{i}}{\partial r}+\frac{\Delta r_{+}^{2}}{2!} \frac{\partial^{2} W_{i}}{\partial r^{2}}+\frac{\Delta r_{+}^{3}}{3!} \frac{\partial^{3} W_{i}}{\partial r^{3}}+\ldots \tag{A.4}
\end{equation*}
$$

Combining equations (A.3) and (A.4) so as to eliminate the second order terms gives

$$
\begin{gather*}
\frac{\partial W_{i}}{\partial r}=\left[\frac{\Delta r_{-}}{\Delta r_{+}} W_{i+1}-\frac{\Delta r_{+}}{\Delta r_{-\infty}} W_{i-1}+\left(\frac{\Delta r_{+}}{\Delta r_{-}}-\frac{\Delta r_{-}}{\Delta r_{+}}\right) W_{i}\right] /\left(\Delta r_{-}+\Delta r_{+}\right) \\
-\frac{\Delta r_{-}-\Delta r_{+}}{3!} \frac{\partial^{3} W_{i}}{\partial r^{3}}+\ldots \tag{A.5}
\end{gather*}
$$

Figure Al: A Function Specified at a Discrete Number of Variably Spaced Points
where the remainder or error term is

$$
\begin{equation*}
\frac{\Delta r_{-} \Delta r_{+}}{3!} \cdot \frac{\partial^{3} W(S)}{\partial r^{3}} \tag{A.6}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{i-1}<S<r_{i+1} \tag{A.7}
\end{equation*}
$$

Thus, equation (A.5) without the third derivative term is a second-order differentiation scheme, since the error is proportional to the product of two spacings of the argument variable.

Equation (A.5) was used to calculate the first derivative of tabular, experimental, velocity profiles at all the interior data points while the derivative on the wall was calculated from the measured skin-friction value, and the derivative at the last data point was taken to be zero.

APPENDIX B

COMPUTER PROGRAM

```
36536,DEBOY.T2OO.CM 60000.P20.L11000%
MAP (ON)
RUN(SI:
LGO.
    PROGRAM MAINIINFUT,OUTPUT,TAPE5=INPIIT,TAPE.6=OUTPUT)
nのnn
    A(x(16,7)%PHIO(50),POLLE
    EXTERNAL DFRIV,OUTP
    COMMON BIINIT,AINV,SHINT,CFINIT,REOX,QL,ICOUNT,NU,U,F,TE,UE,N,TO.
    1
    COMMUN QKI REE I RE2
    READ(5,503) N,NU,QL,XSUBO
    READ(5,504) QME,CFO,QMOMTU,T'N
    RFAD(h,504) TE,PE,TO,GAMMA
    READ(b,504) RGAS,CSUBP,QK1
    READ(5,504) RE1,RE2
    READ(5,502) (F(I),I=1,NU)
    READ(5,502) (U(I),I=1,NU)
    N= ORUER OF THE MWR APPROXIMATION
    NU= NUMBER OF POINTS AT WHICH FII) IS ENTERED
    QL= FINAL VALUE OF LONGITUDINAL COORDINATF, FT
    XSUBU= INITIAL VALUE OF LONGITUDINAL COORDINATE, FT
    QME = FREE STREAM MACH NUMBER
    CFO= INITIAL VALUE OF CF
    QMOMTO= INITIAL VALUE OF MOMENTUM THICKNESS, FT
    TW= WALL TEMPERATURE,DEGREES R
    TF=FREE STREAM TEMPERATURE, DEGREES R
    PE= FREF STREAM PRESSURE LB/FT**2
    TO= TOTAL TEMPERATIIRE IN THE FREE STREAM, DEGREES R
    GAMMA= RATIO OF SPFCIFIC HFATS
    RGAS:= GAS CONSTANT, FT-LBF/LBM-R
        CSUBP= SPECIFIC HFAT AT CONSTANT PRESSURE, BTU/LBM-R
    QKl= UPTIMUM VALUE OF THE CONSTANT KI IN EQUATION 12.12)
    RE1 AND RE2 = DOWNSTREAM VALUES OF REYNOLDS NUMBER (BASED ON }X\mathrm{ )
    WHERE VELOCITY PROFILE AND MACH NUMBER PROFILE OUTPUTS ARE
    DFSIRED
    F= INITIAL VELOCITY PROFILE FUNCTION IN EQUATION 13.391
    U= NONDIMENSIONALITFD VELOCITY VALUES
    2 NMI=N-1
    I COUNT = - 1
C
C CALCULATE FLUID AND FLOW PROPERTIES
    QMUE=3.59E-7*(TE/492*)**1.5*684./(TE+192.)
    QMUW=3.59E-7*(TW/492*)**1*5*684*/(TW+192.)
    UE=OMF*49.O2*SORT(TF)
    ROE=PL/RGAS/TE/32.2
    ROW=TE/TW*ROE
    REINF=ROE*UF#OL/SMMINE
    QOQ=2**OMUW*SQRT(REINF) #ROW/ROE/ROE/UE/QL
C
C WRITE FLUID ANI) FLOW PROPERTIES
    WRITE(6.600) N!)
```

```
    WFTTETK.%I3T
    WRITE(6,610) TE UE PE;ROE,ROWgREINF
    WRITE(6%601)
    WRITE(6,602) (F(I),U(I):I=1,NU)
C
    AINV(I)=ASINGL(1)
    WRITE(6,606)
    WRITE(6,604) (AINV(I),I=1,NSQ)
    SHINT(1)=0.0
    BIINIT=ROW/ROE*QMUW/QMUE
    CFINIT = QQQ
    RFOX=ROE*UE/QMUE
    WRITE(6;609) BIINIT;CFINIT,RFOX
C
C
```

