
P ~ R D ~  

Project No. 2074 

PORT FMTR-71-1 

January 1971 

SCHOOL OF MECHANICAL ENGINEERING 
FLUID MECHANICS GROUP 

NATIONAL AERONAUTICS AND S P A C E  ADMINISTRATION 
Grant No. N G T  15-005-005 

istribution of th is  

https://ntrs.nasa.gov/search.jsp?R=19710014664 2020-03-11T21:02:13+00:00Z



INATION OF TURBULENT SHEAR MODELS 
AND THE PREDICTION OF COMPRESSIBLE 
TURBULENT BOUNDARY LAYERS BY THE 

METHOD OF WEXGHTED RESIDUALS 

by 

Gail Re Beboy and Douglas E. Abbott 

PURDUE RESEARCH FOUNDATION 
Project No. 2074 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

Grant No, NGT 15-005-005 

echanical Engineering 
Fluid Mechanics Group 

Purdue University 

Technical Report F 

January 1971 



ii 

The au tho r s  w i s h  t o  acknowledge the  Nat iona l  Aeronaut ics  

and Space Adminis t ra t ion for  provid ing  f e l lowsh ip  suppor t  

dur ing  t h e  major pe r iod  of t h i s  research e f f o r t .  The 

Department of Heal th ,  Education, and Welfare is also gra t e -  

f u l l y  acknowledged f o r  t h e i r  suppor t  dur ing  the f i n a l  s t a g e s  

of the research. I n  a d d i t i o n ,  thanks are given t o  P ro fes so r  

R. W e  Fox and Doctors S. J. Koob and V. G, Forsnes and M r .  

Ha T, Liu f o r  their many h e l p f u l  and s t i m u l a t i n g  d i scuss ions  

of t h i s  work, 



iii 

Page 

LIST OF FIGURES. a e e e, e e a e . e V 

2. INVESTIGATION OF TURBULENT SHEAR STRESS. . e e . 4 

2.1 Review of Turbulent Shear Information Models. 4 
2.2 Eddy-Viscosity Models . e . e . e . . . 10 
2.3 Shear-Stress Calculations in the Literature e 16 
2,4 Shear-Stress Calculations in the Present 

Investigation e ., e . e . . . e e e . e e 28 
2.5 Analysis of the Anomalous Shear-Stress 

Behavior. e e e . a . . . a . e 34 
2.6 Sensitivity of the CSM Eddy-Viscosity Model 43 
2.7 Summary e a I e e a e * .  e e e a a e 45 

3. BOUNDARY-LAYER PREDICTION ANALYSIS e e e a e . 46 

3 . 1  
3 . 2  
3 . 3  
3 . 4  
3 . 5  
3.6 
3.7 

3.8 
3 * 9  

Introduction. ,. e . e . e a e e 46 
Boundary-Layer Equations. e e e (I e . 46 
Mathematical Solution Technique . e e e e e 51 
Application of the MWR Solution Technique e 57 
Approximating and Weighting Functions a a 61 
Initial Conditions, a I) e e a e 66 
Calculation of the Desired Solution 
Variables from the Coefficients Ck(S) 
and Dk(S) e e e a e a e e e 67 
Analysis of E perimental Data e e . e 7'0 

e B ' a 0 0 0 e e . * . . 0 s . . * * e  76 

4 .  COMPARISON OF C CULATED AND EXPERIMENTAL RESULTS, 7'9 

4.1 The Numerical Solution Procedure, e e (I . 77 

Model e * O l . * O . O * O . B . .  79 
e Calculations e a e e 99 
ons Using Alternate Shear 

Results Using the CSM Eddy-Viscosity 

Models, o e e a a I) e e s o b o 105 
4.5 Summary. e e e e e e e 119 



iv 

Page 

BY, CONCLUSIONS, AND RECO DATIONS. * 121 

5-1 Summary a e e e e e m . 121 
5,2 Conclusions e e e e e e e 122 
5.3 Recommendations e e . e e e 124 

APPENDICES 

APPENDIX A: DIFFERENTIATION FORMULA FOR A FUNCTION 
TABULATED AT VARIABLY-SPACED VALUES OF 
THE ARGUMENT, e e e . e . e . e e e 132 

Awl Analysis. e . e e . e e . a a . e e e . 132 

APPENDIX B:: COMPUTER PROGRAM. e e e . e . e . e e e e 135 

APPENDIX C: CONVERGENCE OF THE MWR SOLUTIONS. . e 154 

(2-1 Discussion. e e a e e . e . . . e e e . 154 

APPENDIX D: AN INITIALIZATION PROCEDURE FOR 
dCf/dRex. ., e . . e e . e e e e . . 171 

D.1 Introduction. e e . . e . . e . e . . a 171 
D.2 Analysis. e . e a e e . e e e . e . e 1 7 1  



V 

LIST OF FIGURES 

Page 

Figure 

1, 

2 .  

3 ,  

4. 

5. 

6. 

7. 

8 ,  

9, 

10 * 

11, 

Eddy-Viscosity Model of Reference 1 e e a e e 

The Effective-Viscosity Functions of Herring 
andMellor [83. . e e a e . e e e a . e 

Dvorac's [17] Calculation of Shear Stress at 
x = 0.937 Meters for the Zero Pressure-Gradient 
Flow1400 a m w e o1 e e o a a e e e e e e rn e e 

Velocity-Derivative and Shear-Stress Calculations 
of Forsnes and Abbott [ 6 ]  Using Several Turbulent 
Shear Models, Zero Pressure Gradient Flow 1400, 
x = 0.937 meters, m e e e . e ,. e . a . . 
Shear-Stress Calculations from Cebeci and Smith 
[ 2 3 ]  for Flow Case 2100 . . e . . e 

Shear-Stress Calculations from Cebeci and Smith 
E231 for Flow Case 2400 e e . e . e e . e e 

Shear-Stress Calculations from Cebeci and Smith 
/ 2 3 ]  for Flow Case 4400 . e e e ., . . e e e 

First-Approximation Prediction of Forsnes and 
Abbott [ 6 ]  Compared with Experimental Data of 
Flow Case 4 O O O O * . . * . . . . . . . . . O 1 *  

Calculation of Velocity Derivative and Shear 
Stress for the Experimental Data of Coles 12411 
on an Adiabatic Flat Plate at Me = 1,978 and 

Calculation of Velocity Derivative and Shear 
Stress for the E perimental Data of Coles [ a  
on an Adiabatic lat Plate at Me = 1.982 and 

Calculation of Velocity Derivative and Shear 
Stress for the E perimental Data of Coles 12 

diabatic Flat Plate at Me = 2 , 5 6 8  and 

. 3 3 x f O Q ,  * e 0 e D .) 0 0 0 0 D 0 .  * e e 

= Q . 1 8 X 1 0 0 . 0 e O 0 . 0 . . B s s e r D e  6 

. 8 4 x b 0 6 s  e e e D 0 0 D 0 D D D 0 e 8 

1 3  

15 

18 

20 

22  

24  

25 

27 

29 

30 

3 1  



Vi 

LIST OF FIGURES 
(Continued) 

Page 

Figure 

12 1) 

13. 

14, 

15 e 

16 e 

17 

18 

19 B 

20, 

21. 

23 

Velocity Profile Calculated by the Iterative 
Procedure on Eddy Viscosity with K1 = 0.40 1) 37 

Velocity Profile Calculated by the Iterative 
Procedure on Eddy Viscosity with K1 = 0.40 ~ ~ 38 

Velocity Profile Calculated by the Iterative 
Procedure on Eddy Viscosity for K1 = 0 , 4 0  and 
the Optimum Value of K1 = 0.36 e e e ~ . . ~ 40 

Velocity Profile Calculated by the Iterative 
Procedure on Eddy Viscosity for K1 = 0.40 and 
the Optimum Value of K1 = 0.316. e . . ~ e ~ . 41 

I 

Variation of the Optimal Values of K1 with 
Machnumbers e e e e e e e .  ., . e .  * .  . e 4 2  

Experimental Measurements of Turbulent Prandtl 
Number e m e e e e . e . e e . e . e . 52 

Experimental Measurements from Rotta E381 for 
the Turbulent Prandtl Number Across the Boundary 
Layer of a Cooled Flat Plate, Me = 5.1 . e . 53 

Comparison of Direct Force Measurements of 
Turbulent Skin Friction. e . . e e e a 73 

Calculations of Velocity Derivative and Shear 
Stress by the CSM Eddy-Viscosity Model Without 
Iteration for the Experimental Data of Coles 

3x106, a e e 80 

ated Starting Profile 
= 2.54p 
o . S O I O * . . * S  81 

Comparison of the Velocity-Derivative Profile 
Calculated with6and without Iteration, Me = 2.5 

Comparison of e Eddy-Viscosity Profile 
and without I 

= O 0 6 3 x 1 O  e e e 82 

0 8 0 8 8 8 0 . 8 0 0 8  83 

iction Calculations with 
B o s O o e e o e e . s e .  85 



vi i 

LIST QF FIGURES 
(Continued) 

Page 

Figure 

25 

26 

27 0 

28. 

29 e 

30 

31. 

32 

33. 

34 D 

35 e 

36 e 

37 0 

38, 

39 e 

Comparison of Velocity-Profile Calculations with 
= 2 * 5 4  0 0 0 0 . 0  0 0 * 0 e e e .) 86 

ach-Number Profile Calculations 
, Me = 2.54, e . e e e e a 87 

Comparison of Skin-Friction Calculations with 
Experiment, Me = 2-95 a a e a e e e e . e 89 

Comparison of Velocity Profile Calculations 

Comparison of Mach-Number Profile Calculations 

with Experiment, Me = 2.95. e . a e . e e . . 90 

with Experiment, Me = 2,95. . . e . e . e . e , * 91 

Comparison of Skin-Friction Calculations with 
Experiment, Me = 3.69 e a . e . e . 92 

Comparison of Velocity-Profile Calculations 
with Experiment, Me = 3.69. . a . a . e . e e 94 

Comparison of Mach-Number Profile Calculations 
with Experiment, Me = 3.69. e . e . . e 95 

Comparison of Skin-Friction Calculations with 
Experiment, Me = 8 , 2 ,  a e e e e .) e e 96 

Comparison of Veloeity-Profile Calculations 
with Experiment, Me = 4.2 e . e e e e e e . e 97 

Comparison of Mach-Number Profiles with 
eriment, Me = 4a2, . e e e a a 9 8  

101 
Calculation of Shear-Stress Profiles Using 

Eddy-Viscosity Model, Me = 2.5 

Using the CSM Eddy-Viscosity Model, Me = 2-54 e 
MWR Calculation of Eddy-Viscosity Profiles 

A Greatly agnified Vie of the Calculations 

Skin-Friction Calculation from an MWR Second 
Approximation Using e Inner-Reg 
Model of Equation ( ) p  Me = 2,5 107 

. 102 

in the Starting Region, 0 0 a e * e B e 10 



viii 

LIST OP FIGURES 
(Continued) 

Page 

Figure 

0, Skin-Friction Calculation from an MWR Second 
pproximation Using the Inner-Region Shear 
ode1 of Equation ( * 2 ) ,  Me = 2*54 e e e Q * e 

imation Using the Inner-Region Shear 
Model of Equation ( *3)# Ne = 2.54 ~ . e ~ . 
Shear-Stress Profiles Calculated from Equation 

l, Skin-Friction Calculation from an MWR Second 

2 ,  
(4a13) a e m e e m e e o e a .  o e e e e e e 

43. Skin-Friction Calculation from an MWR Second 
Approximation Using the Shear Model of Equation 
(4.131, Me = 2.5 . . e *  0 . e . . e . e * . . .  

Appendices 
Figure 

Al. A Function Specified at a Discrete Number of 
Variably Spaced Points e . . e e a (. e . . e e 

C1. Comparison of the MWR Skin-Friction Calculations 
with Experiment, Me = 2-54 e . e . e . . e 

C2, Comparison of the MWR Profile Calculations with 
Experiment, Me = 2.54# Rex = 0.63 x 106e a ,, ~ 

C3, Comparison of the MWR Profile Calculat'ons with 

C4. Comparison of the Profile Calcula 
= 7 , 7  x 10 

C5. Comparison of the M~~ Skin-Friction Calculations 
*95 D a a 0 e D 0 e e a 0 

C6, Compari Profile Calcula 

C7, Comparison of t he  Profile Calculations with 

erimentp Me = 2 .21 x 10 k e ~ 0 

eriment, Me = 2 

= 2e95, Re = 9.0 x 10 * * * ~ 

eriment, Me = 2.95# Re = 3,l x 106 * Is * ~ 

Skin-Friction Calculations 
3.69. e e e e 

109 

112 

116 

117 

1 3 3  

155 

156 

157 

158 

159 

160 

161 

162 



ix 

LIST OF FIGURES 
(Continued) 

Page 

Appendices 
Figures 

C9. Cornparison of the MWR Profile Calculat ons with 

Cl0. Comparison of the MWR Profile Calculat'ons with 

Cll, Comparison of the MWR Profile Calculations with 

C12, Comparison of the MWR Skin-Friction Calculations 

f; Experiment, = 3.69, Rex = 0.67 x 10 e e a 163 

e 164 Experiment, Me = 3,6g1 Rex = 2.64 x 10 k e 

Experiment, Me = 3.69# Rex = 6.35 x lo6 e a . 
with Experiment, Me = 4 . 2  e . . e . a . e 166 

C13. Comparison of the MWR Profile Calculations with 
Experiment, Me = 4.2# Re, = 6.2 x lo6 e a (I e a 167 

C14, Comparison of the MWR Profile Calculations with 
Experiment, Me = 4 , 2 ,  Rex = 35. XlO 6 

C15. Comparison of the MWR Profile Calculations with 
Experiment, Me = 4 .2 ,  Rex = 69. x106, . 

a 165 

. . . e 168 

.. e e e 169 



x 

Ai j 

Bi 

C 

cf 

j 
C 

C 
P 

cV 

j 
D 

F 
II 

Fcs 

fi 

G 

gi 

H 

‘i j 

Ji j 

Matrix in the MWR equations, defined by equation 
(3,451 

Vector in the R equations, defined by equation 
(3 0 47) 

Constant in Sutherland’s viscosity law, equation 
(2.25) 

2 Local skin-friction coefficient, ‘rw/(1/2) peUe 

Vector in the MWR equations, see equation (3.35) 

Specific heat at constant pressure 

Specific heat at constant volume 

Vector in the MWR equations, see equation (3.37) 

Approximating function, see equation (3.39) 
1/2 v au Velocity derivative function, Rex _.- 

Functions defined by equations ( 2 , 2 7 1  and (2,28) for 
Section 2, or weighting functions defined by equa- 
tion (3,42) for Section 3 

pproximating functiono see equation (3,401 

equations, defined by equation 
(3s48) 

Total enthalpy 

Weighting function, defined by equation (3. 

R equations, defined by equation 

Matrix in the R equations, defined by equation 
(3-49) 



xi 
. .  

K 

K1 

K2 

K3 

Ki j 

k 

L 

Li 

R 

M 

Mi 

N 

P 
j 
Pr 

Prt 
P 

qW 
R 

ri 

s 

T 

*O 

von Rarmgn constant8 equation (2.19) 

Mixing-length constant, equation ( 2 . 9 )  

Constant in equation (2.13) 

Constant in equation (2,30) 

Matrix in the MWR equations, defined by equation 
(3,50) 

Thermal conductivity 

Reference length 

Vector in the MhlR equations, defined by equation 
(3.51) 

Mixing length 

Mach number 

Vector in the MWR equations, defined by equation 
(3.52) 

Order of MWR approximation 

Legendre polynomial, order j 

Prandtl number 

Turbulent Prandtl number 

Time mean pressure 

Heat transfer at the wall 

Gas constant 

Reynolds number based on x, Uex/ve 

er based on 8 ,  Uee/ve 

Discrete values of the functional argument in 
Appendix A 

Functional argument value in Appendix A 

Time mean temperature 

Total temperature 



xii 

t 

'e 
UAICk 

u 

i U 

U! 
1 
+ 
U 

v 
V 

W 

W" 

X 

X 

i X 

Y 

Y+ 

YC 

2 

z '  

2 in 

Time 

Free- s tream ve locity 

Vector defined by equation (De 

Time mean velocity component in the x-direction 

First guess for u(y) in Section 2,5 

Second estimate for u(y) in Section 2.5 

Time mean velocity in the i-direction 

Fluctuating velocity component in the i-direction 

Nondimensional velocity, u / S p  

Nondimensional velocity, defined by equation (3.25) 

Time mean velocity component in the y-direction 

Function specified at a discrete number of points 
in Appendix A 

Nondimensional velocity, defined by equation (3-23) 

Effective-viscosity variable, defined by equation 
(2 0 20) 

Cartesian coordinate tangent to the surface 

Cartesian coordinate vector, x1 = x and x2 = y 

Cartesian coordinate normal to the surface 

Nondimensional y-coordinate, 5 t'v- 
y-value defined in Figure 1 

Match point where the eddy-viscosity values from an 
inner and outer expression are identical 

Time mean component of a flow or property variable 

Fluctuating component of a flow or property variable 

Instantaneous value of a flow or property variable 



xiii 

B 

Y 
Ar - 
Ar+ 
6 

6" 

E 

c 
E 

1.I 

V 

ef V 

E 

X 

Eddy-viscosity parameter, defined by equation (3,2 
1 + E/V 

Ratio of specific heats, C /C 

Increment in r, defined by equation (A.2) 
P V  

Increment in r, defined by equation (A.1) 

Boundary-layer thickness 

Displacement thickness# 

Kinematic displacement tgickness defined by equa- 
tion (2.15) 

dY 
j 6 [ l  - 2- -1 U 

Pe 'e 

Eddy viscosity 

Nondirnensional eddy viscosity, E/V 

Transformed normal coordinate, equation (3.22) 

Inverse velocity slopel defined by equation (3.31) 

dy Momentum thickness, Ib (1 - e] - P U  - 
- Pe 'e 
U Eddy conductivity 

Dynamic viscosity 

Kinematic viscosity 

Effective viscosity 

Transformed tangential coordinate, equation (3.22) 

Time mean density of fluid 

Fractional value 

Total shear stress 

Effective-viscosity function for the wall layer, Fig, 2 

Approximating functions, defined by equation (3.35) 

Effective-viscosity variable, defined by equation 
(2.19) 



Intermittency factor 

Approximating functions, defined by equation ( 3 , 3 8 )  

Subscripts 

e Evaluated at the outer edge of the boundary layer 

r 

W 

i Denotes the inner region of the boundary layer on 

j & Indices 

maw Maximum 

0 Denotes the outer region of the boundary layer on 

E ,  R, and T ;  denotes an index on all other symbols 

E ,  R, and T: denotes the initial or starting value 
of x on all other symbols 

Reference value 

Evaluated at y = 0 (or  u = 0) 

Superscripts 

- Time averaged 

P Differentiation with respect to independent variable 
or time dependent portion of a local quantity 

* Denotes displacement thickness on 6 ;  denotes non- 
dimensional. ivariable, defined wherever used, on all 
other symbols 

E; Differentiadion with respect to 6 



xv 

ABSTRZaCT 

There are two primary objectives of this work: first 

to examine the behavior of local, turbulent shear-stress 

models, and second to extend the method of weighted residuals 

(a method for solving a system of partial differential 

equations) to the solution of the compressible turbulent 

boundary-layer equations, Thus, in the first part of this 

work shear models are studied both as they influence a given 

boundary-layer prediction scheme and also as they yield 

shear-stress profiles independent of prediction methods. 

Shear-stress calculations are then examined as reported by 

previous workers, as calculated from the intermediate boun- 

dary-layer results of other methods, and as computed in the 

present investigation. It is found that the behavior of 

many of the shear models is qualitatively incorrect in 

terms of their prediction of the shear-stress distribution. 