34

```
    FVALUATE DEFINITE INTEGRALS AND MATRICES AND PERFORM NECESSARY
    MATRIX MULTIPLICATION ANO INVERSION
    DO 32 I=1,N
    DO 31 J=1,N
    DO 30 K=1;NU
    TVOUM1=2**U(K)-1.0
    IF(I,GE,J) MAX=I-1
    IF(J,GE&I) MAX=J-1
    CALL LEP(POLLEG,TWOUM1,MAX)
    FCT(K)=POLLEG(I)*POLLEG(J)*U(K)*F(K)
    CALL GTFG{U,FCT,OINT,NU)
    A(I,J)=QINT(NU)
    CONTINUE
    DO 20 I= 1,NU
        PHIO(I)=F(I).
    WRITE(6.603)
    WRITE(6,604) ((A(I,J), I=1,N),J=I,N)
    CALL mRRAY(2,N,N,7,7,ASINGL,A)
    WRITE(6,605)
    NSQ=N**2
    WRITE(6.604) (ASINGL(I),I=1,NSQ)
    CALL MINV(ASINGL,N*DET,LWORK,MWORK)
    NOW ASINGL IS THF INVERSE OF A
    DO 1 is I=1,NSQ
C
    GUU FORMAT(//, 10X,3HNU=,1I3,//)
    601 FORMAT(/ , 15X,1HF,19X,1HUU,/)
    GU2 FORMAT (2FTO.6)
    GU3 FORMAI (///,9X:GHA(I,J):/1
    GU4 FORMAT(IEOO,6)
    6U5 FORMAT (////:9X,6HASINGL:/L
```

```
    GUG FORMAT(///,9X,4HA\NV,/I
    6U7 FORMATI///,15X,5HSHINT,14X,6HAINVSH,/1
    608 FORMAT(2F.20,6)
    609 FORMAT(///,3X,7HBIINIT=,1E14.6.10X:7HCFINIT=,1E14.6.
        1 1LX,5HRFOK=,1F14:6%//)
    6 1 0 ~ F O R M A T ( [ X , 6 F 1 9 . 6 ) ~
    613 FORMAT(//,18X,2HTE,17X,2HUE,17X&2HPE,16X,3HROE, 16X,3HROW,
        1 14X,5HREINF)
    501 FORMAT(1120)
    5U2 FORMAI(4F20.6)
    503 FORMIT(2120,2F20.2)
    5U4 FORMAT(4F20.2)
        N=N+1
    FND
c
C
c
    SUBROUTINE DERIV CONTAINS THE ORDINARY DIFFERENTIAL EQUATIONS
    FOR THE C(J) COEFFICIENTS AND EVALUATES ALL TERMS IN THESE
    ORDINARY DIFFERENTIAL EQUATIONS
    SUBRUUTINE DFRIVIZFT,C,DERC.
    DTMFNSION AINV(49),AINVSH(7),B(7),(17),AINVB(7),DERC(7),
        SHINT(7):U(50),F(50),A(7,7),PHIO(50)
        COMMON BIINIT,AINV,SHINT,CFINIT,REOX,QL,ICOUNT,NU,U,F,TE,UE,N,TO,
        QMUE,ROE,REINF,TW,QME,GAMMA,QMUW,ROW,RESUBX,CF,A,XSUBO,PHIO
        COMMON QK1,RE1,RE2
        CJPHIU =0.0
        DO 12 J=1,N
        I2 CJPHIO=CJPHIO+C(J)*(-1.0)**(J-1)*PHIO(1)
        DO 11 I=1,N
    B(I)=-HIPO(I)*RIIAIT/CJPHIO
    CALL GMPRD(AINV,B,AINVB,N,N,1)
        RFSUBX=REOX*(ZET*OL)
    CF=CFINIT/CJPHIO
        CALL SHINTEIC)
        CALL GMPRD(AINV,SHINT,AINVSH,N,N,I)
    DO 1O J=1,N
    10 DERC(J)=AINVB(J)-AINVSH(J)
    WRITE DESIRED OUTPUT VARIABLFS
    IF(ICOUNT.EQ.O) Z=ICOUNT
    IF(ZET.LT.Z) GO TO 33
    WRITE(6,602) ZET
    WRITE(6,603) (SHINT(I),I=1,N)
    WRITE(6,600)
    WRITE(6,801) (B(I),AINVBII),AINVSH(I),DERC(1),C(I),I=1,N)
    Z=ZET+.01
    33 CONTINUE
    600 FORMAI(12X,1HB,21X,5HAINVB,15X,6HAINVSH,15X,4HDERC,15X,1HC,1)
    6U1 FORMAT(5E20.6)
    6U2 FORMAT (//,1X,4HZET=,1F12.6)
    603 FORMAT(1X,6HSHINT=,1FG:2)
    RFTURN
    FND
C
C
    SUBROUTINE OUTP EVALUATES AND WRITES DESIRED OUTPUT VARIABLES
    SUBROUTINE OUTP(ZET,C,DERC,IHLF,NDIM,PRMT)
    DIMEIVSION (17),DERC(7),PRMT(5),AINV(49),ROSTTH(50),U(50),F(50):
        T(50):TOTE(50),QMUOMU(50),FCT(50),ROSTAR(50),QNEW(50),
        THETA(50):QINT(5)):Y(50),QNEWE(50),QNUEON(50). SHFCT(50).
        CHI(50):X(50),SHINT(7),A(7,7),PHIO(50)
    COMMON BIINIT,AINV,SHINT,CFINIT,REOX,QL,ICOUNT,NU,U,F,TE,UE,N,TO,
        GMUE,ROE,REINF,TW,QME,GAMMA,QMUW,ROW,RESUBX,CF,A&XSUBO,PHIO
    1 COMMON QKIGREI,REZ
    COMMON QK1;RE1;RE
```

```
    CJFHTT=0% त
    DO 12 J=1.N
    12 CJPHIU=CJPHIO+((J)*(-100)**(J-1)*PHIO(1).
    CF=CFINIT/CJPHIO
    C,'A1J=0.0
    DO 13 J=1,N
    13 CJA1J=CJA1J+C(J)*A&1*J)
    QMOMTH=QL/SQRT(REINF)*CJA1J
    RFSUI3X=REOX*(ZET*OL)
    IF(ICOUNIT.EQ*O) Z=ICOUNT
    IF(ZFT:LT:Z) GO TO 32
    Z=2ET+.01
    WRITE(6,660) RESUBX,CF,ZET,QMOMTH
660 FORMATI/,35X,7HRESUBX=,1E14,6,10X,3HCF=,1E14,6,10X,4HZET=,
        1F12.6,4X,7HQMOMTH=,1E14.6)
    WRITE(6:661) IHLF
    FORMAI(10X:5HIHLF=$112)
    32 CONTINUE
    RFTURN
    END
C
    DIMEIISION TAUO(50), TAUI(50),TAUIYM(50)
    COMMON BIINIT,AINV,SHINT,CFINIT,REOX,QL, ICOUNT,NU,U,F,TE,UE,N,TO,
        QMUE,ROE,REINF,TW,QME,GAMMA,OMUW,ROW,RESUBX,CF,A,XSUBO,PHIO
            COMMON OK1,REI,RE2
    EVALUATE FLOW VARIABLES REQUIRED BY THE FDDY-VISCOSITY MODFL
    NM1=N-1
    DO 13 I=1,NU
    ZZZ=2**U(I)-1*
    CALL LEP(QINT,ZZZ,NM1)
    CJPJMI =0.0
    DO 10 J=1,N
    10 C.'PJM1 = CJPJMI +C(J)*QINT(J)
    ROSTTH(I)=CJPJM1*PHIO(I)/(1.-U(I))
    T(I)=TW*(1& +(TO/TW-1*)*U(I)+(TE/TO-I*)*TO/TW*U(I)**2)
    TOTE(I)=T(I)/TE
    ROSTAR(1)=1./TOTE(I)
13 THETA(I)=ROSTTH(I)/ROSTAR(I)
    CALL QTFG(U,THETA,QINT,NU)
    DO 12 I=1,NU
12Y(I)=QL/SORT(REINF)*QINT(I)
    NDATA=NU
    QNUW = QMUW / ROW
    X=RESIIBX/REOX
    QNUE = LMUE /ROE
    NTOTAL=NDATA
    DO 14 I=I NTOTAL
    FTA(I)=SQRT(REINF)/QL*Y(I)
    UNUF(I)=U(I)
    QMUOMU(1)=3.59E-7/QMUE*(T(1)/492*)**1.5*684./(T(I)+192.)
    FCT(i)=1-UOUE(I)
    TOTF(1)=T(I)/TE
    ROOROE(I)=1:/TOTE(I)
14 QNU(I)=QMUOMU(1)*QMUE/(ROOROE(I)#ROE)
    CALL QTFG(Y,FCT,OINT NTOTAL).
```

```
    DFLXST=QINT(NTOTAL)
    DO 15 I= NDATA
    FCT(I)=1.-ROOROE(I)#(NOUE(I)
    CALL QTFG(Y,FCT:OINT,NTOTAL.)
    DFLST=QINT(NTOTAL)
    DC 16 I=1,NOATA
        DUDY(I)=UE*SQRT(RFINF)/QL/THETAIII
    TAUW=DUDY(1)*QMUOMUS1)*QMUF
    EVALUATE THE EDDY-VISCOSITY PROFILE FROM THE CSM EDOY-VISCOSITY
    MODEL
    DO 17 1=1,NDATA
    EPI(I)=QK1**2*Y(I)**2*(1*O-EXP(-Y(1)/26./QNU(1)*
        (TAUW/ROOROE(I)/ROE)***5))**2*DUDY(I)
    EPO(I)=0168*UE*DELKST/(1.0+5.5*(Y(1)/Y(NDATA-1))**6)
    IT(EPI(I).LT.EPO(I)) EP(I)=EPI(I)
    IF (EPI(I),GF.EPOII)\ EP(I)=EPOII)
    17 BETA(I)=1.0+EP(I)/ONU(I)
    evaluate the shintiJ) vector
    DO 30 J=1,N
    DO 31 I=1,NU
    zZZ=2.#U(I)-1.
    31 SHFCT(I)=QMUOMU(I)*BETA(I)/THETA(I)*HI2P(J,ZZZ)
    CALL QTFGIUOUE,SHFCT,QINT,NTOTAL,
    SHINT(J)=QINT(NTOTAL)
    ICOUNI=I COUNT+1
    IFIICOUNT.NE:O) GO TO 19
        WRITE (6,623)
    DO 18 I=1,NDATA
    QINT(3)=QMUOMU(I)*QMUE*BETA1I)*DUDY(I)
    QMOME (I)=UOUE(I)*SQRT(1./TOTE(I))
    WRITE DESIRED PROFILES AND VARIABLES
    WRITE(6,624) (DUDY(I),EPI(I),EPO(I),Y(I),UOUE(I),
        QINT(I):QMOME(I),I=1,NDATA)
        FORMATI//, 16X,4HDUDY,16X,3HEPI,16X,3HEPO,17X,1HY,16X,
            4HUOUE, 14X,3HTAU,7X,5HQMOME,/1
        FORMAT(1X,6E19.6,1F10.4)
    WRITE(6,622) SHINT(2),DELST
    GO TO 21
    622 F\capRMAT(10X,6HSHINT=,1E20.4,40X,6HDELST =,1E20.4)
    19 CONTINUE
    IF(RESURX.GE&REI:AND&RESUBX.LE.(RE1+*2F6)) GO TO 20
    IF(RESUBX.GE.RE2.AND.RESUBX.LE.(RE2+.2E6)) GO TO 20
    CONTINUF
    RETURN
    END
วกดロの
\begin{tabular}{|c|}
\hline \\
\hline
\end{tabular}
C
    l
c
    20
C
    FUNCTION HI2P CALCULATES THE SECOND DERIVATIVE OF THE WEIGHTING
    FUNCTION HSUBI WHERE }x=2*UOUE-1. THIS FUNCTION IS APPLICABLE
    UP TO AND INCLUDING THE SIXTH APPROXIMATION.
    FUNCTION HI2P(I*X)
    GO TO(10.20.30.40.50.60.701.1
    HI2P=0.0
    RETURN
    H12P=-4.0
    RETURN
    H12P=6.-18%*K
    RFTURN
    HI2P=30**x-60.*x**?+6*
    RFTURN
```


45	TF(BICA) 48946048	: $\mathrm{maV}^{\text {N }}$	101
46	$0=0.0$	MINV	107
	RFTURN	MTNV	10^{2}
48	DO 55 I = 1 N	MINV	101
	IF (1-K) 50. 5 5, 50	MINV	10^{5}
50	$1 K=N K+I$	MINV	106
	$A(I X)=A(1 \times) /(-8 \mid G A)$	MINV	10^{7}
55	CONIINUE	MINV	10^{R}
C		MINV	10°
C	REDUCE MATRIX	MINV	110
C		MINV	111
	DO $65 \quad I=1$ N	MINV	117
	IK $=$ NK +1	MINV	11^{1}
	HOIT=A(IK)	MINV	MO1
	$\boldsymbol{I} \mathrm{J}=1-\mathrm{N}$	MINV	114
	DO $65 \mathrm{~J}=1 \mathrm{~N}$	MINV	115
	$I J=I J+N$	MINV	114
	1F(I-K) 60,65,60	MTNV	117
60	IF (J-K) (-2, 55,67	MINV	119
62	$K J=1 J-1+k$	MINV	110
	A(IJ) $=140 L D * A(K J)+A(I J)$	MINV	M0?
65	CONTINUE	MINV	121
C		MINV	$17 ?$
c	DIVIDF ROW BY PIVOT	MINV	1?
C		MINV	17\%
	$\mathrm{KJ}=\mathrm{K}-\mathrm{N}$	MINV	175
	DO $75 \mathrm{~J}=19 \mathrm{~N}$	MINV	178
	$K J=K J+N$	MINV	177
	IF(J-K) 70,75,70	MINV	1?0
70	$A(K J)=f(K J) / R[G A$	MINV	197
75	CONTINUE	MJMV	120
C		MINV	131
C	PROOUCT OF PIVOTS	MINV	137
C		MINV	129
	$D=D$ RIGA	MINV	124
C		MINV	125
C	RFPLACE PIVOT BY RECIPROCAL	MINV	136
C		MINV	127
	$A(K K)=1 \cdot 0 / B I G A$	MINV	120
80	CONTIPIUE	MINV	120
C		Minv	140
C	FINAL ROW AND COLUMN INTFRTHANGE	MINV	141
C		MINV	14?
	$\mathrm{K}=\mathrm{N}$	M INV	142
100	$K=(K-1)$	asyay	14月
	IF(K) 150,150,105	mind	145
105	$I=L(K)$	MINV	146
	IF(l-k) 1?n,120.108	MINV	147
108	$J Q=N *(K-1)$	MINV	140
	$J \mathrm{R}=\mathrm{N} *(1-1)$	MINV	110
	DO. $110 \mathrm{~J}=1, \mathrm{~N}$	MINV	150
	$J K=J 0+J$	MTNV	1 F 9
	HOI DaA (JK)	MINV	15)
	$J!a J R+J$	MINV	jan
	$A(J K)=-A(J I)$	MINV	154
110	A(JI) = HOLD	MINV	16
120	$J=M(K)$	MINV	ina
	IF(J-K) 100.1009125	MINV	157
125	$K I=K-N$	MINV	150
	D) $130 \quad 1=1, N$	MINV	150
	$K I=K I+N$	MINV	180
	HOLD $=$ A (KI)	MINV	161
	$J!\pm K!-K+J$	MINV	1a?
	$A(K 1)=-A(J I)$	MINV	162
130	A(JI) $=$ HOL ${ }^{\text {a }}$	Mind	-14
	no Tn 100	-IMY	165