The cause of the anomalous behavior of the shear-stress 

profiles is discussed in relation to the specific shear 

models, and the effects of this behavior on boundary-layer 

prediction programs are examined. In addition, previous 

efforts to correct the anomalous behavior, such as, employ- 

ing a diffusion equation on the maximum eddy-viscosity or 

smoothing eddy-viscosity profiles, are also indicated, 
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Finally, it is shown possible to develop an iterative pro- 

cedure to at least provide properly behaved shear-stress 

profiles at the initial station of a prediction program, 

In the second part of this study, the computational 

advantages of the method of weighted residuals are compared 

with those of finite-difference methods and those of the 

conventional integral methods, Since the method of weighted 

residuals is found to possess many of the advantages of the 

other two methods, it is extended to the solution of the 

compressible, turbulent boundary-layer equations. Numerical 

solutions, for the compressible flow of air over adiabatic 

flat plates at free stream Mach numbers ranging from 2 . 5 4  

to 4 , 2 1  are compared with both experiment and the finite- 

difference calculations of Cebeci, Smith, and Mosinskis 

C11. The general analysis of the present investigation 

includes pressure-gradient and heat-transfer effects, but 

these effects are not incorporated into the computer program; 

consequently, no numerical results are presented for flows 

with pressure gradient or heat transfer. 



TRODUCTION 

The prediction of the compressible, turbulent boundary 

layer became of critical importance with advances in the 

design of supersonic aircraft, guided missiles, gas tur- 

bines! and other high-speed gas flow devices, With the 

high velocities involved in such applications, drag and 

heating effects are very important design criteria; conse- 

quently, a calculation procedure for compressible, turbu- 

lent boundary layers can be a valuable design tool - par- 
ticularly in the early stages of the problem analysis. 

In the past twenty years considerable research effort 

has been focused on the understanding and prediction of 

turbulent boundary layers, primarily incompressible, but in 

the past five years a few of the incompressible analytical 

techniques have 'been e tended to compressible flow appli- 

cations varying degrees of success. 

In any prediction scheme for turbulent boundary layers, 

there are three major factors for consideration: the 

governing differential equations which mathematically model 

ysical situaizio ; a turbulent shear-stress informa- 

tion model which renders the system of governing equations, 

eir appropriate boundary conditions, a well-posed 

mathematical problem; an finally the mathematical procedure 
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to solve the well-posed problem, The goal of the present 

work is to advance the existing state of knowledge in two of 

these areas - namely,' turbulent shear models and mathematical 
solution techniques, 

An investigation is made of the predicted shear-stress 

distributions in turbulent flow, and the resulting calcula- 

tions are analyzed for four separate investigations including 

the present one as well as some unpublished results of other 

investigators, The anomalous behavior of some of these shear- 

stress profiles is examined, and a plausible explanation of 

this behavior is set forth, Various rnethods'of avoiding 

this anomalous shear-stress behavior are also postulated. 

The method of weighted residuals, a powerful mathe- 

matical technique for approximately solving a system of com- 

plex partial differential equations, is described; and the 

computational advantages of this method are compared with 

those of conventional integral techniques and finite-differ- 

ence procedures. Since ultimately the Method of Weighted 

Residuals (or MWR) is proposed as retaining many of the 

computational advantages of both integral and finite-differ- 

ence techniques, the R is extended to the solution of the 

compressible, turbulent boundary-layer equations using both 

an eddy-viscosity model and various other similarity shear- 

stress models, W new treatment for the energy equation is 

developed which has distinct computational advantages over 

procedures previously employed for laminar flows, 
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Since the experimental procedure for varying Re 

from that of the calculation procedure, several valid tech- 

niques of comparing the experimental and analytical results 

are studied. 

appears to properly test the ability of a prediction method. 

The corresponding results of the prediction program are 

compared with both experiment and the finite-difference cal- 

culations of Cebeci, Smith, and Mosinskis Ill for the flow 

of air over an adiabatic flat plate with free stream Mach 

numbers ranging from 1.54 to 4.2. The accuracy, computa- 

tion times, and convergence properties of these MWR predic- 

tions are examined, 

A comparison technique is presehted which 

In summary, the goals of this investigation are to 

(1) carefully examine the behavior of several local shear- 

stress models and (2) investigate certain computational 

advantages of the method of weighted residuals and extend 

the MWR to the analytical prediction of compressible, turbu- 

lent boundary-layer flows. 
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2 ,  INVESTIGATION OF TURBULE T SHEAR STRESS 

I n  t h e  c a l c u l a t i o n  of compressible t u r b u l e n t  boundary 

l a y e r s  t h e r e  are t h r e e  major f a c t o r s  f o r  cons ide ra t ion ;  

t h e s e  are t h e  governing d i f f e r e n t i a l  equat ions  of motion, 

t h e  mathematical  method t o  s o l v e  t h e s e  d i f f e r e n t i a l  equa- 

t i o n s ,  and t h e  p h y s i c a l  model t o  y i e l d  t h e  r equ i r ed  turbu-  

l e n t  s h e a r - s t r e s s  in format ion ,  The t a s k  of s tudying  and 

s e l e c t i n g  a t u r b u l e n t  s h e a r  in format ion  model i s  considered 

i n  t h i s  s e c t i o n ,  

2 . 1  Review of Turbulent  Shear Information Models 

The two b a s i c  types  of t u r b u l e n t  shea r  in format ion  

models are g l o b a l  d e s c r i p t i o n s ,  which depend only on t h e  

streamwise x-coordinate ,  t h e  local d e s c r i p t i o n s ,  which depend 

on both  t h e  x-coordinate  and t h e  normal y-coordinate.  A 

g l o b a l  s h e a r  model i s  an a l g e b r a i c  or d i f f e r e n t i a l  equat ion  

which relates an i n t e g r a l  of t he  s h e a r  stress, f o r  example, 
co 

r 
(2.1) 

0 

t o  t h e  boundary-layer i n t e g r a l  parameters  ( f  (x ,y)  i s  an 

a r b i t r a r y  func t ion  and t h e  i n t e g r a t i o n  e l i m i n a t e s  t h e  y- 

v a r i a t i o n ) ,  A local  shea r  model i s  an a l g e b r a i c  or d i f f e r e n -  

t i a l  equat ion  r e l a t i n g  s h e a r  stress, eddy v i s c o s i t y ,  o r  
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mixing length eo the boundary-layer parameters and/or the 

velocity field, 

Boussinesq [ a ]  first introduced the 

concept in the form 

eddy-viscosity 

( 2 * 2 )  

where the eddy viscosity has a scalar value with directional 

constancy, Hinae [ 3 l  has shown that a constant eddy vis- 

cosity will yield satisfactory velocity profiles for the 

free turbulent wake far behind a cylinder. In general, 

however, eddy viscosity has a spacial variation, e.g, in 

boundary-layer shear flows, It must also be recognized 

that the form of equation ( 2 . 2 )  cannot be mathematically 

correct if E is considered to be a scalar because a con- 

traction of this equation yields 

au. -m = 2E - 
1 1  axi 

1 

The right side of this equation is always zero for incom- 

pressible flow (from the continuity equation) while the left 

side can only be zero if there is no turbulence. Similar 

arguments utilizing properties of symmetric tensors sho 

that tensors of second and third order are also unsatisfac- 

tory sepresentatio viscosity; whereasp a fourth- 

order tensor can satisfy all contraction and symmetricity 

relations, Despite these objections the Boussinesq formu- 

>lation with a scalar eddy viscosity is often adopted in cal- 

culation procedures for turbulent flow, The major justification 



for its use is the successful agreement often shown between 

the calculated and measured values of the grosss mean pro- 

perties of the flow, 

For turbulent boundary-layer calculations the Clauser 

1 eddy-viscosity model is generally used in the outer or 
law-of-the-wake region, while various other models are 

employed in the inner or  law-of-the-wall region, The inner 

and outer models are then patched together in a variety of 

ways, The resulting predictions of mean velocity and tem- 

perature profiles, integral thickness parameters, and skin 

friction have been quite adequate for engineering purposes 

except in flows with very sudden chdinges in pressure gradi- 

ent or flows near separation, 

Some interesting differences in opinion can be found 

over the last decade, In considering eddy-viscosity models, 

Laufer [51 states that he is doubtful that a "correct" for- 

mulation exists in the inner or wall region, Conversely, 

3 said ten years earlier that the inner region 

could essentially be considered as solved with a logarithmic 

velocity profile and an eddy viscosity proportional to y e  

Clauser then proceeded to consider what he called the much 

more difficult problem of predicting the behavior of the 

outer portion of the boundary layer, It should certainly be 

noted that Clauser's comments ere made in 1956 and Lauferes 

in 1968, and that in 1956 much more was known about the 

inner region than the outer region, It now appears tgat 
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with t h e  results of Clauser8s work, the outer region can 

essentially be considered as solvedp and attention should 

be focused on the more difficult problem of predicting the 

behavior of the inner layer; some consideration of this 

paint will be given later in this section, 

Forsnes and Wbbott [SI reported an extensive study of 

over thirty global and local turbulent shear-stress models 

for two-dimensional, incompressible, turbulent boundary 

layers, Only a few of these models have been extended to 

compressible flow: for example, Alber and Coats [71  ex- 

tended their dissipation integral formulation: Cebeci, Smith 

and Mosinskis [l] modified their eddy-viscosity expression; 

and Herring and Mellor [ G I  reworked their effective-viscos- 

ity hypothesis for the compressible regime. Forsnes and 

Abbott [6] evaluated the incompressible versions of these 

three turbulent shear models independently of any boundary- 

layer prediction scheme by directly substituting experimen- 

tal data into the shear models and comparing the outputs 

from the various models, The main items of concern 

in Forsnes and AbbottBs [61 results are that the dissipa- 

tion-integral values calculated from Alber and Coats' [SI 

formulation are always much larger than the values calcula- 

ted by five other dissipation-integral correlations and that 

the shear-stress profiles calculated by both the Herring- 

ellor model and the Gebeci-Smith-Mosinskis model have 

grossly unrealistic Behavior in the inner region of the 
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boundary layer where y/6 is less than about two-tenths, 

Forsnes and Abbott [6] then employed these three models in a 

two-dimensional, incompressible, turbulentp boundary-layer 

prediction program, but the predictions of Cf# 6*,  and 0 

These inaccurate predictions were ere very inaccurate, 

certainly expected considering the grossly unrealistic 

behavior of the input shear profiles. 

In the light of Forsnes and Abbott's [ 61  earlier com- 

parison of the dissipation-integral values and shear-stress 

profiles calculated by the above three shear models, con- 

siderably more work and understanding must be accomplished 

before these models can be successfully incorporated into 

an arbitrary boundary-layer prediction scheme. 

for continuing this approach 05 understanding is: (1) the 

Cebeci-Smith-Mosinskis and the Herring-Mellor eddy-viscosity 

models are among the best known and regarded shear models 

in the turbulent boundary-layer community; and ( 2 )  the cal- 

culations for two-dimensional, incompressible, turbulent 

boundary layers by these two groups ranked in the best 

third of the prediction methods as determined by the eval- 

uation committee of the 1968 AFOSR-IFP Stanford Conference 

entitled, "Computation of Turbulent Boundary Layers'# [ 91 

These two eddy-viscosity models are presented and studied 

in Sections 2 , 2  and 2,3, but first a policy of evaluation 

needs to be clarified, 

The rationale 

In evaluating turbulent shear models in the past, the 
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popular approach has appeared to be - the better the ea%- 
culated values of d * t  @, and Cf agree with the experimental 

data, then the better the shear model used in the predic- 

tion procedure must be, This implied evaluation is often 

made without any regard to the behavior of the calculated 

shear-stress profiles, Of course, there is always the 

implicit assumption that the shear-stress profiles are 

correct if the integral parameters are adequately predicted. 

This applied point of view has its chief defense in the 

fact that the industrtal user is generally only interested 

in the prediction of 6 * ,  Cf, and the separation point, and 

he has little interest in the predicted behavior of the 

velocity and shear-stress profiles, Further justification 

for the applied evaluation approach may be that very little 

measured shear-stress data are available for comparison 

by any means, 

There is an element of risk with this applied evalua- 

tion, however. While the applied user is mostly concerned 

with computational resultsc he nevertheless would like to 

isting turbulence formulations pushed to newer and 

often more complex applications, such aso for e ample, com- 

pressibility, boundary-layer controlc low Reynolds nu 

effects, wall-roughness effects, etc, Typically such 

extensions by the originators of the earlier s 

models (seep for example, [lo] and 6111) assume that the 

new and more complicated phenomenon can be accounted for 



deducing appuopriate modifications of the details of the 

previously successful. turbulent shear-stress model in some 

intuitively logical manner, The continued success of such 

a line of research# measured in terms of integral parameters, 

would thus imply the soundness of the original assumption 

for the shear stress, Presumably, only when a failure is 

encountered with this chain of deduction would it be 

necessary to e amine the details of the assumed shear stress. 

A different philosophy presents itself to the investi- 

gator who desires to accept the merits of one of the earlier 

shear models and perform his own extensions or modifications 

to suit some specific need, For the sake of saving time or 

at least optimizing the effort, such an investigator would 

like to select the *'bestP' of the shear models available. 

This is the philosophy adopted in this report and in keep- 

ing with this approach, the eddy-viscosity models proposed 

by Cebeci, Smith, and Mosinskis [l] and Herring and Mellor 

[8, 121 will be reviewed in some detail, including an 

examination of the resulting shear-stress profiles. 

2 , 2  Eddy-Viscosity Models 

The defining equations for eddy viscosity are 

au - T = (V4-E) - 
P aY 

and 

where E is the eddy viscosityD The defining equations for 



t h e  h a n d t l  mixing l eng th  are 

and 

where R is  t h e  mixing length .  Combining equat ions  (2.5) and 

( 2 . 7 )  y i e l d s  a r e l a t i o n  between eddy v i s c o s i t y  and mixing 

l eng th  

P r a n d t l  o r i g i n a l l y  argued t h a t  for  t h e  i n n e r  reg ion  of t h e  

boundary l a y e r  (denoted by s u b s c r i p t  i) 

R i  = K1 y (2.9) 

where K1 is  a c o n s t a n t  f o r  fully-developed t u r b u l e n t  f l o w .  

Van D r i e s t  [13] modified P r a n d t l s s  argument f o r  mixing 

l e n g t h  t o  account  f o r  t he  v iscous  sublayer  by cons ide ra t ion  

of a S tokes ian  f l o w  over  an o s c i l l a t i n g  f l a t  p l a t e ,  Van 

D r i e s t  made t h e  analogy between the  Stokes ian  f l o w  and t h e  

f l u c t u a t i n g  t u r b u l e n t  f l u i d  over  a s t a t i o n a r y  f l a t  p l a t e ,  

r e s u l t i n g  i n  t h e  i n t r o d u c t i o n  of a damping f a c t o r  i n t o  

equat ion  ( 2 , 9 )  which becomes 

where A is  a cons t an t  f o r  a given streamwise l o c a t i o n .  Com- 

b i n i n g  equat ions  (2,8) and (2,181 r e s u l t s  i n  

( 2 , 1 1 1  
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Equation (2.ll).was developed by Van Driest for incompress- 

ible flow over a f l a t  plate with zero pressure gradient, 

Cebeei, Smith, and Mosinskis [l] have extended Van Driest's 

development to encompass compressible flows with pressure 

gradients, Their final result is 

26v E i = Kf y2  

(2.12) 

In the outer region of the boundary layer (denoted by 

subscript o), Clauser [ 1 heuristically derived the result 

= K2 Ue 6" 
€0 (2.13) 

for incompressible, equilibrium turbulent boundary layers 

where X2 is a constant, 

by the intermittency factor given by Klebanoff [14] as 

Equation (2.13) has been modified 

where Q is the intermittency factor. Clauser's model has 

been further modified by Herring and Mellor [ 8 1  by replacing 

6"  with 6 i  for compressible flows, where the kinematic 

displacement thickness 
OD 

P 

6; = J (l--u/ue) dy 
0 

( 2  e 15) 

is used to account for the kinematic character of the eddy 

viscosity, Cebeci, Smith and Mosinskis [ a ]  also have 

approximated equation ( 2  e 14) by 
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T h e  complete, composite eddy-viscosi ty  model used by Cebeci, 

Smith, and Mosinskis [I] is given i n  t h e  i n n e r  r eg ion  by 

= K: y2 (2,121 

and i n  the  o u t e r  reg ion  by 

( 2  16) 

where Kl = 0 . 4 0 ,  K2 = 0 . 0 1 6 8 r  and 6 i s  de f ined  as t h e  d i s -  

t a n c e  f r o m  t h e  w a l l  t o  the  p o i n t  where u/U, = 0,995. 

d i v i d i n g  p o i n t  between the  i n n e r  and o u t e r  reg ion  of t h e  

The 

boundary l a y e r  i s  def ined  by r e q u i r i n g  t h e  eddy-viscosi ty  

func t ion  t o  be continuous.  Thus, equat ion  ( 2 . 1 2 )  i s  used 

for 0 < y < y and equat ion  (2-16) i s  used for  yc - < y - < 6 

where yc i s  def ined  as t h e  va lue  of y where ci = cOl 

- C' 

Figure  1 g r a p h i c a l l y  d e p i c t s  t h e  j o i n i n g  of t he  t w o  

E 
- E i  

0 
E -- 

KZUe6: 

1 
\ 

0 

O y c  Y 

F igure  1:: Eddy-Viscosity Model of Reference 1 

reg ions  
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Herring and Mellor develop their effective-viscosity 

model in References 8 and 12, The defining equations are 

and 

where vef is the effective viscosity. 

and dimensional arguments they obtain 

- -  - 44x1 P x = d- in the 'ef 
V 

(2 18) 

Utilizing physical 

wall layer ( 2  19) 

and 

d m  in the defect layer (2.20) 'ef - =  @(X) p x = 
'e6K 

where Cp and CP are, as yet, undetermined functions and 

K = 0.41 is the von Karman constant. With the assumption 

that an overlap region occurs between the wall and defect 

layers and Clauser8s [4] assumption that vef is constant in 

the defect la ear, Herring and Mellor obtain the functional 

form for C P e  Once again using the overlap region assumption 

with the law of the wall and some of Laufer's 1151 data (to 

specify an empirical constant)rthey determine the (p function, 

Figure 2 displays these functions, Herring and Mellor then 

unite their composite model into a single equation by the 

matched asymptotic expansions (Van Dyke [16]); this is 
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Figure 2:: The Effective-Viscosity Functions of Herring 

and Mellor [8] 



achieved by adding the inner madel to the outer model and 

subtracting the common asymptote to obtain their final, 

resultant effective-viscosity model, 

Hereafter, equation (2,211 will be referred to as the 

HM effective- or eddy-viscosity model for Herring and 

Mellor, and equations (2.12) and (2.16) will be referred to 

as the CSM eddy-viscosity model for Cebeci, Smith and 

Mosinskis, There is a decided difference in the application 

of these two models, If values for u(y) , I and T(y) 

are known from experimental measurements or from the calcu- 

lations of a prediction scheme, then the CSM model is an 

explicit equation for the eddy viscosity; while the HM model 

is an implicit equation for effective viscosity which must 

be solved by iteration, since the terms on the right-hand 

side of equation (2,21) contain X and x which are functions 

aY 

of the shear stress, In a boundary-layer calculation pro- 

gram where the shear-stress profile must be calculated at 

many streamwise locations, the iterative procedure required 

by the HM model could cause a considerable increase in 

computer time. 