	AM\％NM4	AпNAツのック
125	S（IJ）$=0$（NM）	ARRAYOAO
130	NM \quad NM + NI	ARRAYORI
C		ARRAYOA？
140	RFTURN	ARRAYOR
	END	ARRAYOR4
C		TFG 001
c		TFG 002
C		TFG 003
C	SURROUTINF OTFG	TFG 00\％
C		TFG 005
C	PURPOSE	TFG 006
C	10 COMPUIE IHF VFCTOR OF INTFGRAL VALIJFS FOR A GIVEN	TFG 007
C	GENFRAL TARLF OF ARGUMENT ANS FIINCTION VALUES．	TFG 008
c		TFG 009
c	USAGE	TFG 010
c	CALL QIFG（X，Y，Z，NDIM）	TFG 011
c		TFG 012
C	UESCRIPIION OF PARAMEIERS	TFG 013
C	X－IHE INPUI VECIOR OF ARGUMENT VALUFS．	TFG 014
${ }_{5}$	Y－IHE INPUI VECIOR OF FUNCTION VALUES．	TFG 015
C	＜－IHE RESUL \dagger ING VECTOR OF INTFGRAL VALUFS． 2 MAY RE	TFG 016
6	IDENTICAL WITH X OR Y．	TFG 017
c	NDIM－IHE DIMENSION OF VECTORS X, Y, Z ．	TFG 018
6		TFG 019
c	REMARKS	TFG 020
c	NO ACIION IN CASE NDIM LESS THAN 1＊	TFG 021
c		TFG 022
c	SUBKOUIINES AND FUNCIION SUBPROGRAMS RFOUIRED	TFG 023
${ }^{6}$	NONt	TFG 024
L		TFG 025
C	MEIHOD	TFG 026
c	BEGINNING WIIH＜III O U EVALUATION OF VECTOR 2 IS DONE gY	TFG 027
C	MLANS OF IRAPFLOIDAL RULE（SECOND ORDER FORMULA）．	TFG 028
C	FOR REFFRENCF，SFF	TFG 090
C	F．8．HILDEBRANO INTRODUCTION TO NUHERICNL ANALYSIS．	TFG $0^{2} 0$
C	MCGRAW－HILL，NFW YORK／TORONTO／LONDON，1956．PP．75．	TFG 031
C		TFG 032
c		TFG 033
C		TFG 034
	SUBROUIINE QIFG（X，Y，Z，NDIM）	TFG 035
c		TFG 036
C		TFG 037
	DIMENSION $\mathrm{X}(1) \pm Y(1)$	TFG 028
c		TFG 039
	SUM2 $=1$（	TFG 040
	IF（NOIM－1）4．3．1	TFG 041
C		TFG 042
C	INIEGRAIION LOOP	TFG 043
1	DO $21=2$ NDIM	TFG 044
	SUMI $=$ SUM 2	TFG 045
		TFG 046
2	L（I－1）＝SUM 1	TFG 047
3	$3 \angle(N D I H)=$ SUM？	TFG 048
4	4 KEIURN	TFG 049
	END	TFG 050
C		
6		
C		
c	subrouilint Lep	
c		
C	PUNPOSE	
C	COMPUIE IHE VALUES OF IHE LFGFNIRE POLYNOMIALS P（N＊X）	
c	FOK ARGUMENI VALUE X AND ORDFRS O UP TO No	
6		
6	ismmet	

$2 \quad Y(2)=x$
IF(N-1)1,1.3
3 DO $4 \quad 1=2, N$
$G=X * Y(1)$
$4 \quad Y(I+j)=G-Y(I-1)+G-(G-Y(1-1)) / F L O A T(I)$
REIURN
FND

SUBROUIINE HPCG
PURPOSF
IO SOLVF A SYSIFM OF FIRST ORDFR ORNTHARY CFNERAI DCR ANS
IO SOLVE A SYSIEM OF FIRST ORDFR TRNTMARY CFNERAI
DIFFFRFNTIAL EGJATIONS WHTH GIVIN INITIAL VALIFS.
usage
CALL HPCG (PRMT,Y DERY,NDIM•IHLFFFCT\&OUTP,AUX)
PARAMEIERS FCT AND OUTP RFGIIIRE AN EXTFRNAL STATEMENT.
DFSCRIPTION OF PARAMFTFRS
PRMT - AN INDUT AND OUTPUT VECTOR WITH DIMENSIOA GRFATFR
OR FOIIAL TO 5 . WHICH SPICIFIFS THE PARAMETFRS OF
THE INTFRVAL AND OF aCCURACY AND WHICH SFRVES FGR
COMMUNICATION RE.TWEEN OUTPUT SUEROUTINE (FURNISHED
BY THF USER) AND SURROUTINE HPCG EXCEPT PRMT(EI
THE COMPGNENTS ARE NOT DFSTROYFD RY SUGROUTINE
HPCG AND THEY ART


```
    HKPIIS1- INI|IAL INCKFMFNI OF IHF INDFPFNDFNT VARIARLF PCG O25
        IINPUTI.
    PRMY(4)- UPPER ERRCR BOUND (INPUII: IF NIISOLIITF ERROR IS
        GREATFR THAN PRMT(4), INCRFMENT GFTS HALVFD.
        IF INCPEMFNT IS LISS THAN PRUTIOI AND ABSOLUTE
        ERROR LFSS THAN PRMT(1)/=0% IMCRFMFNT GETS DOURLFD.
        THE IISFR MAY CHANCIF PRMT(4) IIY MFANS OF HIS
        OUTPUT SURROUTINE.
    PRMT(5)- NO INPUIT PARAMETFR, SUGROIITINE HPCR INITIALITFS
        PRMT(5)=0. IF THE USFR WANTS TO TFRMINATE
        SUAROUTINE HPCG AT ANY OUTPUT POINT, HE UAS TO
        CHANGE PRMT(E) TO NON-ZERO AY MEANS OF SURROUTINF
        OUTP. FURTHER COMPONFNTS OF VFITOR DRMT ADE
        FFASIRLE IF ITS DIMFNSION IS DFFINFO TIRFATFR
        THAN 5. HOWFVER SUPROUTINF HDCR NIFS MIT DENUIDE
        AND CHANGF THFM. NFVFRTHFLESS THFY MAY RF USFFUI.
        FOR HANDING RESULT VALULS TO THF NATN PROGARAM
        (CALLING HPCG) WHICH ARE OFTAINED PY SPFCTAL
        MANIPULATIONS WITH OUTPUT DATA IN SIJRROUTINF NUTO.
    Y - INPUT VFCTOR OF INITIAL. VAIUFS. INFSTRNYENI
        L.ATEOMM Y IS THF RFSULTINR VECTOE gE NEOENOFAT
        VARIABLES COMPUTED AT INTFRMFNIATF POINTS X.
    DERY - INPUT VECTOR OF FRROR WFITHTS. (NESTONYEN)
        THE JUA OF ITS COMPONFNTS MUST RF FOUAI TO 1.
        LATERON DERY IS THE VFCTOR NF NFPIVATIVFS, WUITH
        FELONG TO FUNCTION VALUFS Y AT A ONIMT X.
    NDIM - AN PNPUT VALUF WH\TM SPRCITITS trir MUMRTD OF
        EQUATIONS IN THF SYSTFM.
    IHLF - AN OUTPUT VALUF, WHICH SOREIEIFS THE NUMPEP OF
        BISECTIONS OF THF INITIAL INCRFMENT. IF IHLF IETS
        GREATFR THAN 10; SURROUTINF HDRT DFTUDAS WTTL
        ERROR MFSSAGF IHLF=1I TNTO MAIN PROORAM.
        ERROR MFSSAGF IHLF=1? OR IMIFF=13 ANOEADS IN CASE
        PRMT(2)=0 OR IN CASF SIGN(DDMT(3)).AE.SIRN(PRMT(2)-
        PRMT(I|l RFSDFCTIVFI.Y.
    FCT - IHF NAMF AF ON FXTFPAIAL SUQPNUTIAIE USEN. IT
        COMPUTFS THF RIGHT HANN SINFS NFOY OE TLE SYSTE:A
        TO. GIVFN VALUFS OF }X\mathrm{ ANN Y. ITS DADANETCD LIST
        MUST EE XOYONFRY, THF SURRNUTINF SHNULN NOT
        DESTROY X AND Y.
    OUTP - THF NAMF NF AN FXTFONAL OUTCUT SUOMDUTYME USEN PCG 064
        CG A65
        ITS DADAMFTFD LIST "UST RF X,Y,NFRY,THLF,MNIM,RRMT. FCG NG6
        NINE OF THFSF n\triangleDARAETFRS (FXREPT, IF MECESSARY, PCG NG7
        PRMT(4),ORMT(a),&l SHOULN RF CWAMr,EN HY
        SUBROUTINF OUTD. IF DRMT(5) IS CHAAIGEN TN AINM-ZFRO. OCG O69
        SUGROUTTAF HOCG IS TFDMIAATFN.
    AUX - AaI AUXILIADY STMRAGF AORAY WITH 15 ROWS AMN ING:"
        COl U*ANS.
REMARKS
    IHE PROCEDURF TFRMINATFS ANN RFTURNS FO CAII PAIR DDORRAMM, IF
    (1) MORE TMAN TO BISECTIONS OF THF INTTIMI \MRRFMFNT ADE
        NECESSARY TO GET SATISFACTORY ACCURACY (FRROR MESSAGF
        IHLF=111.
    (2) INIIIAL INCREMFNT IS EOUAL TO O OR HAS WROMG STGAI
        (ERROR MESSAGES IHLF=1? OR IHLF=1"),
    (3) THF WHOLF INTFGRATION INTFRVAI IS WORKEN FIONURHG
    (4) SURROUTINF OUTP HAS CHANGFI PRMT(5) TO NON-ZFRO.
SUBROUIINES AND FUNCIION SURPROGRAMS RFOUTRFN
    IHE EXTERNAL SURROUTINES FCT(X,Y,NFRYI ANN
    OUPP(X&YODERY,IHLF&NDIM&PRMT) MUST TE FURNISHFN RY THF USFD.
METHOD
```



```
C
    13 X=X+H
        CALL FCT(X,Y,DERY)
        N=?
        DO 1H 1-1, NDIM
        AUX(7,1)=Y(1)
    14 AUX(0,1)=DFRY(1)
        ISW=3
        GOTO 100
C
    compuTATION OF TESt VALUF nElt
    15 DELT=O.
        DO 16 I=1,NDIM
    16 DELI=DELI+AUXI15*!)*ARSIY(1)-AUXI4*!)!
    DELT:0UGGGGAAT*DELT
    PF(DFLT-DDMT(4):10,10,17
    17 1F(IHLF-10)11,10,10
C
C
```



```
    18 IHIF=11
    X=X+H
    GOTO4
C
C IHERE IS SAIISFACI DOY ACRUOACY AFTER LESS THAR: 11 OISFCTIONS.
    19 X=X+H
    CALL F(IIX,Y,ORRY)
    DU 20 I=1,NDIM
    AUX(3,1)=Y(1)
    20 AUX(1U,I)=DERY(I)
        N=3
        1 SW=4
        gnto 160
C
    21N=1
        X=X+H
        CALL FCTIX,Y,NERY)
        X=PRMT(II
        NO 2? I= %.N\capIM
        AUX(11, il=NCDY(I)
```



```
        1-.0002223*RUX(10.1)+041&&&R7%DFRY(1))
    23 X=X+H
        N=N+1
        CALL erT(X,Y,nroy)
```



```
    24 [F(N-4)75, >00, ?00
    2& DO 7B I=1 NNMM
        AUX(N,I)=Y(I)
    ?& AUX(A+7:I)=ПRDY(I)
        |F(N-2)?7.90.700
C
    27 DO ?O I=\ON\capYM
    DELT=AUX(0.1)+AUX(0.1)
    DELT:DELT+DELT
```



```
        GOTO 23
C
    29 DO 30 I=1 NDIM
    DF:I=AUK(0.1)+AUX(10.1)
    DELT=DELT+NFLT+N"LLT
```



```
    m\capTO つa
C
```