2,3 Shear-Stress Calculations in the Literature 

Before shear-stress profiles are calculated by the CS 

models, it w i l l _  be instructive to e amine the calcu- 

lated shear-stress profiles of previous investigators, 



Predicted. sheas-stress distributions are rare in the litera- 

ture, but shear profiles have been obtained from three 

separate investigations, Perhaps some insight on the behavior 

to expect of calculated shear profiles can be gained from 

these three investigations, 

Dvorac El71 calculated the shear-stress profile on an 

incompressible flat plate at x = 0.937 meters for flow case 

00 of the Stanford data El$]. By using an eddy- 

viscosity model, which is briefly presented in Reference 9, 

he obtained the result shown in Figure 3; the interesting 

feature of this graph is the anomalous behavior near the 

wall. The shear-stress curve should approach its maximum 

value at the wall with a slope normal to the wall (as seen 

by evaluating the momentum boundary-layer equation at the 

wall). 

eddy viscosity in the outer region to obtain the results of 

Figure 3 ,  but when he did not use this diffusion equation, 

he predicted an even larger ( ~ / p ) ~ ~ ~  of 2.14. 

the diffusion equation was mentioned to emphasize that 

Dvorae used a diffusion equation on the maximum 

The use of 

Dvorac has already attempted to improve his shear-stress 

calculations, 

Forsnes and Abbott [6] also calculated the shear-stress 

profile for flow 1 00 of the Stanford data [I$] at 

meters. They used the experimental velocity profile and 

derivatives obtained from it (by an averaged linear-slope 

scheme) to calculate the shear-stress profiles with several 
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Figure 3: Dvorae's [17] Calculation of Shear Stress at 
x = 0,937 Meters for the Zero Pressure- 
Gradient Flow 51400 
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differenk eddy-viscosity and mixing-length models, Some of 

the i r  results are shown in Figure p" it is important to 

realize that they did not use the boundary-layer equations 

or any prediction program to obtain the results in Figure 

They simply substituted experimental data and their deriva- 

tives into shear models which were reported by the several 

authors, Figure 4 shows that the shear-stress distributions 

are very poorly behaved near the w a l l  for all four shear 

models, while the shear-stress curves for two of the models 

are unacceptably high in the outer region of the boundary 

layer (. It is not the intent of Figure 4 to imply that it 

is impossible to predict correct shear-stress profiles with 

these four shear models; instead, it might imply that the 

shear models are unusually sensitive to their input velocity 

and derivative profiles, The sensitivity of a particular 

model, the CS modell, will be discussed later in Section 

2,Q, 

* 

Another investigation for which shear-stress profiles 

are available is that of Cebeei and Smith [231. Although 

Reference 23 does not explicitly contain the shear-stress 

valuesB it does contain tabular values of the variables E 
+ 

ra 
and Fcs for the Stanford bJ-81 data case 4 00, When these 

Admittedly, th ,e  magnitude of these curves depends on the 
method of obtaining the velocity profile derivative; h 
everB since the velocity profile slope is the same for 
each curveB relative variations are most significant, 



20 

(6/Ue)au/ay, derivative 

ellor-Herri 

iehel et a%, [201 

- c / p p  Spalding et al. 1211. 
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ott [ 6 1  Using Several Turbulent 

Shear Models, Zero Pressure Gradient Flow 1400, 
x = 0,937 meters 
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variables are combined properlyp the shear-stress values are 

obtained sin~e 

a Calculations of E 

by Cebeci and Smith f o r  several other incompressible, turbu- 

lent boundary-layer flows, However, Cebeei and Smith do not 

directly use the CSM eddy-viscosity mode1 in their pre- 

dictions, since %he direct use of their model led to oscil- 

lations in the calculated values of 6* and Cf and caused 

their iterative procedure to diverge; consequently, they 

use an averaging or smoothing technique on their eddy- 

viscosity profiles to prevent the oscillations and diver- 

gence. Figure 5 depicts the calculated shear-stress 

profiles at three different streamwise locations for flow 

case 2100 of the Stanford data [18]. This case is a boun- 

dary layer on a large airfoil-like body. The profile at 

and Fas were also cooperatively supplied 

feet is in a mild favorable pressure gradient; the 

feet is in a strong adverse pressure gra- 

dient; and the profile at x = 26,ll feet is within a few 

inches of separation. A l l  three shear-stress profiles are 

smooth and properly behaved, A comparison of the ealcula- 

tions of the global, boundary-layer parameters in Reference 

[ 91  shows that the predictions of 6*,  0 ,  and C5 by Cebeei 

and Smith are quite good for this flow case, As one 

expect, well-behaved shear-stress profiles generated good 
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Figure 5:: Shear-Stress Calculations from Cebeci and 
Smith [23] for Flow Case 2100 
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predictions for  the global  parameters, 

~ i g u r e  6 d i sp lays  the shear-stress profiles from the 

Cebeei-Smith boundary-layer calculation program for flow 

ease 2400 This is a flow with a moderate, adverseb. 

equilibrium pressure gradient which is abruptly decrease 

to zero and then allowed to relax to this new equilibrium 

pressure gradient of zero, The profile at x = 

is near the end of the adverse pressure-gradient region 

while the one at x = 7,2 feet is well into the zero pressure- 

gradient region, Thus, the profile at x = 7.2 feet should 

have a slope of zero at the wall, but the calculated pro- 

file does not, Another anomally exhibited by both of the 

calculated profiles is a sudden jump very near the wall so 

that in general the calculated shear-stress profiles for 

this flow case are rather ill-behaved, An examination of 

the calculations in Reference 9 reveals that for this flow 

case Cebeci and Smith predict 6" and e very well but do 

rather poorly on Cfe As one would e ect, the unrealistic 

shear distributions led to inaccurate skin-friction.calcu- 

latioaas, whi le  the boundary-layer thickness parameters are 

apparently less sensitive to the shear-stress inaccuracies. 

8 

Figure 7 shows t w o  shear-stress distributions calcu- 

lated from Cebeci and Smith's results for flow 

which is a boundary layer in a strong adverse pressure 

gradient, Both of these profiles have a large unrealistic 

jump at y / 6  0,835 which is undoubtedly in the zone of 
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Figure 7: Shear-Stress Calculations from Cebeci and Smith 
[23J for Flow Case 4400 
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application oE the inner-region model, In view of these 

shear-stress profiles, one might expect very inaccurate 

calculations of the global parametersp but Reference 9 

shows that the Cebeci-Smith calculations of 6*,  8, and Cf 

are nearly perfect - passing through almost every experi- 
mental data point. In fact all seventeen investigators who 

predicted flow 4400 in Reference 9 did extremely well, 

The reason Cebeci and Smith were able to correctly predict 

the global parameters with such poor shear-stress profiles 

is probably because the turbulent shear information terms 

in the governing equations are of only secondary importance 

for this flow case., Further substantiation of this claim 

is seen in the work of Forsnes and Abbott [61. They 

developed a first approximation to the solution of the 

governing equations using the method of weighted residuals. 

This first approximation contains no turbulent shear infor- 

mation, since all terms containing T are identically zero. 

Forsnes and Abbott's first approximation calculations for 

flow 4400 are given in Figure 8 and show remarkably good 

agreement with experiment, Additional first-approximation 

or "zero-physics" predictions are given in Reference 6 

which shows comparable success for several of the flow 

cases in Reference 18, These nzero-physicsn results indi- 

cate that the turbulent shear information terms may be of 

secondary importance for certain classes of flows, 
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2,4 Shear-Stress C a % c u l a t i o n s  in the Present Investigation -.-I_--p-- 

NOW t h a t  th .e  shear--stress caicula?A,3ca f ~ o m  several 

previous investigations have been exmined  the present 

investigation can proceed with some calculations of Pes own 

for compressible, turbulent boundary layers - the task which 
was originally proposed in Section 2 - 2  where t 

eddy-viscosity models were presented in detail, These two 

models will be examined by calculating the shear-stress 

profiles for adiabatic, turbulent, compressible data eases, 

The inputs to t h e  eddy-viscosity models are the experimental 

velocity and Mach-number profiles and the velocity-profile 

derivative calculated by the weighted central finite-dif- 

ference scheme derived in Appendix A. Other equations 

necessary to calculate all the variables occurring in the 

eddy-viscosity models are: the perfect gas law 

p = pRT (2.23) 

Mach number f o r  a perfect gas 

Sutherland*s viscosity law 

slug/f$- -7 where C = 192O%2, Tr = 492OR, and 1-1, = 3,59 x 1 

sec, The present calculations for the shear-stress p ~ : ~ f i l e ~  

using the CSM and l2-4 eddy-viscosity models are sk 

Figures 9, PO, rand 11, The calculated velocity derivatives 
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are also plotted to show their smooth nature near the wall 

where the shear-stress profiles are erratic, Far a com- 

ith these calculations, %Be correct qualitative 

behavior of the T / T ~  function near t h e  wsll is sketched in 

with a solid line, Figures 9 and 10 exhibit the calcula- 

tions at two different Reynolds numbers for approximately 

aeh number while Figure ll shows %he calculations 

at another Mach number, It is seen that the results in. all 

three figures are quite similar. Both the CS 

models generate erratic behavior in the shear-stress profiles 

near the wall, and the CSM shear-stress profile decreases 

to zero faster thaw the HM profile in the outer region of 

the boundary layer, The faster descent of the shear-stress 

profile calculated by the CSM model can be explained in the 

following manner, An intermittency factor is built into 

the CSM eddy-viscosity model to account for the intermittent 

character of the turbulent boundary layer. T e intermit- 

tency factor is employed to decrease the outer eddy-viscosity 

values as y increases, The HM model does not use an inter- 

mittency factor; it employs Clauser's [ 1 theory of a con- 

stant eddy viscosity in the outer region of the boundary 

layer, Although Mellor 1121 noticed the shortcoming of the 

Clauser theory, ellor felt that this shortcoming 

appreciably affect the boundary-layer calculations. 

Before an attempt is made to use either the CSM or the 

eddy-viscosity model to predict compressible, turbulent 
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boundary layers8 it is coiasideaced desirable to improve the 

shear-stress profile-in the inner or wall region of the 

boundary layer, There-seems little to choose from, between 

these two eddy-viscosity models, since both have proven to 

yield accurate predictions of the global boundary-layer 

parameters in Reference 9, However, two analytical factors 

warrant a preference for the CSM eddy-viscosity model: 

(1) it contains an intermittency factor which creates the 

qualitatively correct reduction of eddy viscosity in the 

outer region, and (2) it is an explicit equation for eddy 

viscosity which can thus be solved without iteration. Two 

other reports lend credence to the preference of the CSM 

model. Bankston and McEligot 1251 made numerical predic- 

tions of heat-transfer rates in the entry region of circular 

ducts using several different eddy-viscosity and mixing- 

length models, They found the best agreement between cal- 

culations and experimental measurements with a version of 

the Van Driest mixing length, which is included in the CSM 

model, Martellucci, Rie, and Santowskii 1261 calcu 

total-temperature and pressure profiles over a cone at Mach 

eight using three different eddy-viscosity models, In gen- 

eral the calculations using the CSM model agreed slightly 

1 

ith the data than the calculations using either the 

Santowskii model or the Patankar-Spalding model. Conse- 

quently8 further consideration in this report will be res- 

tricked to the CSM eddy-viscosity model, major effort of 
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the present inveseigatisn . h a i l l  be directed toward improving 

the inner-region bshavisir of the &SM shear--stress profile, 

2 - 5  Analysis of the Anomalous Shear-Stress Behaviar 
u-- I 

For a first attempt at understanding the shear-stress 

problem in the wall region, it is considered desirable to 

find out what velocity profile will give the physically 

correct shear-stress distribution when that velocity pro- 

file is substituted into the CSM eddy-viscosity model, The 

method devised to answer this question will now be des- 

cribed, The correct shear-stress profile is assumed to be 

the solid line (Figures 9, 10, and 11) in the inner region 

plus a faired curve through the points marked with open 

circles in the outer region, The equations required for 

the property variations are (2.23) (2,241 I ( 2 2 5 )  I and the 

Crocco relation relating the temperature profile to the 

velocity profile, 

T/Tw = 1 + ITo/Tw - 1) u/Ue + (Te/To - 1) To/T,(u/Ue) 2 

( 2 , 2 6 1  

Equivalent forms of equation ( 2 , 2 6 1  have been derived by 

Crocco E271 and Van Driest [281 .  The Crocco relation has 

proven to agree quite well with experimental data for the 

flow of air over a flat plate; e,g, see Bushnell, Johnsonp 

Harvey, and Feller [ a s ; ,  To make the description of the 

calculation procedure more easily understandable, the work- 

i n g  equations will be represented in functional form, The 
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CSM eddy-viscosity model becomes 

where fl is a two layer function given by equations (2.12) 

and ( 2  16) Rearrangement of equation ( 2  e 4) yields 

(2 .28 )  - -  all - f2(&,U#-r) ay 
where 

Admittedly fl and f 2  are functions of many other variables, 

but they will be taken as parameters, and the three argu- 

ments shown for each function are taken to be the only de- 

pendent variables once the equations for the property varia- 

tions have been employed, 

has been included as an argument for reasons that will 

The constant K1 in equation ( 2 . 2 7 )  

become apparent later, but for the present Kl = 0. 

be used, Equations (2.27) and (2,28) are readily solved, 

The physically correct shear-stress distribution, ~ ( y )  , is 
substituted into equation ( 2 , 2 8 1  ; then equations (2,271 and 

(2-28) become two equations in the two unknownsp u ( y )  and 

e ( y ) ,  At a given x-location these equations are first-order 

ordinary differential equations for u and algebraic equations 

for E, These equations are solvable by Picardss method. A 

first guessB say up 1 1  

when u,(y) is inserted into the right-hand side of equa- 

tions (2.27) and (202$), these equations become 

Fs xade for the solution of u(y) ; 
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and ~ ( y )  which algebraic equations in kwo uriknowns I -- 
are readily solvable, The - p x o . 2 ~ ~ - e  1s integrated to 

yield a second approximatzon, u21.y) then u2 (y] ta 

previous m l e  of ul(y) 

convergence is obtained Wpproxirilatekl L w e x l t y  iterations 

were generally required %o obtain convergence to six sig- 

nificant figures of u when u,(y) was taken to be the experi- 

mental velocity profile, Upon convergence the u(y) profile 

is the desired one, When this profile is substituted into 

the CSM eddy-viscosity modelp a physically correct shear- 

stress distribution is obtained, 

& a  (Q 
ay 

a I W  

aY 

and the pzcoceso i a  eon,$inued until 

This iterative procedure has been applied to several 

sets of experimental data measured by Coles [ 2  ] and Matting, 

Chapman, Nyholm, and Thomas [ 301  for the compressible flow 

of air over an adiabatic flat plate, The solid line 

curves in Figures 12 and 13 show the results of these cal- 

culations which are compared with experimental data, Fig- 

ure 12 shows one of the best agreements between calculation 

and experiment while Figure 13 shows the worst. The best 

agreement occurs at the lowest Mach number, and this trend 

in general occurred for all the data that was examined; 

this trend with Mach number will be examined later in this 

section, 

In the application of the CSN model, poor Behavior of 

the shear-stress profile occurs only in the i n n e r  region of 

the boundary layer where equation (2,12) is utilfzedi 
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Procedure on Eddy V i s c o s i t y  wi th  Kp = 0 . 4 0  
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therefore, this equation will be examined in detail. In 

the derivation of equation (2,lO) Van Driest [131 showed 

that the constant K1 corresponds exactly to the constant  KP 

in the universal logarithmic velocity distribution in the 

fully turbulent region of the boundary layer 

(2-30) 

Equation (2-30) has been found to agree very well with 

experimental data for incompressible flow using K1 = 0.4! 

but Coles [24] and Van Driest [a81  have shown that equation 

(2,30) does not agree with compressible flow data nearly as 

well as it does for incompressible data, Consequently, the 

constant value of Kl = 0,4 in the mixing-length expression 

is questionable for compressible flow, The same calcula- 

tions as before were made to determine what velocity pro- 

file will give a correct shear-stress profile using the 

model; only this time the value of K1 was optimally 

adjusted until the velocity profile which agreed best with 

the experimental data was calculated, These calculated 

velocity profiles with an optimum value of K1 are shown in 

Figures 14 and 15 by the broken lines where they are com- 

pared with two sets of experimental data and the corres- 

ponding calculations using K = O e 4  (solid lines), These l 
same calculations were performed to find the optimal values 

of K1 for several. other data sets measured by Coles [ 2  

Matting, et al, [301 

versus Mach number in Figure 16, Although possibilities of 

and these results are plotted for  Kl 
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t r e n d s  f o r  K1 i n  the  parameters C f g  R e x ,  R e e g  etc,  were 

explored ,  none appeared except  tbe one shown i n  F igure  1 6 ,  

Although a d e f i n i t e  t r e n d  of decreas ing  K1 with  i n c r e a s i n g  

Mach number e x i s t s B  t h e  l a r g e  degree of scat ter  i n  t h e  caP- 

c u l a t e d  p o i n t s  p r o h i b i t s  t h e  d iscovery  of an a c c u r a t e  

c o r r e l a t i o n  func t ion  f o r  Kl i n  compressible f l o w ,  S t i l l  a 

l ea s t - squa res  p a r a b o l i c  o r  l i n e a r  fit  t o  t h e  c a l c u l a t e d  

p o i n t s  should make a s i g n i f i c a n t  improvement over t h e  K = 

0-40 c o n s t a n t  va lue .  

1 

- 2.6 S e n s i t i v i t y  of t h e  CSM Eddy-Viscosity Model 

Shea r - s t r e s s  p r o f i l e s  have been c a l c u l a t e d  by t h e  CSM 

eddy-viscosi ty  model, and t h e  e r ra t ic  behavior  of t h e s e  

p r o f i l e s  i n  t h e  i n n e r  reg ion  has  been noted. An i t e r a t i v e  

procedure has  been developed t o  remove t h e  e r ra t ic  behavior  

by gene ra t ing  v e l o c i t y  p r o f i l e s  which a r e  p h y s i c a l l y  com- 

p a t i b l e  wi th  t h e  CSM model. P h y s i c a l l y  rea l i s t ic  shear-  

stress p r o f i l e s  r e s u l t e d ,  b u t  l i t t l e  l i g h t  was shed on t h e  

a c t u a l  cause of the  e r ra t ic  behavior ,  That i s  t h e  purpose 

of t h i s  s e c t i o n ,  

R e c a l l  t h e  s i g n i f i c a n c e  of F igure  12, The d a t a  p o i n t s  

are the  exper imenta l ly  measured v e l o c i t y  p r o f i l e ,  which, 

when s u b s t i t u t e d  i n t o  t h e  CSM model, gene ra t e s  a very  

poorly behaved s h e a r - s t r e s s  p r o f i l e  i n  t h e  i n n e r  reg ion .  

The s o l i d  l i n e  i n  Figure 1 2  i s  t h e  i t e r a t e d  v e l o c i t y  pro- 

f i l e  wi th  K1 = 0.40, which, when s u b s t i t u t e d  i n t o  t h e  CS 

model, gene ra t e s  a p h y s i c a l l y  c o r r e c t  s h e a r - s t r e s s  d i s t r i -  

bu t ion ,  The f a c t  t h a t  two v e l o c i t y  p r o f i l e s  so nearly t h e  



44 

same y i e l d  s h e a r - s t r e s s  p r o f i l e s  so d i f f e r e n t  imp l i e s  t h a t  

the  CSM eddy-viscos i ty  model is very s e n s i t i v e  t o  i t s  i n p u t  

v e l o c i t y  p r o f i l e ,  This  s e n s i t i v i t y  i n  t h e  i n n e r  reg ion  can 

be  e a s i l y  analyzed wi th  a simple example, Suppose t h e r e  i s  

a (ay)  e r r o r  i n  t h e  va lue  of y t o  be s u b s t i t u t e d  i n t o  t h e  

i n n e r  reg ion  eddy-viscosi ty  modelp equat ion  (2.12), where 0 

is t h e  f r a c t i o n a l  e r r o r ,  Then t h e  f r a c t i o n a l  e r r o r  i n  t he  

y2 f a c t o r  i n  equat ion  (2.12) i s  so a 10 percen t  

e r r o r  i n  y causes  a 2 1  p e r c e n t  e r r o r  i n  t h e  y2 t e r m .  

a d d i t i o n  there i s  a p o s i t i v e  10  pe rcen t  e r r o r  i n  t h e  - 
value ,  then  t h i s  e r r o r  e n t e r s  a s  a m u l t i p l i c a t i v e  f a c t o r  

wi th  t h e  2 1  pe rcen t  e r r o r  i n  y , and t h e  t o t a l  c o n t r i b u t i o n  

i s  an error of 33.1 p e r c e n t  i n  t h e  eddy v i s c o s i t y  E. For 

t h e  d a t a  case of F igure  1 2  t h e  edge of t h e  i n n e r  reg ion  

occurs  where u/Ue = 0.75: a t  t h i s  p o i n t  ci/v = 90.6; t h u s ,  

from equat ion  (2,4) it is seen t h a t  E - i s  about 99 pe rcen t  

of t h e  va lue  of -r/p so t h a t  a percentage e r r o r  i n  E causes  

approximately t h e  same percentage  e r r o r  i n  T. With t h i s  

error a n a l y s i s  i n  mind, it is  seen i n  Figure 1 2  f o r  

u/U, < 0,75 t h a t  t h e r e  are d i f f e r e n c e s  of t h e  o r d e r  of 1 0  

t o  50 pe rcen t  i n  t h e  y va lues  of t h e  two v e l o c i t y  p r o f i l e s  

2 2 0  + 0 

I f  i n  
au 
a Y  

2 

3 U  
a Y  

a t  a given va lue  of u/Uee 

when these y va lues  are s u b s t i t u t e d  i n t o  t h e  equat ions  f o r  

E and T, and d r a s t i c a l l y  d i f f e r e n t  s h e a r - s t r e s s  p r o f i l e s  

a r e  t h e  r e s u l t .  