बCG 156
pet is 7
preg en
ners yan
neri inn
pere if 1
pers if?
perg if?
DCS 964
DCG IG
Der 166
DrG 157
Derg 100
neg 1 An
prer. $17 n$
DCG 171
DCG 17 ?
Ders 173
pers 174
per 175
Der 178
PCG 177
PCG 179
PCG 179
PCG 180
PCG 181
PCG 18?
PCG 18?
PCG 194
PCG 185
PCG 196
PCG 187
PCG 188
PCG 189
PCG 170
PeG 191
orrs 197
PCG 902
PCG 194
PCG 195
PCG 996
PCG 197
PCG 198
PCG 199
PCG 2 An
PCG \rightarrow Al
PCG 20?
PCG 703
PCG 204
PCG 205
PCG 9 A6
Per 207
peG 3 ?
peg ano
PCG 210
PCG 211
PCG 712
DCer ?1?
PCG 914
PCr. 215
oce 216
res 217
DCG 219
DCG Tin
PCG 270
per ?n?

C;		meri	222
C	RUNGE-KUTTA METHOO STARTING VALUFS'FNR ITHF NINT SFLEOSTADTIMC,	pers	223
C	PRFDICIOR - CORRECTOR MFYHON.	neg	224
100	DO $1011=1$ ¢ NDIM	per	225
		Drf	976
	$\operatorname{AUX}(5,1)=2$	PCG	377
101	$Y(I)=A \cup X(N=1)+842$	PCG	770
C	Z IS AN AUXILIADY STODATE LOCATIOM	-ecrs	229
C		- Peg	3 3n
	$Z=x+4 \% H$	ncg	771
	CALL $\overrightarrow{C C T}(Z, Y$ ORRY	PCG	232
	no 107 $1=1$, NNPM	pers	793
	L:H*DERY(1)	Peg	734
	$\operatorname{AUX}(6,1)=2$	PCG	795
102		PCG	236
C		PCG	737
	$z=x+84557277$ * ${ }^{\text {a }}$	PCG	728
	CALL ECTIZ,Y, TERY)	Per,	239
	no 10? $1=1$, ÑNM	Pec	240
		DCG	741
	AUY(7, 1$)=2$	pCrg	7 N
107		PCG	243
C		PCG	744
	$\mathrm{Z} \times \mathrm{X}+\mathrm{H}$	PCG	745
	CALL FCTIZ, Y, DFRYI	PCG	246
	no 104 I= , Nn!M	PCG	747
1040	$O Y(1)=A U X(N, 1)+1747402 * A U X(5,9)=5514807 * \Delta U X(6,1)$	orr	2.48
1	$1+9.2055 \geqslant \alpha * A \cup X(7,1)+, 1-11 \text { त4n*H*DFOY(i) }$	DCG	249
		PCG	250
C		PCG	251
C		PCG	252
C		PCG	257
C	POSSIBLE BREAK-POINT FOR LINKAGE	PCG.	? 54
c		-CG	フEE
c		OCG	P58
c	STARTING VAL.JFS ARF COMPUTFN.	-CG	257
C		DCG	258
200	\STEP=3	PCG	259
201	IFiN-81204,202,204	PCG	260
\bar{C}		-Cr	761
C	N=0 CAUSES THF ROWS OF AUX TO Chamre theto stmoare locatinals	PCG	262
202	DO 203 N=2.7	PCG	263
		PCG	264
	$\operatorname{AUX}(N-1,1)=\mathrm{AUX}(\mathrm{N}, 1)$	PCG	265
203	$A \cup X(N+K, I)=A \cup X(N+7+1)$	PCG	786
	N\%7	PCG	257
C		PCG	259
	A LFSS THAAI A CAUSES A+1 TO STT AI	PCG	269
c^{204}	$\sqrt{2}=\bar{x}+1$	PCG	770
C		PCG	771
C	COmputatina ne next vertink y	PCG	272
	DO TȮ İT, NDIM	peg	973
	AUX(A-T \% 1) Y(1)	PCG	274
- 200	AUX(Ays, !) =neoylil	PCG	275
	$X=x+H$	PCG	276
90\%	1STFP-15TFO+1	PCG	777
	no $207 \mathrm{~T}=$ ¢ , NCIM	pcg	? 78
		Per,	279
	1 AUX $(N+4,1)+\operatorname{AUX}(\mathrm{A}+4,11)$	PCE	780
		Peg	281
707	AUX(16)! = $=$ DELI	PCG	282
c	PRFOICIOR IS NOW TEAFDATES IA OUW 16 OF AUX, MCDIFIED PREDICTOR	PCG	283
c	IS GFNFRATEN IN Y \% OFLT MFANS AAI AUXILIAPY STMPARF.	PCG	284
C	CALL FCTIX, Y, COCO	PCG	799
e	AEDIVATIVF OF MODIFIFD PREDICTOR IE GENERATED IN OERY	PCG	287

```
C PCG 288
```



```
            AUX(N+6&1)-AUX(N+5,I))
            A\%(96,1)=AUX(16,1)-DELT
```



```
C
C TFST WHFTHFR H MUST RF HALVEN OR NOUSLT-
            neLT=0.
            00 209, l=1 NDIM
    2U9 DEL: =DELI +AUX(15,1)*ABS(AUX(1601))
            IF(DELT-PRMT(4))>10.?72.272
C
C M MUST NOT DE HALVEN. THAT MEANS Y(ll aRT M,OMN.
    210 rAll FCT(X,YgNENY)
            CALL OUTPP(X,Y,NFPY,IHLF,AINIM, ROMT ।
            IF(PDM|(G)|>17,211,91?
```



```
    312 RETURN
```



```
    714 1F(ARS(X-DOMT(?))-.\ARS(H))?92.215:215
    715 TF(DFLI-.0つ#DRMT(4):?14,?1*,?01
C
C
H COULN RE NMURLFN TF ALL NECESSARY FROCTORINP VALUTS AOT
    AVAILABLF
    216 1F(IHLF)201,201,717
    217 IF(N-7)201, 218,218
    218 IF(ISTEP-4)201:219,719
    219. IMOD={STFP/7
        IE\ISTEn-TMARN-IMAN)901.9.0.309
    220 H=H+H
            IHLF=1HLF-1
            ISTEP=O
            DO ?71 ?= %NOIM
            AUX(A)-1,I)=AUX(N-2:, )
            AUX(N-2,I)=AUX(N-4;?)
            AUX(N-2,I)=AUX(N-< ! !)
            AUX (N+K,I) = AUX (N&E;T)
            AUX (N+5,1)=AUX (N+2,1)
            AUX(N+4,I)=AUX(N+1, %)
            DFLT=AUX(N+G,! )+AUX(N)+5,1)
            DELT=MELT +NELT+NELT
```



```
        1+AUX(N+A,I)]
            GOTO 201
C
    4 wusf ow Hagven
    97? 1HLF-1HLF+9
    IFITHLF=101232,?93,210
    223 Hz=5%H
            1STEP=0
            DO 224 I=1,NOIM
```



```
            IAUX(N-4,I)I-1171875*(AUX(N+G*I)-6**AUX(N+5,I)-AUX(N+4.1))#H
```



```
            1100,*AUX(A-*)!)+AUX(N-4*1))-.0234375*(AUX(N+6,1)+18**AUX(N+5:I)-
            29.*AUX(N+4,1))*H
            AUX(N-\therefore, 1)=AUX(N-7,1)
        224 AUX(N+4,I)=AUX(N+5:1)
            X=X-H
            DELT =X-(H+H)
            CALL FCT(DELT:YODERY)
            DO 225 1m 1.NDIM
    AUX(N-2:I)=V(:)
                    pra, on!
                    prra 2n品
                    PCG }29
PCG on4
PCG 295
nerg ang
pery 9n7
neG 908
Per >ク9
PEG OOO
peg 301
per: 3n?
per, 3n2
per, an4
per 3n5
PCG SOE
PCG 307
PCG 3n8
peg an?
pCG ain
pCG 11n
pCG 211
PCG }31
PCG }31
PCG }21
DCG 315
DCG 315
PCG 317
PCG 318
DEG 21%
OCG =2n
pCG 221
DCG 222
DCG }32
PCG }32
PCG 325
PCG }32
PCG 327
nCG 220
PCG }32
PCG 330
PCG 331
PCG 332
PCG 2?2
PCG 334
PCG 335
PCG 336
PCG }33
DCG 238
DCG 33n
PCG 240
PCG 240
PCG 341
PCG 342
DCG }34
PCG }34
PCG 344
PCG 345
PCG 346
PCG 347
PCG 348
PCG 34%
PCG 250
PCG 251
PCG 352
PCG 353
```

```
    AUX(N+5,1)=DERY(1)
    PCG 7̄5&
225 Y(1)*AUK(N-4.411
    DELTmDELTm(H*H)
    CALL FCTIOELLT,Y,DERYI
    DO 220 1=1界)1萳
```



```
    1+DERY(I)।
226 AUX(N+3:1)=OERYII)
    GOTO 206
    END
PCG }25
PCGY 25%
PCG }35
PCG 3:0
PCG a*O
PCG *KO
PCG 361
PCG 362
PCG }36
PCG 364
PCG }36
```