This  e r r o r  i s  then  compounded 

i 
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2 , a  Srammary 

In this see t ion  a br ie f  review of some pertinent lit- 

erature on t u r b u l e n t  shear information. modeling is presented, 

and some available shear-stress calculations are examined, 

An anomalous behavior of the shear-stress profile is notedp 

and avenues of emphasis and approach are outlined and 

followed, Calculations of shear stress are made by two of 

the best known and regarded eddy-viscosity expressions, 

and these calculations displayed a very unrealistic behavior 

in the inner region of the boundary layer, The cause of 

this is explained by an error analysis which points out the 

sensitivity of an inner region eddy-viscosity expression 

to the velocity profile. A method is devised to correct 

this unrealistic behavior, and, furthermore, a correction 

of an inner region eddy-viscosity model is recommended. 
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3 ,  BOUNDARY-LAYER PkilEBICTIOM A.NBL'IISICS 

3,1 Introduction 

One of the purposes of this work is the development of 

a prediction procedure for two-dimensional, compressible, 

turbulent boundary layers, In Section 2 physical shear- 

stress models were examined, and a particular model was 

developed so that it would yield well-behaved shear-stress 

distributions, This analysis was done entirely independent 

of any mathematical technique for solving the boundary-layer 

equations. In this section the governing equations are pre- 

sented and a mathematical solution technique is formulated 

which will be completely independent of any physical shear 

model, The distinct separation of the analyses for the 

solution technique and for the physical shear model allows 

a clearer understanding of the difficulties caused by each 

phase of the overall prediction program, Finally in Section 

4 the shear model and the solution technique will be com- 

bined into a prediction program, 

3 - 2  Boundary-Layer Equations 

The derivation of the appropriate equations has been 

documented in a number of references, For example, 

Schubauer and Tchen [31] start with the two-dimensional, 

compressible, Navier-Stokes equations and substitute the 



sum of a time mean and a fluctuating quantity for all the 

instantaneous variables I for example I 

where zin is the instantaneous value of a physical variable, 

z 9  is the fluctuating component of zin, and z is the time 

mean component of zinc 
the resulting equations and perform an order of magnitude 

analysis which results in the following governing equations 

for the mean properties of a two-dimensional, compressible, 

turbulent boundary layer: 

Continuity: 

They then take the time average of 

a a - a p  + - (pu) + - ( p v  + pVv') = 0 
at ax aY 

x-momentum: 

+q-- aY aY au puDvP - """1 
y-momentum: 

Energy: 

8U - + pu'v' - aY - p@v' H] + 

(3.2) 

J 
( 3 - 5 )  b 
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Integration of equation (3*4) yxe lds  

or 

since 2 
Me - - 2 - p e  ue 

’ YP, 
- 

For small turbulence level (v”2/u2 << 

order of one, 

P = Pe 

( 3 * 8 )  

1) and for Me of the 

(3-9) 

Equations ( 3 . 2 )  I ( 3 , 3 ) ,  ( 3 - 5 )  I and (3-9) can be combined 

to yield the usual boundary-layer equations for the steady 

mean flow of a two-dimensional, compressible, turbulent 

boundary layer: 

Continuity z 

a a 
ax - (pu) + ay (pv + pIv’) = 0 

Momentum: 

Energy: 
P 

aH pu ax + (pv + p W )  - - - 

(3.10) 
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where 

(3.13) 

C E  
P r t  -.p - 

't 

These equat ions  may a l s o  be found de r ived  i n  equ iva len t  

forms by Cebeci and Smith [32 ] ,  Herring and Mellor [ 8 1 ,  and 

S c h l i c h t i n g  [331 e 

A t  t h i s  p o i n t ,  t h e  streamwise g r a d i e n t  of t h e  apparent  - - a normal stresses 

a s  i s  u s u a l l y  done; t h e r e  has  been cons iderable  d i s c u s s i o n  

on the  v a l i d i t y  of t h i s  assumption f o r  a flow nea r  s e p a r a t i o n .  

For example, Goldberg [34] shows t h a t  t h e  apparent  normal 

( p u s 2  - p v n 2 )  have been assumed n e g l i g i b l e  

stresses may n o t  be n e g l i g i b l e  compared t o  t h e  apparent  

s h e a r  stress f o r  flows approaching s e p a r a t i o n ;  fur thermore,  

i n  t h e  d i s c u s s i o n  a t  t h e  S tanford  conference on t u r b u l e n t  

boundary l a y e r s  [ 9 ] ,  V, A, Sandborn s t a t e s  t h a t  t h e  apparent  

s h e a r - s t r e s s  t e r m  i n  t h e  equat ion  of motion was found t o  be 

n e g l i g i b l e  b u t  t h a t  t h e  9 w a s  n o t  n e g l i g i b l e  f o r  h i s  expe r i -  

mental  i n v e s t i g a t i o n s  of t u r b u l e n t  s e p a r a t i o n .  Consequently, 
a Y  

s i n c e  it appears  t h a t  t h e  governing equat ions  presented  h e r e  

a r e  n o t  completely v a l i d  f o r  f l o w s  near  s e p a r a t i o n ,  t h i s  

a n a l y s i s  may n o t  apply t o  t h e  i n v e s t i g a t i o n  of t u r b u l e n t  

s e p a r a t i o n ,  



The appropriate boundary conditions for equations 

(3.10), (3,1L), and (3,$2Q are 

u(x,O) = 0 (3.17b) 

and 

aH 
aY H ( x , O )  = Hw or - (x,O) = 

(3-17c) 

(3.17f) 

Additional equations are needed for the property varia- 

tions. The relations used in this investigation are the 

perfect gas equation of state 

p = pRT (2.23) 

and Sutherland's viscosity law 

where 

C. = 192OIR 

= 492OW Tr 

"r 
-7 = 3,59 x a0 slug/ft-see 
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A l s o ,  the following values of the Prandtl number and the 

turbulent Prandtl number are assumed ( for  air): 

Pr = 0 - 7 2  ( 3  18)  

Prt = 1 , O  (3.19) 

Although these property variation equatimis have been used 

in this workp any available equations for the equation of 

state, viscosity, Prandtl number, or turbulent Prandtl num- 

ber could be easily incorporated into the ensuing analysis. 

Perhaps some discussion is in order at this point on the 

selection of a turbulent Prandtl number of unity. 

Figures 17 and 18, taken from Cebeci [35], are offered 

as justification for the use of Prt = 1.0, 

large extent of the experimental scatter in these figures, 

Due to the 

= 1 was thought to be a suitable approximation until Prt 
further experimental investigations of the turbulent 

Prandtl number have been undertaken, Cebeci is currently 

seeking a correlation equation for the turbulent Prandtl 

number; and, as mentioned previously, such a correlation 

could be easily utilized in the present analysis. 

3 , 3  Mathematical Solution Technique 

Mathematical methods for the solution of boundary-layer 

problems have historically been classified iito two major 

divisions; integral methods and finite-difference methods. 

W, C, Reynolds [39] states, "The chief virtue of integral 
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Figure 18:: Experimental Measurements from Rotta [ 3 8 ]  for the 
Turbulent Prandtl Number Across the Boundary 
Layer of a Cooled Flat Plate,. Me = 5.1 
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methods for turbulent boundary layers Lies in the implicit 

and global manner in which the effects of turbulence can be 

incorporated. A disadvantage of integral methods often 

cited by users of: differential methods is the difficulty of 

extension to wider classes of flows. The avoidance of 

local turbulence assumptions offsets this disadvantage in 

the view of many users of integral methods." The primary 

objections usually raised against finite-difference solu- 

tions are long calculation times and difficulty in obtain- 

ing mesh restrictions to assure stable solutions, but to 

the users of finite-difference methods, these disadvantages 

are offset by more exact solutions of the governing partial 

differential equations and by the extendability to a more 

generalp wider, or more complicated class of flows. 

In this report the Method of Weighted Residuals (here- 

inafter abbreviated as MWR) is advocated as retaining many 

of the advantages of both the integral and finite-difference 

methods while eliminating many of their disadvantages. The 

MWR solution technique is presented in detail in Section 3 . 4  

as related to the solution of the compressible, turbulent 

boundary-layer problem, 

* 

* 
R is an N-parameter approximate solution technique 

for solving a set of partial differential equations, 
where N is the order of the approximation, For a detailed 
discussion o the Basic MWR solution technique, see Bethel 
and Abbott [ 01 and Moob and Abbott [ a l l  
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For the past several years considerable differences 

of opinion have occurred in the literature in attempts to 

categorize the MWR as either an integral or finite-difference 

method; for example,, Spaldhg [ 23 combines the MWR with 

finite-difference methods into a category he calls complete 

theories, Howevery Reynolds 1391 calls the MWR an integral 

method while Abbott, Deiwert, Forsnes, and Deboy [ 4 3 1  point 

out many similarities between the W R  and finite-difference 

methods. Perhaps the MWR has sufficient unique characteris- 

tics that it is in a class of its own and consequently 

defies the usual methods of categorization. 

Two complaints which have often been brought against 

the MWR are: (1) the MWR cannot be easily extended to cal- 

culate complex flow situations and ( 2 )  the MWR requires a 

multitude of matrix inversions which can ultimately lead to 

the inversion of a singular matrix, implying a hidden singu- 

larity in the mathematical formulation. However, in the 

past decade many successful applications of the MWR have 

made the validity of these complaints doubtful. The follow- 

ing list is a sample of the applications of the MWR over a 

wide range of flow conditions: Bethel and Abbott f 4 0 1  cal- 

culated laminar flows with pressure gradient and predicted 

separation points; Ero [ 3 calculated the shock-induced, 

laminar, compressible flow over a flat plate; Koob and 

Abbott [ a l l  calculated the laminar time dependent flow over 

a suddenly accelerated flat plate; Forsnes and Abbott [61 



c a l c u l a t e d  t h e  two-dimensional, incompressible ,  t u r b u l e n t  

boundary l a y e r  with pressrare g r a d i e n t ;  Nielson, Goodwin 

and Kuhn [ 4 5 ]  c a l c u l a t e d  t h e  laminar and t u r b u l e n t  shock- 

wave i n t e r a c t i o n  problem i n  two-dimensional, axisymmetric 

flow; and Bossel [ e 6 1  c a l c u l a t e d  incompressible ,  laminar 

boundary l a y e r s  w i t h .  suc t ion .  While t h e  number of ma t r ix  

inve r s ions  can create d i f f i c u l t i e s  i n  a s p e c i f i c  a n a l y s i s ,  

i n  t h e  formulat ion of t h e  MWR f o r  t h e  flow problems t h a t  

have been examined by P ro fes so r  D. E.  Abbott and h i s  s t u d e n t s  

a t  Purdue Un ive r s i ty ,  it i s  necessary t o  perform only one 

mat r ix  inve r s ion  f o r  t h e  e n t i r e  c a l c u l a t i o n  of a flow case; 

t h u s ,  t h i s  i nve r s ion  i s  achieved,  once and f o r  a l l ,  a t  t h e  

s t a r t  of t h e  flow c a l c u l a t i o n s ,  and no f u r t h e r  ma t r ix  

inve r s ions  are requi red  as t h e  c a l c u l a t i o n s  proceed down- 

stream. I t  i s  t h e o r e t i c a l l y  p o s s i b l e  t h a t  t h e  mat r ix  t o  be 

i n v e r t e d  could be s i n g u l a r  f o r  a s p e c i f i c  problem formula- 

t i o n ,  b u t  no such d i f f i c u l t y  has  been encountered i n  t h e  

work a t  Purdue Univers i ty .  

I n  t h e  a p p l i c a t i o n  t o  t u r b u l e n t  boundary l a y e r s  f o r  

l o w  orders of approximation, N < t h e  MWR has  t h e  advan- 

t a g e  of t h e  i n t e g r a l  methods i n  t h a t  it can use g l o b a l  

i n p u t s ,  such as semi-empirical equat ions  f o r  t h e  d i s s i p a -  

t i o n  i n t e g r a l  and o t h e r  weighted i n t e g r a l s  of t h e  shea r  

stress ( f o r  t h e  t u r b u l e n t  information t e r m s ) ,  b u t  an eddy- 

v i s c o s i t y  formulat ion can a l s o  be used fo r  a l l  orders of 

approximations (0 < Pa < a). Thus, t h e  MWR has t h e  added 
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f l e x i b i l i t y  of a l lowing t h e  use r  t o  app&y e i t h e r . g l o b a 1  o r  

l o c a l  t u r b u l e n t  shea r  i n p u t s ,  S t i l l  another  advantage i s  

s h o r t  machine c a l c u l a t i o n  t i m e s ;  f o r  example, i n  t h e  work 

of Forsnes and Abbott [ 6 1  and D e i w e r t  and Abbott [ 4 7 ]  it 

was found t h a t  a second approximation gave good r e s u l t s  

whi le  r e q u i r i n g  only about one-third of t h e  computer t i m e  

used by f i n i t e - d i f f e r e n c e  methods, Never the less ,  t h e  MWR 

has the  advantage of being ab le  t o  o b t a i n  a more exac t  

s o l u t i o n  of t h e  governing equat ions  f o r  l a r g e r  N ;  of course ,  

t h e  r equ i r ed  computer t i m e  would i n c r e a s e  cons iderably ,  

With t h e  selection of a s o l u t i o n  technique having been made, 

t h e  nex t  s t e p  is the  a p p l i c a t i o n  of t h e  MWR t o  t h e  govern- 

i ng  equat ions  of Sec t ion  3 . 2 .  

3 , 4  Appl ica t ion  of t h e  MWR Solu t ion  Technique 

S t r i c t l y  f o r  computational convenience the Dorodnitsyn 

t ransformat ion  w a s  modified t o  apply t o  t h e  compressible 

form of the equat ions ,  The t ransformat ion  as modified i s  

given by: 

Dependent v a r i a b l e s :  

Proper ty  v a r i a b l e s :  

p*  = P/Pe  

(3 .20)  

(3-21) 
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Independent v a r i a b l e s :  

n = Y p u L  
r r  

Other v a r i a b l e s ,  def ined  f o r  convenience, 

5 
n (PeU,) 

'eu, 
Fa* = v* + u* 

E 

V 
@ = I - + -  

p v  = p v  + p s v g  
and 

r 
( 3 - 2 2 )  

are 

(3.23) 

( 3  24) 

( 3 - 2 5 )  

The t ransformat ion  of equat ions  (3.10) I (3.11) and (3.12) 

y i e l d s  

Continui ty:  

a a (p*u*) ,+ ( P * W * )  = O 
a E  

Momentum: 
U 

au* + p*w* - au* - - - e6 (1 - p*u* 2 ) 
a n  'e 

p*u* - a E  

+ - -  'e l-Ir a a n  ['*@ g] 
Energy :: 

'e U: au* 
'r He a n  + - '*[l - 4 - u* - 

(3.26) 

(3.27) 

(3.28) 

T o  s o l v e  t h e  above equat ions  an h i s t o r i c a l l y  proven 
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MWR formulation is used f o r  the momentum equation. For the 

treatment of the energy equation, the method developed by 

Ero [44] for shock-induced laminar flow over a flat plate was 

considered, Although this method generated a simplified 

system of equations solvable with short computer run-times 

for Era's problem, it created a complicated formulation re- 

quiring long computer times for the present problem which 

involves pressure gradient and turbulence terms. Consequently, 

an entirely new treatment of the energy equation has been 

developed. This new treatment is quite analogous to that of 

the momentum equation and is therefore easily understood in 

concept and application once the handling of the momentum 

equation has been mastered. Thus, directly parallel analyses 

for the momentum and energy equations are developed below. 

In following the historically proven formulation, the 

continuity equation (3-26) is multiplied by a weighting 

function hi(u*)p to be specified later, and the momentun 

equation (3-27) is multiplied by I and the resulting 

two equations are added, yielding 

dhi 

U 
t 2 (1 - p*u* ) a a 

a 6  a0  ue 
- (hiP*u*) + - (hip*w*) = hi(U*) - 

Similarly, the continuity equation (3,26) is multiplied by 

a weighting function fi(H*), to be specified later, and the 

energy equation ( 3 , 2 8 )  is multiplied by d ~ "  and the 
dfi 
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r e s u l t i n g  equa t ions  are added, y i e l d i n g  

2 
"e 'e 
"r He 

9 - 1.1" (1 - 4 - u* (3.30) 

Equation ( 3 . 2 9 )  i s  i n t e g r a t e d  over  t h e  domain of i n t e r e s t  

( 0 , ~ )  of t h e  v a r i a b l e  q r  and t h e  independent v a r i a b l e s  ( 5 , ~ )  

a r e  transformed t o  ( t p u * )  so  t h a t  i n  r e a l i t y  a l l  i n t e g r a -  

t i o n s  a r e  taken over t h e  i n t e r v a l  (0,l) i n  u*, $thus e l i m -  

i n a t i n g  t h e  problem of i n t e g r a t i o n  over  a s e m i - i n f i n i t e  

i n t e r v a l ,  For d e t a i l s  of t h i s  t ransformat ion ,  see Appendix 

C of Koob and Abbott [411. For convenience a new v a r i a b l e  

i s  def ined  

The i n t e g r a t e d  form of equat ion  ( 3 . 2 9 )  becomes 
1 

'e 2 
1 

d - hip*u*Odu* - 5 f hq (1 - p*u* odu* 
'e 

0 

by r e q u i r i n g  h i ( l )  = 0 .  

Equation ( 3 - 3 0 )  i s  

I 

0 

= o  

now handled i n  a very s i m i l a r  

( 3  e 3 1 )  

(3.32) 

manner; it i s  i n t e g r a t e d  w i t h  r e s p e c t  t o  q o  and t h e  inde- 

pendent v a r i a b l e s  ( 6 , ~ )  ace transformed t o  ( E , H * )  s o  t h a t  
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in reality all integrations are taken over the finite 

interval (]H *81) in the 

another new variable is 
W 

and the final resulting 

1 
p*U*fiXdH* = - 

HW* 

variable E*. For convenience 

defined 

equation is 

H 
et 
H e II 

HW* 

I 

fi 

c 

p*u*H*XdH* 

¶ 'e 'w* 1 E Pr 1 
v Prt x - fi(Hw*) - - - - 

l-Ir Pr xw 
2 

( 3  D 3 4 )  + - 'e '* (1 - 4 He ue u* 
'r 

with the restriction that fi(l) = 0. The resulting equa- 

tions to be solved for 0 and x are equations ( 3 , 3 2 1  and 

( 3 . 3 4 ) ,  which are integro-differential equations that have 

been integrated out of their u* and H* variations until 

only ordinary differential equations in 5 remain, 

3 . 5  Approximating and Weighting Functions 

Approximating functions for groupings of variables 

involving x and 0 must be chosen. These groupings should 

be chosen to simplify algebraic manipulation as well as to 

reduce computer calculation time, In Reference 4 4 ,  p * @  was 

found to be a computationally convenient groupp and it is 

seen to naturally arise many times in equation ( 3 - 3 2 )  I 

while in the present work p*u*x was discovered to be another 
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computationally convenient group, In selecting the form of 

the approximating functions, the perturbation procedure 

developed in Koob and Abbott 1411 was followed where the 

initial distribution of a group in one variable is per- 

turbed by a polynomial in the same variable which has 

coefficients that are a function of the other variable, 

for example 

where 

where 

and 

P (2u*-1) j-1 is the Legendre polynomial of (j-1) order with 

argument (2u*-1) a Repeated subscripts imply summation from 

j=1 to N, where N is the order of the approximation. 

The prime considerations in selecting the form of the 

weighting functions are that the weighting functions 

should be an orderly successive subset of a complete set 

of functions to obtain solutions that converge most rapidly 

for successive approximations (see Bethel and A b b o t t  [ 4 0 1 )  
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and that the weighting functions should simplify the evalua- 

tion of the integrals in equations ( 3 - 3 2 )  and ( 3 , 3 4 )  as  

much as possible, The-weighting functions chosen for this 

work are 

fi(H*) = (1-H*) Piel (2H*-1) ( 3 . 4 2 )  

The form of the weighting function h. (u*) was selected 

because it has proven to work well in the incompressible 
1 

work of Deiwert and Abbott [ 4 7 1 ,  and its computational 

advantages carry over to the compressible regime, No 

precedent has been set for the selection of fi(H*); due to 

the analogous manner in which the momentum and energy equa- 

tions were treated, the selection of fi(H*) was taken to 

have the same functional form as h. (u*), This achieved 

the same computational advantages for the energy equation 

treatment as were obtained for the momentum equation e 

1 

* 

Upon substitution of equations ( 3 , 3 5 )  and ( 3 , 3 7 )  into 

equations ( 3 , 3 2 )  and ( 3 - 3 4 )  one obtains 

* 
Credit should be extended here to the work of J, D. Murphy 
at NASA-Ames Research Center for the development of the 
Legendre polynomial formulation in the weighting and 
approximating functions and for the discovery that this 
formulation generates matrices whose terms are of the same 
order of magnitude; consequently, round-off errors are 
reduced in the ordinary differential equation solution and 
the matrix inversion process., 



'e 
'r 

+ - ' *  [ 

H 
- D jlfi H*w.dH* 

H j 3 
HW* 

- -  
e 

'e pw* 1 
'r Pr xw 

(3,441 

To simplify the notation in equations (3.43) and (3,441, 

some matrices will be defined as follows: 
1 

Aij = hiu*@.du* 
7 

= f.w.dH* 
Jij 1 7  

HW* 
1 

Kij = 1 f;H*w.dH* 3 

HW* 

(3.45) 

(3.46) 

(3 * 47) 

(3 a 48) 

(3,50) 
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P r  Mi = 1 
"r 

11 

f idH* "e e u*p* 
"r 

(3 52) 

Using t h e  above d e f i n i t i o n s ,  equat ions  (3.43) and (3,441 i n  

ma t r ix  n o t a t i o n  become 
U 

% 
e 1 7  3 1-1, 

I .  . C .  + Bi + - gi = 0 

H and 
dD . 
3 = - -  K .  . D  - Li - Mi 

J i j  de He 1 7  j 

M u l t i p l i c a t i o n  of equat ion  (3.53) by t h e  inve r se  

of Ai j  and equat ion  (3,541 by t h e  i n v e r s e  of J i j  

U 
- - -  dCk - Aki -1 I i j  C j  - Aki -1 Bi - - 'e Aki -1 gi 
a 'e "r 

(3  * 53) 

(3*54)  

mat r ix  

y i e l d s  

(3.55) 

I t  should be noted h e r e  t h a t  A i j  and J i j  are cons t an t  

matrices f o r  a given f l o w  case and consequently only have 

t o  be i n v e r t e d  once f o r  any p a r t i c u l a r  flow c a l c u l a t i o n  as 

w a s  p rev ious ly  mentioned, Fu r the r  examination r e v e a l s  

t h a t  K i j  i s  a lso a cons t an t  ma t r ix  while  I i j .  Bi ,  giF Li 

and Mi a r e  v a r i a b l e  matrices and must be eva lua ted  a t  each 
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6- locat ion.  Equations ( 3  a 55) and ( 3  56) are t h e  nonl inear  

o rd ina ry  d i f f e r e n t i a l  equ.ations t o  be  solved €or Ck and Dk 

which completely s p e c i f y  t h e  d e s i r e d  s o l u t i o n  variables as 

shown i n  Sec t ion  3,4. 

3 -6  I n i t i a l  Conditions 

I n i t i a l  condi t ions  must be  obta ine6  f o r  t h e  Ck and Dk 

c o e f f i c i e n t s  be fo re  t h e  s o l u t i o n  of equat ions  (3.55) and 

(3,56)  can be found, These i n i t i a l  condi t ions  can be  

obta ined  quick ly  and simply by combining equat ions  ( 3 , 3 5 ) ,  

(3 .36) ,  and (3.39) i n t o  

P*@(U*,S) = c j  (s)Pj_l(2u*-l)p*o(u*,~o) (3.57) 

Evaluat ion of equat ion  (3,571 a t  5, y i e l d s  

1 = c .  (So)Pj-l(2u*-l)  (3.58) 
7 

Recal l ing  t h a t  Po(2u*-1) = 1 and t h a t  P (2u*-1) i s  a 

l i n e a r l y  independent set of func t ions ,  it i s  seen t h a t  
j-1 

C, (S0)  = 1 

and 

C . ( S o )  = 0 f o r  j # 1 
3 

I n  t h e  s a m e  manner it i s  noted t h a t  

(3.59) 

(3.60) 

(3,611 

(3 -62)  

and 

1 = D .  (<o)Pj-l(2H*-1) 
7 
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thus 

and 

(3 I/ 63) 

Dj(S0) = 0 for j # 1 (3 e 64) 

Quite simply the coefficients have been specified at 

the initial location So without any dependence on the 

physical initial conditions (velocity and temperature pro- 

file), since the initial velocity and temperature profiles 

are the basis for the approximating functions. 

3,7 Calculation of the Desired Solution Variables 
from the Coefficients Ck(<) and Dk(C) 

Some of the desired outputs of a boundary-layer pre- 

diction technique are skin-friction coefficient Cff dis- 

placement thickness 6 * ,  momentum thickness 6, velocity 

profile u(y), temperature profile T(y), heat transfer at 

the wall qwp and various other thickness and shape parame- 

ters, The derivation of these desired outputs is shown 

below, First, from the solutions of equations (3-55) and 

(3,,56) the C,(C) and Dk(S) coefficients are known; thus, 

from equations (3,351 and (3,37) I p*€)(u*lC) and p*u*x(H*,S) 

are known, Using the identity 

(3 65) 

and after some algebraic manipulation and integration over 

r ) #  equation (3,QQ) is obtained, 
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( 3 . 6 6 )  
0 0 

Upon change of  t h e  v a r i a b l e  of i n t e g r a t i o n ,  equat ion  ( 3 . 6 6 )  

becomes H* 

I P*u*X(H*,E) dH* = P*o(U*,<) u*du* 
0 

J 

HW* 

u* 
( 3  ., 6 7 )  

which y i e l d s  H*(u*) a t  a s p e c i f i e d  va lue  of 5 .  From t h i s  

H* (u*) funct ion,  p* (u*) is  immediately obta ined  by use of 

t h e  d e f i n i t i o n  

(3.68) 2 H* = (C T + u / 2 ) / H e  
P 

and t h e  p e r f e c t  gas  l a w  

Now us ing  t h e  i d e n t i t y  

wi th  some a l g e b r a i c  manipulation and i n t e g r a t i o n ,  one 

U* 
o b t a i n s  

(3-69)  

(3.70) 

0 

which g ives  t h e  v e l o c i t y  p r o f i l e  a t  a given 5 l o c a t i o n  i n  

t h e  form of q (u*)  i n s t e a d  of t h e  usua l  form u * ( q )  e The 

to t a l - en tha lpy  p r o f i l e  i s  obta ined  by inco rpora t ing  t h e  

q ( u * )  func t ion  of equat ion  (3,711 i n t o  t h e  H*(u*) func t ion  

given by equat ion  (3 .67) ,  Using 
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( 3  7 2 )  

V, $1 W 
- r =  w ( 3 , 7 3 1  

( 3  3 1 )  

and t h e  approximation func t ion  f o r  0 ,  equat ion ( 3 . 3 5 ) ,  one 

o b t a i n s  
hz- - - 2VWPW* r 

cf 'rUrL (-1) jW1C . F  ( 0 )  
7 

( 3 . 7 4 )  

From t h e  d e f i n i t i o n s  of displacement th i ckness  and momentum 

6 t h i ckness ,  

and 

6"  = (1 - p*u* )  dy 
0 

6 

8 = I p*u*(l-u*) dy 
0 

one o b t a i n s  

6"  = - (1 - p*u*)0du* 

and 1 
L 8 = - u*(l-u*)  p*0du* 

- 0  

For t h e  hea t  t r a n s f e r  a t  t h e  w a l l  

one o b t a i n s  

qw - - - %Iw 

( 3  0 7 5 )  

( 3 . 7 6 )  

( 3 - 7 7 )  

( 3 , 7 8 1  

( 3  D 7 9 )  

( 3 . 8 0 )  



70  

Fur the r  d e r i v a t i o n s  fo r  shape parameters and h ighe r  order  

t h i ckness  parameters can be performed e a s i l y ,  

3 e 8 Analysis  of Experben ta .1  Data 

I n  t he  sea rch  f o r  sets of experimental  d a t a  on super- 

son ic ,  compressible,  t u r b u l e n t  boundary l a y e r s  w i th  which t o  

compare theoret ical  c a l c u l a t i o n s ,  t h e  t a s k  i s  more i n  t h e  

l i n e  of discovery than  s e l e c t i o n ,  Add t h e  f u r t h e r  restric- 

t i o n  of moderate Mach numbersp say Me < 6 ,  which i s  r equ i r ed  

f o r  t he  v a l i d i t y  of t h e  governing equat ions  and t h e  eddy- 

v i s c o s i t y  model used i n  t h i s  i n v e s t i g a t i o n ,  and the  a v a i l -  

able experimental  data sh r inks  t o  a f e w  i s o l a t e d  d a t a  sets 

f o r  f l a t - p l a t e  type f l o w s  - f l o w  over a f l a t - p l a t e  model, 

f low along hollow c y l i n d e r s ,  and f l o w  on wind tunne l  w a l l s  - 

and only a handful  of data  f o r  pressure-gradien t  f lows, 

Johnson and Bushnell  [ 4 8 1  have made a ra ther  exhaus t ive  

\ 

t a b u l a t i o n  of experimental  d a t a  f o r  t h e  f l a t - p l a t e  type  

f lows whi le  a couple of t h e  pressure-gradien t  data cases 

f o r  moderate Mach numbers are a v a i l a b l e  i n  t h e  r e p o r t s  by 

Pasiuk,  Hast ings,  and Chatham [ 4 9 1  and by Winter, S m i t h ,  

and R o t t a  [501,  

An a d d i t i o n a l  complication arises i n  comparing calcu-  

l a t e d  r e s u l t s  wi th  experimental  data  i n  t h a t  t h e  ma jo r i ty  

of t h e  experimental  data is  for  t h e  adiabatic f l a t - p l a t e  

case and as r epor t ed  by any given au thor  w a s  t aken  by 

holding t h e  streamwise measuring s t a t i o n  and t h e  free- 

stream Mach, number f i x e d  while  t h e  R e  parameter w a s  va r i ed  

by changing t h e  p re s su re  l eve lp  and consequently t h e  
x 



71 

free-stream density, in the wind tunnel, The measurements 

were made in this manner due to the complications arising 

from the reflection of shock waves inside the wind tunnel, 

Consequently, when such data is presented as a plot of Cf 

versus Rex at a constant value of Pile, it represents the 

variation of Cf with a change in pressure level instead of 

with a change in x - the normal case for incompressible data, 
Since prediction schemes are designed to calculate the 

development of a boundary layer with increasing x, some 

method must be devised to compare the calculated results 

with this type of experiment, 

Cebeci, Smith, and Mosinskis 1 1 1  devised a method 

which consists of starting their calculations at the leading 

edge of the adiabatic flat plate where the flow is assumed 

to be laminar and then arbitrarily specifying the flow to 

be turbulent at the next x-station which is arbitrarily 

assumed to be at x = 0,001 ft. The calculations are then 

carried out downstream until the calculated value of Reg 

reaches the experimental value, and at that point the cal- 

culated boundary-layer parameters are compared with the 

experimental measurements. Despite their rather harsh 

assumptions that the laminar region is 0.001 ft, long for 

all flow cases and that there is no transition regionp their 

calculations of boundary-layer parameters agree very well 

with experiment, Herring and Mellor [8] have devised a 

scheme whereby they carry out calculations by assuming Ue 
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and 8" t o  be  l i n e a r  i n  x and t h e  ( p * u * )  and H p r o f i l e s  t o  

be  independent of x; a f t t r  performFng c a l c u l a t i o n s  i n  t h i s  

manner up t o  w i t h i n  two or  three ~ - s % e p s  of t h e  p o i n t  where 

t h e  experimental  d a t a  i s  g ivenp  they r e l a x  t h e i r  above 

assumptions and cont inue the  c a l c u l a t i o n s  through t h e  f i n a l  

t w o  o r  t h r e e  x-s teps  up t o  t h e  d a t a  p o i n t  and a t  t h a t  x- 

l o c a t i o n  compare t h e i r  c a l c u l a t i o n s  wi th  t h e  experimental  

data f o r  t h e  boundary-layer parameters and p r o f i l e s ,  Herr ing 

and Mellor 's  method of comparing t h e i r  c a l c u l a t i o n s  w i t h  

experimental  d a t a  t h a t  has  been obta ined  a t  one x- loca t ion  

can thus  be characterized as an elaborate i n i t i a l i z a t i o n  

procedure; indeed,  they use  an i t e r a t i o n  on t h i s  procedure 

t o  g e t  t h e  i n i t i a l  cond i t ions  f o r  t h e i r  c a l c u l a t i o n s  when 

they  are computing a f l o w  which has been measured a t  

va r ious  x- loca t ions ,  

There i s  another  p o s s i b l e  approach by which c a l c u l a t i o n s  

can be compared. w i t h  t h e  experimental  d a t a  measured a t  one 

x- loca t ion ,  and t h i s  approach i s  a better i n d i c a t i o n  of 

t h e  a b i l i t y  of a c a l c u l a t i o n  technique t o  p r e d i c t  the  behavior  

of a t u r b u l e n t ,  compressible boundary l a y e r ,  T h i s  method 

w i l l  be expla ined  a f t e r  a b r i e f  i n t r o d u c t i o n  of some experi-  

mental ly  observed t r e n d s  which u n d e r l i e  t h e  b a s i s  f o r  t h i s  

new approach, The chief  experimental  observa t ion  noted by 

Matting e t  a l ,  [30] i s  t h e  one shown by Figure  1 9  which 

i s  a comparison of fa i red  curves through experimental  data  

f o r  adiabatic f l a t  p l a t e s ,  

ob ta ined  by holding t h e  s t r e a m w i s e  measuring s t a t i o n  and t h e  

AI1 of t h e  da ta  for Me > 2 ,54  w a s  - 



7 3  

i 
i 

i' 

n 
r )  
In 
Y 

8 c - 5 
w k 
M CJ 

1 
N m c, 

U 

CI 

M 
Lo - 

0 
M 

k 
a, 
x 
I-l 

U 

Y 

I-l 
cd 

r, 
s" 
a a, c 
rd 

-P 

0 

cd 

0 



free-stream Mach number f i x e d  w h i l e  R e X  w a s  v a r i e d  by changing 

the p res su re  level In %he wind t unne2 ,  Ira F igure  19 x i s  t h e  

d i s t a n c e  between t h e  t r a n s i t i o n  point and ?he l o c a t i o n  of t h e  

measuring s t a t i o n ;  t h e  tra.r)si&fon p o i n t  ~ . s r  assumed to be t h e  

p o i n t  of maximum C f o  

o b t a i n  some type  of u n i v e r s a l  r e l a t i o n s h i p  involv ing  Reynolds 

number, it i s  necessary t o  o b t a i n  a v i r t u a l  o r i g i n  for t h e  

t u r b u l e n t  boundary l a y e r  so t h a t  t h e  l eng th  parameter i n  t h e  

Reynolds number i s  independent of t h e  l eng th  of t h e  laminar 

reg ion .  

t i o n s h i p  i s  a u n i v e r s a l  one! and t h i s  f a c t  can now be used 

i n  comparing a n a l y t i c a l  and empi r i ca l  r e s u l t s .  The ca l cu la -  

t i o n s  are s t a r t e d  fo r  a given data Mach number by gene ra t ing  

i n i t i a l  cond i t ions  a t  t h e  lowest experimental  va lue  of R e x t  

t hen  t h e  c a l c u l a t i o n s  are continued downstream and t h e  cal- 

c u l a t e d  va lues  of Cf are compared w i t h  the  empi r i ca l  va lues  

a t  t h e  experimental  p o i n t s  where R e x  i s  known. 