APPENDIX C

CONVERGENCE OF THE MWR SOLUTIONS

C. 1 Discussion

Calculations were made for the first, second, and third approximations of the MWR by employing the CSM eddy-viscosity model in the turbulent shear information terms. The calcum lated velocity profiles, Mach-number profiles, and skinfriction distribution are shown in Figures Cl to Cl5 for four different free-stream Mach numbers and all three approximations. The convergence properties of these solutions are particuiarly satisfying, since very little success has previously been obtained for approximations above the second order for turbulent flow. The skin-friction calculations converge toward the experimental data for successive approximations. The calculations of velocity and Mach-number prom files also display convergence in the sense that the third approximation is always much nearer to the second than the second approximation is to the first; however, the profile calculations are not always convergent to the experimental data. This may be because the comparison between calculation and experiment is not totally valid for velocity and Mach number profiles as discussed in Section 3.8.

The small difference between the third approximation

Figure Cl: Comparison of the MWR Skin-Friction Calculations with Experiment. $M_{e}=2.54$

Figure C4: Comparison of the MWR Profile Calculations with Experiment, $M_{e}=2.54$,
$\operatorname{Re}_{\mathrm{x}}=7.7 \times 10 \mathrm{t}$

Figure C5: Comparison of the MWR Skin-Friction Calculations with Experiment, $M_{e}=2.95$

Figure C6: Comparison of the MWR Profile Calculations with Experiment, $M_{e}=2.95$,

Figure C8: Comparison of the MWR Skin-Friction Calculations with Experiment, $\mathrm{M}_{\mathrm{e}}=3.69$

$$
\text { Figure C9: Comparison of the MWR Profile Calculations with Experiment, } \mathrm{M}_{\mathrm{e}}=3.69 \text {, }
$$

Figure Cll:

Figure Cl2: Comparison of the MWR Skin-Friction Calculations with Experiment, $M_{e}=4.2$
Figure c13:
Figure C14: Comparison of the $M W R$ Profile. Calculations with Experiment, $M_{e}=4.2$,,$~$
Figure Cl5: Comparison of the MWR Profile Calculations with Experiment, $M_{e}=4.2$,

and the second in this work supports the contention of Forsnes and Abbott [C1] and Deiwert and Abbott [C2] that the second approximation is sufficient for most engineering purposes.

LIST OF REFERENCES

Cl. Forsnes, V. G. and Abbott, D. E., "A Unified Comparison of Local and Global Turbulent Shear-Stress Models Utilized in the Prediction of Two-Dimensional, Incompressible Turbulent Boundary Layers", Technical Report FMTR 69-4, Schooi of Mechanical Engineering, Purdue University, 1969.