The parameter x w a s  used. because,  t o  

F igure  1 9  impl ies  t h a t  t he  r e s u l t i n g  Cf - Rex  rela- 

Fur the r  examination of t h e  experimental  data  shows 

t h a t  t h e r e  i s  no p o s s i b i l i t y  f o r  a d i rec t  comparison between 

t h e  measured and p red ic t ed  va lues  of t h e  boundary-layer 

t h i ckness  parameters ( 6 ,  6 * @  and e ) ;  t h e  measured va lues  of 

t he  th i ckness  parameters g e n e r a l l y  decrease  wi th  i n c r e a s i n g  

R e x 8  whi le  t h e  p red ic t ed  va lues  i n c r e a s e ,  

t h e  discrepancy between t h e  p r e d i c t e d  and experimental  

r e s u l t s  i s  e a s i l y  understood if w e  r e v e r t  t o  t h e  incornpres- 

s ible  t u r b u l e n t  boundary-layer case where a s imple a n a l y t i c a l  

computation can be performed, The one-seventh power v e l o c i t y  

The reason fo r  
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l a w  and the  momentum integral .  equa t ion  combine t o  g ive  an 

o rd ina ry  d i f f e r e n t i a l  eqbiation fo r  6 which upon i n t e g r a t i o n  

y i e l d s  

f o r  t h e  boundary-layer t h i ckness  on a f l a t  p l a t e ,  This  

r e s u l t  shows t h a t  i f  Rex  i s  caused t o  i n c r e a s e  by inc reas ing  

x,  then  6 a l so  i n c r e a s e s ,  as i s  t h e  case f o r  t h e  p r e d i c t e d  

r e s u l t s ;  b u t  i f  Rex i s  made t o  i n c r e a s e  by i n c r e a s i n g  t h e  

va lue  of U e / v c  then  6 decreases ,  as i n  t h e  case of t h e  

experimental  d a t a ,  Whi le  t h i s  a n a l y s i s  i s  n o t  d i r e c t l y  

a p p l i c a b l e  t o  compressible f l o w ,  it sugges ts  a p o s s i b l e  

r a t i o n a l e  f o r  t h e  aforementioned discrepancy which i s  con- 

s i s t a n t  w i t h  evidence f o r  compressible f l o w ,  

Although it i s  n o t  p o s s i b l e  t o  d i r e c t l y  compare t h e  boun- 

dary- layer  t h i ckness  parameters ,  t h e  v e l o c i t y  p r o f i l e s  ( i n  t h e  

f o r m  of u/Ue ve r sus  y/B) and t h e  Mach-number p r o f i l e s  ( i n  

t h e  f o r m  of M/Me ve r sus  y/B) may be compared, s i n c e  t h e s e  

p r o f i l e s  form n e a r l y  u n i v e r s a l  func t ions  (see S c h l i c h t i n g  

[ 3 3 ]  ) *  These func t ions  are n o t  e x a c t l y  u n i v e r s a l  i n  t h a t  

a l l  d a t a  p o i n t s  do n o t  f a l l  on e x a c t l y  t h e  same curve; i n  

* 

p a r t i c u l a r ,  t h e r e  i s  cons ide rab le  d e v i a t i o n  near  t h e  w a l l :  

however, such a d e v i a t i o n  might a lso b e  caused by probe 

A 
S e h l i c h t i n g 8 s  argument is based upon t h e  v e l o c i t y  p r o f i l e ,  
The u n i v e r s a l i t y  of t h e  Mach-number func t ion  i s  then  
d i r e c t l y  implied by t h e  u n i v e r s a l i t y  of the  Csocco r e l a t i o n -  
s h i p  f o r  T ( u )  which i s  v a l i d  f o r  t h e  a d i a b a t i c ,  f l a t - p l a t e  
f l o w  case 



interference close to the w a l l ,  In any eventp for lack of a 

more reliable comparisonc &he versus y / 8  and M/M versus 

y/6 profiles are utilized in this work f o r  a comparison 
e 

between theory and experiment, Tbz mzas~xxed value of 6 is 

used in the experimental profiles and the calculated value 

of 6 is used in the predicted profiles, It will be shown 

in Section 4 that the present IWR calculations agree not 

only with the experimental data but also with the finite- 

difference calculations of Cebeci, Smith and Mosinskis [l], 

3 , 9  Summary 

In Section 3 the mathematical modeling of the physical 

problem - compressible, turbulent boundary layers - is 

presented, and solution techniques for the governing equations 

are discussed, The selection of the MWR solution procedure 

is discussed, and the details of its application to the 

governing equations are presented, Upon the introduction 

of a shear model into the resulting equations, the predic- 

tion analysis for compressible, turbulent boundary layers 

is completed, A search for experimental results to compare 

with the analytical predictions is undertaken, and the 

available data is found to be taken in a manner different 

than that assumed in developing the prediction program, 

TWO proceduresp developed by other investigators for com- 

paring the data with predictions, are examined while a 

somewhat different procedure is developed and sugyested as 

a proper indication of the ability of a prediction scheme, 



4 COMPARISON OF C.&.LCULATED AND EXPERIMENTAL RESULTS 

4,1 The Numerical So lu t ion  Procedure 

The a p p r o p r i a t e  MWR equat ions  governing t h e  flow over an 

a d i a b a t i c  f l a t  p l a t e  have been programmed for  a CDC 6500  com- 

p u t e r ,  The Croceo equat ion  r e l a t i n g  temperature t o  v e l o c i t y  

has  been used i n s t e a d  of t h e  complete energy equat ion ,  s i n c e ,  

as expla ined  i n  Sec t ion  2.5 , t h e  Crocco equat ion  i s  q u i t e  

adequate f o r  the a d i a b a t i c  f l a t - p l a t e  case.  A numerical  

s o l u t i o n  w a s  ob ta ined  for equat ions  ( 3 - 5 5 ) ,  which are a 

system of N f i r s t - o r d e r  ord inary  d i f f e r e n t i a l  equat ions  where 

N is  the  order of t h e  d e s i r e d  approximation, Equations ( 2 . 2 3 )  

to ( 2 . 2 6 )  w e r e  used f o r  t h e  proper ty  v a r i a t i o n s  whi le  s e v e r a l  

d i f f e r e n t  t u r b u l e n t  shear models were employed t o  e v a l u a t e  

t h e  t u r b u l e n t  shear t e r m s  i n  t h e  governing equa t ions ,  This  

.k 

R formula t ion  w a s  used t o  p r e d i c t  t h e  flows over a d i a b a t i c  

f l a t  p l a t e s  a t  f o u r  d i f f e r e n t  f ree-s t ream Mach numbers, Skin 

f r i c t i o n  v a r i a t i o n ,  v e l o c i t y  p r o f i l e s  and Mach-number pro- 

fil,.es were computed and compared w i t h  exper imenta l ly  measured 

va lues ,  In programming t h e  s o l u t i o n  f o r  t h e  MWR equa t ions ,  

t w o  methods w e r e  used t o  s o l v e  th.e f i r s t - o r d e r  system of 

<@ 

T h t r  adequacy i s  f u r t h e r  s u b s t a n t i a t e d  by  t h e  fact that 
Herring and MeElor [ 81 c a l c u l a t e d  a d i a b a t i c  f la t - .  plate 

l o w  cases  t w o  waysl once using t h e  Croeco r e l a t i o n ,  and 
once using. t h e  complete energy equa t ion ,  The results w e r e  
iderlt ical  within t h e  accuracy of t h e i r  graphs 



cr --ekhad and the fou.rth- 

order Ranqe -+K3%t  a as tkcd  %%se Xal”:sl;3r; @llf E531 f o r  

ilis of these ~~~~~~~~~~ Both aetkods worked quite well; 

tha6 was s l i g h t l y  faseer; and, there- 

force, it w a s  used in obtaining the resulks presented in this 

er. The resultant corn uter program used to solve the 

system of equations is presented in Appendix B, The calcu- 

lation time on a CDC 6500 computer for an entire flow case 

as generally about 20, 150, and 350 seconds for the first, 

second, and third approximations respectively. The time 

for a second approximation was the same order as the time 

uired by the CSM [ll finite-difference methods. Usually 

MWR takes considerably less calculation time than does 

finite-difference method; however, in the present work 

the calculation times of the two techniques were comparable 

because an eddy-viscosity model was used which required 

calculation of velocity and eddy-viscosity profiles at 

ery 4-location and because the sensitivity of the  eddy- 

viscosity model necessitated a very small A t  step size (as 

911 be explained in Section 4,4), Nevertheless, a potential 

uetion of the MWR calculation time by an order of magni- 

e is indicated in Section 
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$,2 The P@TR R e s u l k s  U s i n q  &he CSM Eddy-Viscosity Model 
_II____ -- li.-_y “_I_ 

The results of this section are obtained using the CSM 

eddy--viscosity model in the third approximation formulation 

of the P4WR To obtain starting velocity and shear-stress 
.d( 

distributions, the iteration procedure described in Section 

2.4 and Section 2,5 is used, HoweverB no smoothing or 

iteration (of any variable) is employed downstream. 

The first comparison is for the flow over an adiabatic 

flat plate with the following values of the parameters: 

Me = 2.54 

= 1931 ft/sec ue 

Tw = 519,3OR 

L = 8,194 ft 

The MWR predicted results are compared with the experimental 

measurements of Coles [2 I and with some analytical results 

of Cebeci, Smith, and Mosinskis [1J. The starting velocity 

innd shear-stress profiles, obtained by the iterative pro- 

cedure of Section 2 - 4  and Section 2 - 5 ,  are given in Figures 

$ 2 8  to 23. Figure 20 displays the shear-stress and 

tk 
S o l d , t i o n s  from the first, second and third approximations 
are displayed in Appendix C where the convergence pro- 
p e ~ t i e s  S €  the WaW are discussed, 
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t h e  experimental  p r o f i l e ,  F igure  22 compares t h e  

v e l o c i t y - d e r i v a t i v e  p r o f i l e s  before and a f te r  i t e r a t i o n  

while the  eddy-viscosi ty  p r o f i l e s  b e f o r e  and a f t e r  i t e r a t i o n  

are shown i n  F igure  23, The p r o f i l e s  a f t e r  i t e r a t i o n  a r e  

t h e  i n p u t ,  s t a r t i n g  p r o f i l e s  f o r  t h e  MWR s o l u t i o n  technique.  

F igure  2 4  d i s p l a y s  t h e  MWR s k i n - f r i c t i o n  v a r i a t i o n ,  t h e  

experimental  va lues ,  and one r e s u l t  of t h e  CSM c a l c u l a t i o n s .  

The one CSM c a l c u l a t e d  va lue  is  i n  e r r o r  3 , 3 1  percen t ,  (For 

t h e  purpose of c a l c u l a t i n g  e r r o r s  t h e  experimental  va lues  

are assumed t o  be correct.) The maximum e r r o r  i n  t h e  MWR 

s o l u t i o n  i s  3.5 pe rcen t  a t  R e x  = 4 . 2 1  x 10 e 
6 Figures  2 5  

26 p r e s e n t  t h e  v e l o c i t y  and Mach-number p r o f i l e s  a t  

t h e  i n i t i a l  x - s t a t i o n  and two downstream s t a t i o n s .  The MWR 

c a l c u l a t e d  p r o f i l e s  agree  f a i r l y  w e l l  w i t h  t h e  experimental  

d a t a  while  t h e  CSM p r o f i l e s  a t  R e x  = 4 . 2 1  x 10' are s l i g h t l y  

et ter than t h e  MWR c a l c u l a t i o n s .  

W second case  was considered f o r  an a d i a b a t i c  f l a t  

ke with  

The p r e d i c t  d results were then compared w i t  t h e  experimental 
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measurements of holm, and Thomas 6383 

eeip Smith, and 

of the s k i n - f r i c t i o n  coefficient, The CSM calcu- 

l a t i om and t R predictions agree very well w i t h  the 

experimental data, The maximum error ir the W R  solution 

is 2.23 percent at Rex = 20 x 10' while the maximum error 

of the CSM calculations is 2.6 percent at Rex = 9 x PO e 

Figures 28 and 29 show comparisons of the velocity and Mach- 

number profiles at the initial x-location and a downstream 

location. The calculated profiles agree quite well with 

the experimental data. The MWR predictions are slightly 

e t te r  than the CSM calculations at the lower Reynolds 

6 

er and at the outer edge of the thermal boundary layer. 

A third case was considered for an adiabatic flat 

pla te  with 

Me = 3.69 

'e 

TW 

= 2202 ft/sec 

= 516'R 

I, = 8.647 ft 

Figure  30 shows the MWR calculations for skin-friction varia- 

n compared with $he experimental data of Coles 6241 and 

w i t h  the one calculated value of Gebeci, Smith, and 

8 one va9bue from t e CSM resu l t s  w a s  esse 

erimentally measured value at The ~~X~~~ 

resul ts  is '9,225 ercent at = 6 - 3 5  x 10 6. 

6 
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Figures  31  and 32 show t h e  predicted and experimental ly  

measured v e l o c i t y  and %.a&.-n ex- prof i les  at t h e  s t a r t i n g  

l o c a t i o n  and t w o  i a ~ w n g t i r e ~ ~ ~ ~  locations +, The agreement 

between t h e  MWR p r e d i c t i o n s  and t h e  experimental  d a t a  i s  

O ~ % Y  f a i r  f o r  t h e  Mach-number and v e l o c i t y  p r o f i l e s  a t  t h e  

downstream l o c a t i o n s ,  b u t  t h e  CSM p r o f i l e s  are only f a i r  

a l s o .  The d i f f e r e n c e  between t h e  p r e d i c t e d  and experimental  

p r o f i l e s  might be a t t r i b u t e d  t o  t h e  experimental  i n v e s t i g a -  

t i o n ,  s i n c e  a s l i g h t  i n f l e c t i o n  p o i n t  i s  n o t i c e a b l e  i n  t h e  

experimental  Mach-number p r o f i l e s  nea r  a va lue  of y/6 = 7.  

Such i n f l e c t i o n s  can be  caused by e x t e r n a l  f lcw d i s tu rbances .  

The f o u r t h  tes t  case w a s  f o r  an a d i a b a t i c  f l a t  p l a t e  

wi th  

Me = 4 . 2  

'e 

TW 

= 2360 f t /sec 

= 539.08OR 

L = 2 2 , 3 9  f t  

F igure  33  compares t h e  s k i n - f r i c t i o n  c a l c u l a t i o n s  wi th  t h e  

Gebeci-Smith-Mosinskis [ l l  p r e d i c t i o n s  and wi th  t h e  exper i -  

mental measurements of Matt ing,  Chapman, Myholm, and Thomas 

[ 3 0 ] ,  T h e  MWR s k i n - f r i c t i o n  c a l c u l a t i o n  i s  considerably 

b e t t e r  than t h e  CS p r e d i c t i o n :  t h e  maximum e r r o r  of t h e  
6 p r e d i c t i o n  i s  10,3 p e r c e n t  occur r ing  a t  Rex  = 35 x 10 

w h i l e  %he maximum error of t h e  R c a l c u l a t i o n  is  3 - 7 5  per-  
6 cent at Rex = 9 6  x 10 

for v e l o c i t y  and Mach-n er p r o f i l e s  a t  t h e  i n i t i a l  

F igures  3 4  and 35 show comparisons 
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x- loca t ion  and $we, ~~~~~~~~a~~ locations e The p r o f i l e  com- 

pasci.sosns are somewha& inceneBusive since the 

a r e  better than t h e  CSM r e s u l t s  a t  some x- loca t ions  and i n  

s o m e  reg ions  of t h e  boundary layer whi le  t h e  oppos i t e  i s  

the ease  a t  o t h e r  x- loca t ions  and i n  o t h e r  reg ions  of t h e  

boundary l a y e r ,  Overa l l  t h e  c a l c u l a t e d  p r o f i l e s  of t h e  MWR 

and CSM methods agree  w e 9 1  wi th  t h e  experimental  measure- 

ments * 

4 , 3  R e l i a b i l i t y  of t h e  Ca lcu la t ions  

The MWR r e s u l t s  i n  F igures  24 through 35 agree q u i t e  

we19 with t h e  experimental  d a t a  and i n  gene ra l  are as 

accura t e  as t h e  Cebeci-Smith-Mosinskis [ l l  p r e d i c t i o n s ,  

The convergence p r o p e r t i e s  d i sp layed  by t h e  f i r s t  three 

approximations a r e  a l s o  p a r t i c u l a r l y  s a t i s f y i n g  (see 

Appendix C) e 

I n  Sec t ion  2 s p e c i a l  a t t e n t i o n  w a s  d i r e c t e d  t o  t h e  

s h e a r - s t r e s s  p r o f i l e s  as a p o s s i b l e  key go improving t h e  

p r e d i c t i o n  of t h e  boundary-layer parameters f o r  t u r b u l e n t  

flow. For t h i s  reason,  t h e  s h e a r - s t r e s s  p r o f i l e s  c a l c u l a t e d  

the MMR technique w i l l  be c a r e f u l l y  examined. I n i t i a l l y ,  

owever, t h e  c a l c u l a t i o n  procedure should be  re-emphasized. 

F i r s t g  t h e  s t a r t i n g  cond i t ions  a r e  obta ined  by t h e  i t e r a t i v e  

procedure of Sec t ion  2,s;  t h i s  provides  a proper ly  behaved 

chear-stress p r o f i l e  at t h e  i n i t i a l .  streamwise l o c a t i o n ,  

Second, w i t h  these i n i t i a l  cond i t ions  t he  MWR technique 

ealeU.la.&e~ the boundary-layer Variables a t  the dQWnS%Keam 



locations; no i 

e a ~ y - ~ ~ ~ ~ ~ ~ ~ ~ ~  model m~ any dowmtream y a s j  tion Fol%swing 

this procedureg Pigu~e 3 shows the c a 1 CIP L at ea she ax - s tre s s 

profiles from %h R solution fer the flow with Me = 2,54, 

Figure 37 sh the corresponding eddy-viscosity profiles. 

Y t  is seen that a rather Barge oscillation in the shear-stress 

rofiles exists at t ownstream locations, and the magni- 

e of this oscillation increases as the calculations pro- 

ceed downstream. In Figure 37 the match point between the 

inner and outer eddy-viscosity expressions occurs at 

y/S = 0.18; therefore, the oscillatory behavior in Figure 

36 exists entirely within the inner region. It is thus 

very likely that the oscillations in shear stress can be 

attributed to a sensitivity of the inner-region equation of 

the CSM eddy-viscosity model (see Section 2.51, Neverthe- 

1~258, it is important to recall how well the skin friction 

coefficient, Mach-number profiles, and velocity profiles 

have been calculated even with the simultaneous development 

of an oscillatory behavior of the shear-stress profile, at 

e particular flows considered. On the other hand, 

sssible tha t  the gross parmeters would not be pre- 

dic ted  as well for a more difficult flow, say one with a 

ging pressure gradient, For such a casel the 

eddy-via cos i t y  3 f O f i I e  might  have t C 2  be SRIOo$hE!d at every 

A - s t s t i o w  ti3 obtain s a t i  predictionse 

ut very impor ant r e s u l t  
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occurs in the s k i n - f r i c t i o n  prediction near the starting 

region of the cakeujatione, Ian f a c t  this r e s u l t  is so close 

to t h e  s t a r t i ng  p o i ~ p :  t h a t  i_t i s  DG% observable on the scales 

e previous graphs sf skin-friction coefficient. Conse- 

guen",ly, the starting region of the skin-friction graph has 

been magnified greatly, and the results o€ the MWR solution 

f o r  the Me = 2.54 flow are shown in Figure 3 8 .  The peak in 

Figure 38  is caused by inaccuracies in evaluating the gi 

vector at the initial streamwise location. These inaccur- 

acies cause the calcu_'.ated value of dCf/dRex to be positive 

initially, but as the calculation program proceeds down- 

stream, it reverses the skin-friction curve which then 

follows the trend of the experimental data. Thus, when the 

initial conditions are rather incompatible with the govern- 

i n g  equations, the prediction program corrects these incom- 

patibilities in a very small streamwise distance - a very 

desirable characteristic of a prediction technique, The 

mechanism in the prediction program which generates the 

rapid, corrective response is probably closely related to 

the sensitivity of the CSM eddy-viscosity model. Perhaps 

any incorrect behavior in the boundary-layer calculations 

9s quickly sensed by the CSM model, and a corrective 

response in the form of a shear-stress profile is immediately 

ut to the governing equations at the next calculation 
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i s  now being suggeaaed as a pro l e  cause fo r  t h e  proper  

responsiveness  oT- ths preZ$ct%ort  pr.sgram, Perhaps t h e  com- 

b i n a t i o n  of t h e  defLnj.ng equatisnss fcr eddy viacos i$y  with 

the  boundary-layer equa t i ans  gene ra t e s  a s e n s i t i v i t y  which 

must be accommodated in any c a l c u l a t i o n  procedure,  This  

s e n s i t i v i t y  may even be  necessary for  t h e  p r e d i c t i o n s  t o  

d i s p l a y  t h e  proper  response t o  numerical  d i s tu rbances ,  

Responses analogoLs t o  t h e  peak i n  F igure  38 have been 

no t i ced  by o t h e r  i n v e s t i g a t o r s .  For example, i n  c a l c u l a t i n g  

compressible,  t u r b u l e n t  boundary l a y e r s  by a f i n i t e - d i f -  

f e r ence  method, Herr ing and Mellor [ 8 1  genera te  what they  

ca l l  reset i n i t i a l  p r o f i l e s  by making var ious  assumptions 

on t h e  development of t h e  flow which generated t h e  i n i t i a l  

experimental  p r o f i l e s ;  then  i n  Herr ing and Mel lor ' s  words, 

"Since t h e r e  w a s  a s l i g h t  d i s c o n t i n u i t y  i n  va lues  l i k e  Cf 

d 6 "  between t h e  reset p r o f i l e  and t h e  f i rs t  p r o f i l e  

moving forwardB it w a s  found b e s t  t o  a l low space t o  calcu-  

l a t e  p r o f i l e s  a t  two o r  t h r e e  s t a t i o n s  b e f o r e  t h e  i n i t i a l  

s t a t i o n . "  Thus, i n i t i a l  d i s tu rbances  are n o t  uncommon i n  

p r e d i c t i o n  programs for t u r b u l e n t  boundary l a y e r s ,  

R Ca lcu la t ions  Usina A l t e r n a t e  Shear Models 

In t h e  p r e d i c t i o n  of compressible ,  t u r b u l e n t  boundary 

Layemrs using t h e  CSM eddy-viscosi ty  modelp t h e r e  developed 

ansmalous o s c i l l a t i o n s  of t h e  shear-stress px-0fll.e in t h e  

i n n e r  region of t h e  boundary l a y e r ,  even though 8 

itisn and v e l o c i t y  and Mach-numbear p r o f i l e  caP@u%ations w e r e  



s a t i s f a c t o r y ,  I n  .3 these o s c i l l a t i o n s  w e r e  

a t t r i b u t e d  to t h e  s e w s i k i v i t y  O B  %he CS 

e cons%rueted which ould be devoid of o s c i l l a t i o n s ,  

b u t  would s t i l l  y i e l d  accu ra t e  p r e d i c t i o n s  of t h e  boundary- 

l a y e r  parameters ,  Consequently, t h e  task was undertaken t o  

p r e d i c t  t h e  compressible ,  t u r b u l e n t  boundary l a y e r  w i th  t h e  

W us ing  a l t e r n a t i v e  skea r - s t r e s s  models which, by con- 

s t r u c t i o n ,  would y i e l d  well-behaved shea r - s t r e s s  p r o f i l e s .  

A s  a f i r s t  a t tempt ,  a very simple-minded approach w a s  

used even though it could only  conceivably be expected t o  

work f o r  t h e  f l a t - p l a t e  flows. I n  t h e  inne r  r eg ion  of the  

boundary l a y e r ,  denoted by s u b s c r i p t  i, t h e  shea r  stress 

was assumed t o  be a cons t an t ,  

T = T  i W 

whi le  i n  t h e  o u t e r  r eg ion  t h e  CSM eddy-viscos i ty  model w a s  

employed, s i n c e  it y i e l d s  well-behaved shea r - s t r e s s  p r o f i l e s  

t h e r e ,  The junc t ion  between t h e  i n n e r  and o u t e r  r eg ions  

was def ined  as t h e  p o i n t  where t h e  shea r  stress from t h e  

er-region model equaled t h e  shea r  stress from t h e  ou te r -  

r eg ion  model. The R pred ic t ed  s k i n - f r i c t i o n  r e s u l t s  w i th  

is shea r  rno i g u r e  39 for a second 

tion, These are t h e  r e s u a t s  fo r  fl 

8 The c=alcula 

hown w i t h  a 
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Appendix D hers a proee u r e  h a s  been developed t o  a r t i -  

a ~~~~~~~~ more s o p h i s t i c a t e d  shear-stress model w a s  next  

idered f o r  t h e  i n n e r  r eg ion l  

(4.2) 3 ‘4 = 1 - 2.3978 y*2 -I- 2.9266 y* 

where TI = T ~ / T ~  and y* = y/6. Equation (4.2) w a s  

ob ta ined  from an a n a l y t i c a l  curve f i t  t o  t h e  inner - reg ion  

s h e a r - s t r e s s  r e s u l t s  of Bradshaw [ 5 4 1  on a f l a t  p l a t e  i n  

incompressible ,  t u r b u l e n t  flow. I n  t h e  o u t e r  reg ion  t h e  

CSM model was aga in  used, and t h e  junc t ion  between t h e  t w o  

reg ions  was def ined  as t h e  p o i n t  where t h e  s h e a r - s t r e s s  

l u e s  from t h e  i n n e r  and o u t e r  equat ions  w e r e  equa l ,  The 

W p r e d i c t e d  s k i n - f r i c t i o n  r e s u l t s  wi th  t h i s  s h e a r  model 

re shown i n  F igure  40 f o r  a second approximation. The 

c a l c u l a t i o n s  w e r e  aga in  made f o r  flow over  an a d i a b a t i c  

f l a t  p l a t e  a t  Me = 2 .54 .  The p r e d i c t i o n s  are shown both  

and wi thout  t h e  dCf/dRex i n i t i a l i z a t i o n  of Appendix D. 

he p r e d i c t i o n s  us ing  equat ion  ( 4 . 2 )  a r e  no b e t t e r  than  

those  us ing  equat ion  ( 4 * l ) ;  i n  f a c t ,  the  r e s u l t s  a r e  n e a r l y  

i d e n t i c a l .  

i s t ieated shear-s e58 equation 

in the prediction 
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i d e a  f o r  t h i s  model arose f ~ o m  t e work of Clauser  [ 4 1  

universal correlatisn func t ions  y for t h e  i n n e r  

and o u t e r  reg ions  and argued t h a t  t h e r e  must  be a parameter 

t y i n g  t h e s e  t w o  regions toge ther  i n  an ove r l ap  reg ion ,  H e  

chose t h e  s h e a r  stress a t  t h e  w a l l  f o r  t h e  j o i n i n g  parameter.  

Perhaps t h e  t r o u b l e  wi th  t h e  two previous  a l t e r n a t e  s h e a r  

models was the  rough manner i n  which t h e  s e p a r a t e  f u n c t i o n s  

f o r  t h e  two reg ions  w e r e  jo ined;  consequent ly ,  a model w a s  

developed which l i n k s  t h e  i n n e r  and o u t e r  reg ions  and has 

a smooth junc t ion  between t h e  two reg ions .  

For t h i s  model, it i s  assumed t h a t  a four th-order  

olynomial of t h e  f o r m  

can s a t i s f a c t o r i l y  model t h e  s h e a r - s t r e s s  behavior  i 

i n n e r  reg ion ,  The bi c o e f f i c i e n t s  a r e  cons t an t s  a t  a 

e c i f i e d  x - s t a t i o n  and are determined from t h e  fol lowing 

r e l a t i o n s :  



where subscript i denotes t h e  i n n e r  r eg imB s u b s c r i p t  o the  

o u t e r  reg ion ,  and y: 3. 

between t h e  t w o  reg ions .  Equations ( 4 , 4 )  through (4,7) 

satisfy f o u r  r e l e v a n t  boundary cond i t ions ;  equat ion  (4-7) 

i s  obta ined  f r o m  t h e  eva lua t ion  of t h e  x-momentum equa- 

t i o n  (3.11) a t  y* = 0 ,  and equat ion  ( 4 . 8 )  i s  t h e  matching 

cond i t ion  which creates a smooth junc t ion  between t h e  

i n n e r  and o u t e r  f u n c t i o n s ,  

was again used i n  t h e  o u t e r  reg ion ,  and t h e  combined shear 

model w a s  incorpora ted  i n t o  t h e  MWR p r e d i c t i o n  program, 

t h e  va lue  of y* Gk .t-, e match p o i n t  

The CSM eddy-viscosi ty  equat ion  

ain, t h e  s k i n - f r i c t i o n  v a r i a t i o n  w a s  c a l c u l a t e d  f o r  an 

MWR second approximation for  flow over  an a d i a b a t i c  f l a t  

plate w i t h  Me = 2,54 and is  shown i n  Figure 4 1 ,  Both t h e  

c a l c u l a t i o n s  w i t h  and w i t h o u t  t h e  dCf /dRex i n i t i a l i z a t i o n  

procedure are shown, and it is  seen t h a t  these r e s u l t s  

s l i g h t l y  worse than  those f r o m  t he  s impler  shea r  models 

of F igures  39 and 40. 

Summarizing, t h e  s k i n - f r i c t i o n  c o e f f i c i e n t  p r e d i c t i o n s  

from t h r e e  a l t e r n a t e  shear models show a maximum error i n  

the c a l c u l a t i o n s  between l 6  pe rcen t  and 27 percent i n  

Flgurea 39,  

a second aap 
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f r i c t i o n  us ing  t h e  CSM eddy-viscosi ty  model i s  10.8 pe rcen t  

as s e e n  i n  Appendix C ,  Als,woragh the ca lcuLat ions  wi th  t h e  

a l t e r n a t e  s h e a r  models are n o t  too bad, n e v e r t h e l e s s  t hey  

are n o t  n e a r l y  as good as t h e  p r e d i c t i o n s  wi th  t h e  CSM 

model. I n  F igu res  3 9 ,  48, and 49 t h e  c a l c u l a t i o n s  wi th  

t h e  a l t e r n a t e  s h e a r  rn0de1-s~ b u t  wi thout  t h e  d C f / d R e x  i n i t i a l -  

i z a t i o n  of Appendix D, s t a r t  very  poor ly  b u t  t hen  l e v e l  o f f  

and approach t h e  experimental  d a t a  as R e x  i n c r e a s e s .  

f i r s t  t h i s  c h a r a c t e r i s t i c  w a s  thought  t o  be  an incompati- 

b i l i t y  between t h e  s t z r t i n y  cond i t ions  and t h e  governing 

d i f f e r e n t i a l  equat ions ;  consequent ly  t h e  a n a l y s i s  of 

Appendix D w a s  performed t o  a l l o w  t h e  s k i n - f r i c t i o n  va r i a -  

t i o n  t o  s t a r t  proper ly .  IIowever, t h e  c a l c u l a t e d  r e s u l t s  i n  

F igu res  3 9 ,  40, and 4 1  w i th  t h e  d C f / d R e x  i n i t i a l i z a t i o n  

procedure are no b e t t e r  t h a n  t h e  r e s u l t s  wi thout  t h e  

i n i t i a l i z a t i o n  procedure: t h e  region of i n a c c u r a t e  calcu-  

l a t i o n  i s  j u s t  s h i f t e d  f r o m  l o w  R e x  t o  h igh  Rex. It seems 

t h a t  t h e  a l ternate  inner - reg ion  models simply do n o t  con- 

t a i n  enough phys ica l  make-up of t h e  i n n e r  l a y e r  t o  be ade- 

qua te ly  respons ive  t o  t h e  developing boundary l a y e r ,  The 

hope of  u s ing  a polynomial i n  y f o r  t h e  i n n e r  s h e a r - s t r e s s  

equa t ion  and s t i l l  c a l c u l a t i n g  t h e  s k i n  f r i c t i o n  as accu- 

rately as the p r e d i c t i o n s  wi th  t h e  CSM eddy-viscosi ty  model 

has consequectly been abandoned a t  t h e  p re sen t  t i m e ,  

At 

There would be,  however, a very  prac t ica l  advantage 

to abtaininly a smoothly vary ing  s h e a r - s t r e s s  formulat ion;  



namely i n  providing an order of magnitude reduct ion  i n  

machine calculation t i m e ,  This contention can be i l l u s -  

t ra ted  by cons ider ing ,  as an approximation and with XI 

s p e c i a l  c l a i m s  being made concerning its phys ica l  b a s i s ,  a 

s i n g l e  polynomial r e p r e s e n t a t i o n  f o r  t h e  shea r  stress 

across t h e  complete viscous l a y e r ,  I n  Sec t ion  4 . 3  it is  

seen t h a t  t h e  c a l c u l a t e d  s h e a r - s t r e s s  p r o f i l e s  o sc i l l a t e  

i n  t h e  i n n e r  region of t h e  boundary l a y e r  when t h e  CSM 

eddy-viscosi ty  model i s  used i n  t h e  MWR p r e d i c t i o n  program. 

Complications of t h e s e  o s c i l l a t i o n s  are be l i eved  t o  propa- 

g a t e  i n t o  t h e  s o l u t i o n  o f  t h e  ord inary  d i f f e r e n t i a l  equa- 

t i o n s  for t h e  C c o e f f i c i e n t s  and t o  r e q u i r e  a very s m a l l  

s t e p  s i z e  i n  t h e  6-d i rec t ion  (which consequently i n c r e a s e s  
j 

t h e  computer time) i n  o r d e r  t o  o b t a i n  accu ra t e  s o l u t i o n s  

T o  v e r i f y  t h a t  t h e  CSM eddy-viscosi ty  model, 
j *  

f o r  t h e  C 

i t h  i t s  s h e a r - s t r e s s  o s c i l l a t i o n s ,  n e c e s s i t a t e s  t h e  s m a l l  

A< s t e p s ,  t h e  t a s k  is  undertaken t o  p r e d i c t  t h e  compressible,  

t u r b u l e n t  boundary-layer behavior  by us ing  s t i l l  another  

s h e a r - s t r e s s  model which, by cons t ruc t ion ,  w i l l  y i e l d  

smooth s h e a r - s t r e s s  p r o f i l e s  wi th  no o s c i l l a t i o n s ,  

A s i m i l a r i t y  approach, comparable t o  t h a t  of Chi and 

Chang E551 and R o s s  and Robertson [561 ,  i s  chosen across 

t h e  e n t i r e  boundary l a y e r  by assuming s h e a r - s t r e s s  s i m i l a r i t y  

i n  t h e  nsndirnensisnal coord ina tes  T / T  versus  y/&. A t h i r d  

degree ~~~~~~~~a~ of $he form 

W 



i s  s e l e c t e d  where t h e  c o e f f i c i e n t s  of t h e  polynomial are 

found by t h e  folLowing boundary conditions: 

T " ( 0 )  = 1 ( 4 . 1 1 )  

( 4 . 1 2 )  

The r e s u l t i n g  equat ion  f o r  shea r  stress i s  

(4.13) * y*(y*-l)  2 + ~ * ~ ( 2 y * - 3 )  + 1 ,r*(y*) = ~ 

T dx 
W 

The behavior  of t h i s  equat ion i s  shown i n  Figure 42 .  Equa- 

t i o n  (4.13) i s  n o t  proposed as an accu ra t e  q u a n t i t a t i v e  

d e s c r i p t i o n  of t h e  phys ica l  phenomena by means of which 

t h e  p red ic t ed  boundary-layer parameters can be improved; 

but r a t h e r  it is proposed as a q u a l i t a t i v e l y  correct, 

simple,  and smooth a n a l y t i c a l  express ion  which can be used 

to study t h e  r e s t r i c t i o n  on t h e  s t e p  siBe A< and t h e r e f o r e  

t h e  machine computation t i m e  

Boundary-layer c a l c u l a t i o n s  w e r e  performed by t h e  MWR 

technique for flow over  an a d i a b a t i c  f l a t  p l a t e  us ing  equa- 

t i c m  (4,131 f o r  t h e  s h e a r - s t r e s s  model. The s k i n - f r i c t i o n  

results a t  Me = 2 - 5 4  are shown i n  Figure 43 f o r  the second 

approximation% wi th  and without  t h e  d C f / d R e x  i n i t i a l i z a t i o n  
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F i g u r e  42:  S h e a r - S t r e s s  P r o f i l e s  Calculated f r o m  
Equatdon ( 4  13) 
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Experimental data of Coles [241 

I_ Without dCf/dRex initialization 

- -  With dCf/dRex initialization 
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x Rex 

F i g u r e  43:  Skin-Friction Calculation from an MWR Second 
Approximation Using the Shear Model of Equation 
( 4 . 1 3 ) ,  M = 2 - 5 4  e 



procedurc ,. These resu.%ts are considerably worse than those 

of the a l t e r n a t e  shedz madc%s w h i c h  used separate formula- 

tions fo r  the inner and o u t e r  regionsp since the maximum 

error of the calculations in Figure 4 3  is 50 percent, 

ese calculations were made using various values of the 

step size A < *  Values of A< equal to O,OQ)l, 0,01, and 0 . 0 3  

all gave results f o r  the e .  coefficients which were identical 
t o  five significant figures whereas the calculations for 

7 

U 

e C coefficients using the entire CSM model, Section 4.2,  
I 

required A <  values of 0,001 and smaller f o r  successive 

solutions to agree to three significant figures. The results 

obtained by varying A <  indicate that the sensitivity and 

oscillation of the CSM eddy-viscosity model require the use 

of the very small step size of A <  = 0.001, which consequently 

inflates the machine calculation time. For example, if a 

step size of A <  = 0,QP could be used instead of 0.001 with 

the CSM model in Section 4.2, then the average calculation 

time for t h e  second approximation of the MWR would be 

decreased 6rom 150 seconds to less than 19 seconds on a 

C 6 5 0 0  computer, Thus the requirement of the small step 

s i z e  is attributed to the sensitivity of the CSM eddy- 

viscosity model, and the potential for accurate predictions 

dary-layer  parameters with an order-of-magnitude 

r e d u c t i o n  i n  computer time is indicated when a smoothly 

behaved shear model is found which adequately describes 

the physical phenomena, 



tained usimg the 

i t y  model for  compressi le flow of air over 

plate at four 

cealated results agreed well with the experimental data, and 

in generalp the results aredicted by the R were at Peast 

as good as the results predicted by the Cebeci-Smith- 

osiaskis [l] finite-iifference method. The machine calcu- 

lation time for a second approximation of the MWR was of the 

same order as the CSM method, but a potential reduction in 

calculation time by an order of magnitude appears to be 

ssible if a smoothly varying and physically correct shear- 

stress model can be found. Despite good predictions of 

skin-friction coefficient and velocity and Mach-number pro- 

files, oscillations in the calculated shear-stress profiles 

were found to develop at the downstream locations. These 

oscillations were attributed to the sensitivity of the 

~ ~ ~ ~ ~ - ~ e g ~ Q ~  equation of: the CS eddy-viscosity model, A 

n e a r l y  microscopic peak in some of the skin-friction cab- 

culations was detected near the starting regionl and the 

cause of the peak was found to be slight inaecusacie 

the st,ar$ing values of the shear i n t e g r a l s  gie 

and 

ed in place of e CSM eddy-viscosity madel in the 
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hope that an improvement of the ualitativs behavior of 

predietisns, is was not he case; the pse 

$he alternate ear models were ~ ~ n s ~ ~ ~ r ~ ~ y  

those using the CSM eddy-viscosity model. Some important 

information, how eve^, did result from the use of the alter- 

nate shear models, Wit. a similarity model for shear stress, 

a much larger A 6  step size could be used than that required 

by the CSM eddy-viscosity model. The resulting machine 

computation times were consequently reduced by an order of 

magnitude. Thus the door is opened for the development of 

a calculation procedure which will predict accurate boundary- 

ayer parameters while requiring a very small machine time, 

e only missing ingredient is an alternate shear-stress 

model which will generate results as accurate as those 

from the CSM model while permitting a much larger step 

size A 5  than that required by the CSM model, 



s e a .  s m 3  I - 

%he two main goals of this work are: (1) the exmina- 

$ion and selection of turbulent shear information models 

to be used in a boundary-layer calculation procedure and 

( 2 )  the development of a calculation procedure for two- 

dimensional, compressible # turbulent boundary layers s 

First, calculations employing various turbulent shear 

models that have occurred in the literature were noted and 

compared; and two models were selected for further study 

in the present investigation. The CSM eddy-viscosity model 

w a s  ultimately chosen to be incorporated into a prediction 

rodram. An iterative procedure was applied at the initial 

culation station to correct the erratic behavior of the 

initial shear-stress profile, and a constant in the CS 

model was modified. 

I a calculation procedure was develope; 

applying the R soliution technique to the gover 

%ions for two-dimensional, compressible, turbulent boundary 

Payers. A computer program was written for this solution 

$he nuxnerieal resuPts weP8 cwnp?arsd wit 

ts oE C o l e s  [24] and t ala i30.j and w i t h  

thl2 ~~~~~~~-~~~~~~~~~~~ se%iatioras of Cebeei elk al, [I] 
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the flow of ain over an adia tic flat pla te .  

P i n a l l y ,  a shex-st  cess s i d k a r i t y  apprcsac 

oscillations which arose CSM eddy-viscosity mode1 

was employed in the prediction program, By means of t 

similarity approach, the effect of the shear-stress oscil- 

lations on the accuracy f the predicted boundary-layer 

parameters and on the required: computation time was 

1, 

2 ,  

3 ,  

4. 