C2. Deiwert, G. S. and Abbott, D. E., "Analytical Prediction of the Incompressible Turbulent Boundary Layer with Arbitrary Pressure Dis-
 1970.

APPENDIX D

AN INITTALIZATION PROCEDURE FOR $\mathrm{dC}_{\mathrm{f}} / \mathrm{dRe}_{\mathrm{x}}$

D. 1 Introduction

A method is devised by which the calculated value of $\mathrm{dC}_{\mathrm{f}} / \mathrm{dRe}_{\mathrm{x}}$ at the initial calculation station of the MWR prediction procedure can be forced to match the experimental value of $d C_{f} / d \operatorname{Re}_{x}$ at x_{0}. For the purposes of this report, the experimental value of $d C_{f} / d R e_{X}$ at x_{0} is defined as the value obtained by: (1) fitting a straight line to the experimental results on a plot of $\log C_{f}$ versus $\log \operatorname{Re}_{x}$ in the region near x_{o}. (2) determining the equation which represents this straight line, $C_{f}=a R e_{X}^{b}$, and (3) analytically differentiating this equation at x_{0}.

D. 2 Analysis

The basic assumption underlying this $\mathrm{dC}_{\mathrm{f}} / \mathrm{dRe}_{\mathrm{x}}$ initialization procedure is that the fractional error in the calculated value of the shear integral g_{2} at x_{0} is assumed to be the same as the fractional error in the calculated values of g_{2} at all streamwise stations. For the present the initialization procedure is restricted to a second approximation of the vidr.

From equation (3.74), reproduced below,
it is seen that

$$
\begin{equation*}
C_{f}=\frac{2 \mu_{w} \rho_{W}^{*}}{\rho_{I} U_{r}^{L}} \frac{\sqrt{R e_{r}}}{F(0)\left(C_{1}-C_{2}\right)} \tag{D.1}
\end{equation*}
$$

for a second approximation. Differentiation of equation
(D.I) yields

$$
\begin{equation*}
\frac{d C_{f}}{d \xi}=-\frac{C_{f}}{C_{1}-C_{2}}\left(\frac{d C_{1}}{d \xi}-\frac{d C_{2}}{d \xi}\right) \tag{D.2}
\end{equation*}
$$

Equation (3.55), reproduced below,

$$
\begin{equation*}
\frac{d C_{k}}{d \xi}=\frac{U_{\xi}}{U_{e}} A_{k i}^{-1} I_{i j} C_{j}-A_{k i}^{-1} B_{i}-\frac{\mu_{e}}{\mu_{r}} A_{k i}^{-1} g_{i} \tag{3.55}
\end{equation*}
$$

simplifies to

$$
\begin{equation*}
\frac{d C_{k}}{d \xi}=U A I C_{k}-A I N B_{k}-\frac{\mu_{e}}{\mu_{r}} A_{k i}^{-1} g_{i} \tag{D.3}
\end{equation*}
$$

where

$$
\begin{equation*}
U A I C_{k}=\frac{U_{e_{\xi}}}{U_{e}} A_{k i}^{-1} I_{i j} C_{j} \tag{D.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{AINB}_{k}=A_{k i}^{-1} B_{i} \tag{D.5}
\end{equation*}
$$

Substitution of equation (D.3) into equation (D.2) and conversion to the physical variable x yield

$$
\begin{align*}
\frac{d C_{E}}{d x}= & -\frac{1}{L} \frac{\rho_{e} U_{e}}{\rho_{r} U_{r}} \frac{C_{f}}{C_{1}-C_{2}}\left[U A I C_{1}-U A I C_{2}-A I N B_{1}+A I N B_{2}\right. \\
& \left.-\frac{\mu_{e}}{\mu_{r}}\left(A_{12}^{-1}-A_{22}^{-1}\right) g_{2}\right] \tag{D.6}
\end{align*}
$$

The experimental value of $d C_{f} / d R e_{\mathbb{X}}$ at the initial station x_{0} is substituted into equation (D.6), the remaining terms
are also evaluated at x_{0} and the equation is solved for the value of g_{2} - denote this value by the symbol g_{2} desired This is the value of g_{2} at x_{0} which, if used in the MWR calculation program, will yield the experimental value of $\mathrm{dC}_{f} / \mathrm{dRe} \mathrm{X}_{\mathrm{x}}$ at X_{O}. Now the value of g_{2} at X_{0} is calculated by using a specified shear model - denote this value by the symbol g_{2} model . This value of g_{2} substituted into equation (D.6), would most likely yield a value of $d_{f} / d e_{x}$ different than the experimental value of $d C_{f} / d R e_{x}$ at $x_{0}{ }^{\circ}$ Then in the prediction program whenever a value of g_{2} is calculated using a specified shear model, this value can be multiplied by the constant corrective factor of $g_{2_{\text {desired }}} / g_{2_{\text {model }}}$. This procedure assures that the calculations will at least start with the experimental value of $d C_{f} / d R e_{X}$ at x_{0}.

[^0]: Admittedly, the magnitude of these curves depends on the method of obtaining the velocity profile derivative; how ever, since the velocity profile slope is the same for each curve, relative variations are most significant.

[^1]: *The MWR is an N-parameter approximate solution technique for solving a set of partial differential equations, where \mathbb{N} is the order of the approximation. For a detailed discussion of the basic MWR solution technique, see Bethel and Abbott [40] and Koob and Abbott [41].

[^2]: * Credit should be extended here to the work of J. D. Murphy at NASA-Ames Research Center for the development of the Legendre polynomial formulation in the weighting and approximating functions and for the discovery that this formulation generates matrices whose terms are of the same order of magnitude: consequently, round-off errors are reduced in the ordinary differential equation solution and the matrix inversion process.

[^3]: Schlichting's argument is based upon the velocity profile。 The universality of the Mach-number function is then directly implied by the universality of the Crocco relationship for $T(u)$ which is valid for the adiabatic, flatmplate flow case.

[^4]: This adequacy is further substantiated by the fact that Herring and Mellor [8] calculated adiabatic flat-plate flow cases two ways, once using the crocco relation, and once using the complete energy equation. The results were identical within the accuracy of their graphs.

[^5]: Solutions from the first, second and third approximations are displayed in Appendix C where the convergence prom perties of the MWR are discussed.

[^6]: 4. 4 The MWR Calculations Using Alternate Shear Models

 In the prediction of compressible, turbulent boundary layers using the CSM eddy-viscosity model, there developed anomalous oscillations of the shear-stress profile in the innex region of the boundary layer, even though skin-friction and velocity and Mach-number profile calculations were