5.2 Conclusions 

Many eddy-viscosity models yield qualitatively incorrect 

shear-stress profiles in the inner region of the turbu- 

lent boundary Payer as is seen by results from previous 
investigations in the literature as well as by results 

calculated in the present investigation. 

a lys i s  on the CSM eddy-viscosity pro- 

duces a very plausible explanation for the anomalous 

shear-stress behavior by indicating the strong sensi- 

tivity of the model to the velocity profile and to the 

first y-derivative of the profile. 

eddy-viscosity model is one of the best known 

highly regarded turbulent shear models in the 

u l e n t  b ~ u ~ ~ ~ ~ y - l a ~ e r  literature and therefore is 

~~~~~~~~ in the prediction program of this inve 

t i o n  s 

ckieved in compressib e flow by allowi 



a% a f i x e d  x-location er) is a better 

indication of the i B i t y  of .% ~~~~~.~~~~~ rogrm than t 

methods of comparison developed by other investigators. 

e From the boundary-layer predictions with the CSM eddy- 

viscosity model, it is seen that: 

(i) The convergence properties of the MWR solution are 

very well-behaved, and a second approximation is 

sufficient for most engineering purposes, 

(ii) The predicted results for velocity and 

profiles and skin-friction coefficient agree with 

both experiment and the CSM finite-difference pre- 

dictions. The resulting calculation times for the 

MWR second approximation and the CSM met 

the same order, 

(iii) Although the proposed iterative procedure creates a 

smooth shear-stress distribution initially, it is 

nevertheless found that shear-stress oscillations 

develop in the inner region of the boun 

rE?sul% of the sensitivity of the zs model to ece 



5 - 3  ~~~~~~n~~~~~~~ 

Considering the .;ueeess of the present formulation for 

compressible, adiabatic, flat-plate flow ~ a l ~ u ~ a t ~ o ~ s ~  this 

formulation should be extended to pressure-gradient and heat 

ransaer cases, The major obstacle in this extension is in 

ining a smooth and proper shear-stress distribution at 

initial calculation station. It is reasonable to expect 

the initialization procedure of Mirst and Reynolds [ti73 or 

radshaw [58] could be extended to compressible flow for 

purposer and the necessary modifications coul 

made in the program for the initialization procedure and 

for  the handling of the complete energy equation. 

t h i s  work severa alternate shear models were devel- 

0 attempt to r i d  the prediction results of the 

r-stress behavior, but as a re 

e accuracy in the predicted boundary-laye 

oweverI this approach could 

shear model (devoid of any oscillat 

ha~v10~’) can be found which adequately models t 

uatibana then an accurate predic%ion program can be 

i c h  will require very s 



a simple an praetieal (though rigorogsly unpleasing) 

approach is %he numerical. smoothing of the oscillations of 

an existing model a% every streamwise station, Such a 

smoothing procedure could Bead to significant improvements 

e predicted boundary-layer parameters and to a re 

tion in computer time, Thus, if one has explicit and phy- 

sically well-based ideas for the development of a smoothly 

ehaved shear model which will accurately model the physical 

phenomena, then he should pursue these ideas, However, if 

one lacks such specific ideas, he would be well-advised to 

i f y  some existing shear model in an attempt to reduce its 

erratically behaved shear-stress profiles. 

Previously it was noted that a significant improvement 

csuPd be made in "the CSM eddy-viscosity model if the constant 

was allowed to become a function of Mach number, However, 

due to a large degree of scatter in the calculated values, 

i s  functional form was not accurately defined. The accu- 

rate specification of this functional form then i s  obviously 

a for further study. It might be possible, f o r  

e# to determine the functional form of M1 from exten- 

s i v e  experimental data for the turbulent shear stress and 
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APPENDIX A 

DIFFERENTIATION FORMULA FOR A FUNCTION TABULATED 

AT VARIABLY-SPACED VALUES OF THE ARGUMENT 

A-1 Analvs i s  

Assume  a func t iqn  i s  given a t  several p o i n t s  as shown 

i n  Figure A l .  L e t  

- ri i+l A r +  = r 

A r  = r  - r  
and 

- i i-1 

Mow expanding W i n  a Taylor series about t h e  p o i n t  ri and 

eva lua t ing  t h e  series a t  riel and ri+l y i e l d s  

3 3  A r  a wi 2 2  awi A r  - a wi - = Wi - A r  - + - - - - -  +..e (A.3) 
ar 'i-1 - ar 2 1  a r 2  31 

and 

3 3  A r +  3 Wi 2 2  awi A r +  a wi 
= W .  + A r +  ar + - - + - -  + (A.4) wi+l 1 2!  ar2 3 !  a r3  

Combining equat ions (A.3) and ( A - 4 )  so  as t o  e l imina te  t h e  

second 

awi 
ar 

- - -  

orde r  t e r m s  g ives  

~ r -  A r +  a 3 wi 
- + s . e e  3 ar 3B 
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W 

'i-1 

w * 
1 

'i+l 
I I t  
I I I  

r r  'i-1 i i+l r 

Figure  A l :  A Funct ion Spec i f i ed  a t  a Discrete Number of  
Var iab ly  Spaced P o i n t s  
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where t h e  remainder o r  e r r o r  t e r m  i s  

Ar- Ar+ a3W(s) 
3 ar 3 1  

and 

r < s < ri+l i-1 

(A. 6) 

Thus, equat ion  (A.5) wi thout  the t h i r d  d e r i v a t i v e  t e r m  i s  

a second-order d i f f e r e n t i a t i o n  scheme, s i n c e  t h e  e r r o r  is  

p r o p o r t i o n a l  t o  t h e  product  of t w o  spacings of the  argument 

v a r i a b l e .  

Equation (A.5) w a s  used t o  c a l c u l a t e  t h e  f i rs t  der iva-  

t i v e  of t a b u l a r ,  experimental ,  v e l o c i t y  p r o f i l e s  a t  a l l  t h e  

i n t e r i o r  d a t a  p o i n t s  whi le  t h e  d e r i v a t i v e  on the  w a l l  w a s  

c a l c u l a t e d  f r o m  t h e  measured s k i n - f r i c t i o n  va lue ,  and t h e  

d e r i v a t i v e  a t  the  l a s t  data p o i n t  w a s  taken t o  be  zero.  
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APPENDIX B 

COMPUTER PROGRAM 
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t 

C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 
C 
r 

PROGRAM M A I N (  I N F U r s O U T P l J T ~  T A P t 5 = I N P I l T e T A P F 6 = O U T P ~ ~ T )  

THE I Z A I N  PROGRAM 1 5  IJSEl) TO RLAO I N  OATAIFVALUATF D E F I N I T E  
I N ~ E G H A L S P  PERFORM M A T R I X  M A N I P U L A T I O N S ,  AND SET UP THE 
I NTEGRAT I ON LOG I C  

D I M E N S I O N  A I N V ~ ~ ~ ~ ~ A I N V S H ~ ~ ~ ~ ~ ~ ~ O ~ V U ~ ~ O ~ ~ F C T ~ ~ O ~ ~ Q I N T ~ ~ O ~ ~  
1 A ( ~ V ~ ) ~ A S I N G L ( ~ ~ ) ~ L W O R K ( ~ ) , M W O R K ( ~ ) * S H I N T ( ~ ~ ~ C ( ~ ) ~  
2 P R M T ( 5 ) r D ~ R C ( 7 ) ~ A I I X ( l h r 7 ) r P H f O t 5 n ) , P O L L E C ( B l  

FXTFRNAL D F R I V 9 O U T P  
COMMON 

COMMON OK 1 v RE 1 RE 2 
R E A D ( 5 r 5 0 3 )  N t N U s O L 9 X S U B O  
R E A D ( 5  9 5 0 4 )  OME~CFOIQMOMTUPTN 
R F A D ( h r S O 4 )  T E t P F 9 T n t G A M M A  
RFAD ( 5  9 504 1 RCAS r CSIJBP t Q K l  
R E A D ( 5 9 5 0 4 1  R E l r R E 2  
R E A D ( 5 9 5 0 2 )  ( F ( I ) * I = I g N U )  
R E A D ( 5 r 5 0 2 )  ( U ( I ) ~ I ~ I P N U )  

N =  ORDER OF THE MWR A P P R O X I M A T I O N  
NU= NUMBER OF P O I N T S  AT WHICH F ( I )  IS ENTFRED 
QL= F I N A L  VALUE OF L O N G I T U D I N A L  C O O R D I N A T F t  F T  
XSURO= I N I T I P L  VALUF OF L O N G I T U D I N A L  C O O R D I N A T E *  F T  
QME= F R E E  STREAM MACrl  NUMBER 
CFO; I N I T I A L  VALUE OF C F  
QVOMTO= I N I T I A L  VALUE OF MOMENTUM T H I C K N E S S r  F T  
T k =  WALL TEMPERATUREeUkGREES R 
TE=FREE STREAM TEMPERATURE9 DEGREES R 
P E =  F R E F  STREAM PRFSSURE L B / F T * * Z  

GAMMA= R A T I O  OF S P F C I F I C  H F A T S  

t 3 l  I N I T O A  1 NVI SH I N T  r C F  I N I T ,REOX POL 9 I COUNT ~NUIUIF  T E t  UE ~ N I T O  e 
1 Q f ~ U E ~ R O E ~ R t 1 I U F r T W ~ O ~ ~ t ~ G A M M A r ~ ) " r l l J W r H O W ~ R E S U R X ~ C F r A r X S U B O r P H I O  

TO= TOTAL TEMPERATIIRE I N  THE FREE STREAM, OFGREES R 

RGAS- GAS CONSTANT$ FT-LHF/LRM-R 

Q K l r  O P T I M U M  VALlJE O F  THE CONSTANT K 1  I N  E Q U A T I O N  ( 2 . 1 2 )  
CSIJBP= S P E C I F I C  HFAT A T  CONSTANT PRESSURE9 BTU/LBM-R 

R E 1  AND R E 2 =  DOWNSTREAM VALUES OF HkYNOLDS NUMBER ( B A S E D  ON X )  
WHERE V E L O C I T Y  P R O F I L E  AND MACH NUMBER P R O F I L E  OUTPUTS ARE 
D F S I R E D  

U =  N O N D I M E N S I O N A L l 7 F D  V E L O C I T Y  VALUES 
F= I N I T I A L  V E L O C I T Y  P R O F I L F  F U N C T I O N  I N  FQIJATION ( 3 . 3 9 )  

2 N M l = N - 1  
I C O U N 1 = - 1  

C A L C U L A T F  F L U I D  AND FLOW P R O P E R T I E S  

Q M U € = 3 * 5 9 E - 7 m ( T E / 4 9 2 * ) * * 1 * 5 * ~ ~ 4 ~ / ~ T E + 1 9 2 ~ )  

l l F = O M F * 4 9 0 n Z * S O R T ( T F )  

ROW=TE/TW*ROE 
R F  I N F = R O E * U ~ - ~ O L / C J ~ ~ ~ J E  
Q Q 0 1 2 e  +OMlJW*SOI<T ( R E I N F ) + R O W / R O E / R O E / U t / O L  

WRITE F L U I D  ANI) FLOW P R O P F R T I E S  

R O E = P L / R G A C / T t / 3 ? c ?  

WRITE ( 6 9600) N!l 
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C 
C 
C 

C 
C 
C 

C 
C 
c 

3 3  
40 

C 
C 
C 
c 

3 0  

3 1  
3 2  

20 

C 

14 

3 4  

6'Ju 
60 1 
6U 2 
hU3 
6LJ4 
6 u 5  

W K 1  ItlhPD151 
W R I T E ( 6 9 6 1 0 )  T L ~ U E ~ P E ~ R O E P R O W ~ H E I N F  

W R I T E 1  6 r 6 n ?  1 
W R 1 T E 1 6 ~ 6 0 1 )  

I F  ( 1 1  S O (  I ) 9 I = 1  vNIJ),, 

SET I N I T I A L  C O N D I T I G N S  ON THE C ( J )  C O E F F I C I F N T S  

E V A L U A T E  D E F I N I T E  I N T E G R A L S  AND M A T R I C E S  AND PERFORM NECESSARY 
M A T R I X  M U L T I P L I C A T I O N  AND I N V E R S I O N  

00 32  I = 1 9 N  
Do 3 1  3 * 1 9 N  
DO 30 K Z l t N U  
T t ' 3UM1=2  e * ( l  I K 1-1.0 
I F ( 1 o G E e J )  M A X Z I - 1  
I F ( J e G E o 1 )  M A X Z J - 1  
C A L L  L E P ( P O L L E G , T W O U M l * M A X )  
FCT(K)=POLLEG(I)*POLLEG(J)*U(K)*F~K~ 
C A L L  O T F C  I U r F C T  r Q  I N T  tNlJ I 

CON T I N U E  
DO 20 I = l , N I J  

W R I T E (  6 9603 1 
W R I T E l 6 9 6 0 4 )  I ( A ( I , J ) t P ~ l t N ) , J = l ~ N )  
C A L L  ~ R R A Y I ~ , N I N * ? ~ ~ ~ A S I N G L I A )  
W R I T E ( 6 r 6 0 5 )  

W R I T E ( 6 r 6 0 4 1  ( A S I N G L l I l r I = 1 9 N S Q )  
C A L L  C I N V ( A S I N G L ~ N ~ D E T I L W O R K I M W O R K )  

CO 1.5 I = l r N S O  
A I N V ( I ) = A S I N G L ( l I  
W R I T E (  69606 
W R I T E ( 6 9 6 0 4 )  ( A I N V ( I ) r I = l e N S Q )  

f l l IN IT=ROW/ROE*QMUW/QMUE 
C F I N I T  = QQQ 
REOX=ROE*IJE/OMUE 

A I I * J ) = Q I N T ( N U )  

P H I 0 1  I 1 = F  I I )  , 

NSQ--N**2 

NOW A S I N G L  IS THF I N V E R S E  OF A 

S H I N T t  l ) = O o O  

W R I T C ( 6 0 6 0 9 )  B l I N I T v C F I N I T e R F O X  

S P E C I F Y  PARAMETERS REQUIRED TO C A L L  HPCG( AND C A L L  HPCG 

P R M T ( l ) = X S U B O / Q L  
P R M T l 2 ) t l . O  a 
P R M T ( 3 ) = o n n l  
PRMT ( 4  1 = c O l * C  ( 1 
QN=N 
00 34 I = l r N  
D F R C ( l ) s l r / Q N  
C A L L  H P C G I P R M T P C ~ D F R C ~ N P I H L F ~ ~ E R I V I O U T P P A U X )  

L ' S T  A L L  I N P U T  AND OlJTPtJT FORMATS 

F O R M A T ~ / / P ~ O X ~ ~ H N U = ~ ~ I ~ ~ / / )  
FORMAT ( /  9 1 5 x 9  1 H F e  1 9 X  9 l t i t J r /  
F O R M A T l 2 F 7 O e 6 )  
FORMA1 ( / / / p Y X s b H A (  1 9  J )  I/ 1 
FORMAT(  l E 2 0 o 6 )  
F O R F A T (  / ~ / ~ . Y X ~ ~ H A S J . N ~ L S [  L 



6 d d  
6 U 7  
6 o R  
609 

610 
6 1 3  

5 0  1 
5 0 2  
5 0  3 
5 u 4  

1 

1 

C 
C 
C 
C 
C 

1 

1 

1 2  

11 

10 
C 
C 
C 

3 3  
6 0 0  
6(J 1 
6 u  2 
6 0 3  

C 
C 
C 

1 
2 
3 

. 1  
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SUBROUTINE D E R I V  C O N T A I N S  THE ORDINARY D I F F E R E N T I A L  E Q U A T I O N S  
FOR THE C ( J )  C O F F F I C I E N T S  AND E V A L U A T t S  A L L  TERMS I N  THESE 
O R D I N A R Y  D I F F E R E N T I P L  E Q U A T I O N S  

S U B R d U T I N E  D F R I V ( 2 F T c C v D E R C )  
DTMFNSION A I N V ( 4 9 ) 9 A I N V S H ( 7 ) 9 R ( 7 ) r C ( 7 ) , A I N V 8 ( 7 ) r D F R C ( 7 ) 9  ' 

COMMON B ~ I N I T P A I N V ~ S H I N T ~ C F I N I T , R E O X , O L I I C O U N T I N U ~ U ~ F ~ T E ~ U E ~ N ~ T ~ ~  

COMMON Q K 1  v R E 1 9 R E 2  
CJPHIU=O.O 
DO I?. J = l r N  
CJPHIO=CJPHIO+C(J)*(-l~O)**(J-l)*PHIO~l) 
DO 11 I = l r N  

R (  I ) = - H I P O I  1 ) * R l I M l T / C J P H I O  
C A L L  G M P R D ( A I N V ~ B I A I N V ~ ~ N I N , ~ )  

j H I N T ( 7 ) 9 U ( 5 0 ) r F ( 5 0 ) t A ( 7 c 7 ) r P H I O ( 5 0 )  

Q M U E I R O E ~ R E I N F ~ T W I Q M ~ ~ G A M M A ~ ~ M U W ~ R O W , R E S U B X * C F ~ A ~ X S U B O ~ P H I O  

R T S U B X = R E O X * ( Z E T * Q L )  
C F = C F I N I T / C J P H I O  
C A L L  S H I N T E ( C )  
C A L L  G M P R D ( A I M V 9 S H I N T ~ A I N V S H s N s N s P )  
DO 10 J = 1 9 N  
D E R C ( J ) = A I N V R ( J ) - A I h J S H ( J )  

W R I T E  D E S I R E D  OUTPlJT V A R I A R L F S  

I F ( I C O U N T ~ E Q O O )  Z = I C O U N T  
I F ( Z E T o L T . 2 )  GO TO 33 
W R I T E ( 6 9 6 0 2 1  ZET 
W R I T E I b s 6 0 7 )  ( S H I N T ( l ) r l = l r N )  
W R I T E ( 6 9 6 0 0 l  
W P I T E ( 6 9 6 0 1 1  ( B ~ I l ~ A I N V B ( f ) r A I ~ V S H o r n E R C ( I ) s C ( I ) ~ l ~ l ~ N ~  
Z = Z E T +  e 0 1  

FORMAS ~ 1 2 X e l H 6 ~ 2 1 X ~ 5 H A I N V B ( 1 5 X ~ 6 H A I N V S H , 1 5 X ~ 4 H D E R C ~ l 5 X ~ l H C ~ / ~  
FORMAT ( 5 E 2 0 e 6  1 
F O R M B T ( / / ~ ~ X P ~ H Z E T = D ~ F ~ ~ * ~ )  
F O R M A T ( l X e 6 H S H $ N T = 9 l F 6 e Z )  
RFTURN 
FNO 

SUBROUTINE OUTP E V A L U A T E S  AND W R I T E S  D E S I R E D  OUTPUT V A R I A B L E S  

CONT I IuUE 

SUBROUTINE OUTP(ZETs i *DERCgIHLFsNDIMPPHMT)  
D I M E i d b I O N  C ( 7 ) e D E R C ( 7 ) 9 P R M T ( 5 ) , A I N V ( 4 9 ) , R O S T T H ( 5 0 ) ~ U ( 5 0 ) 9 F ~ 5 0 ) ~  

T ~ ~ @ ~ P T O T E ~ ~ ~ ~ ~ Q M U O M U ~ ~ ~ ~ ~ F C T O ~ R O S T A R ~ ~ O ~ ~ Q N E W ~ ~ O ~ ~  
T H E T A ( § O ) ~ O I N ~ ( ~ ) ) ~ Y ~ ~ O ~ ~ O N E W E ~ ~ O ) ~ Q N ~ J E O N ( ~ O ) V  S H F C T ( 5 O ) r  
C H I ( ~ ~ ) P X ( ~ ~ ) P S H I N T ( ~ ) ~ A ~ ~ P H I O ~ ~ ~ )  

COMMON H l I ~ I ? s A I N V ~ S H I N T ~ C F I ~ l T ~ R ~ O X ~ ~ L ~ I C O U N T ~ N U ~ ~ ~ ~ F ~ T E ~ U E ~ N ~ T ~ 9  

COMMON Q K l q R E l e R E Z  
P R M T ( 4 ) = e O l * C ( l )  

QMUE 9ROE P R E  INFa,  TWsBME rGAMMA9QMUW 9ROW oRESlJBX PCF P A  9XSUBO * P H I 0  
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rr e fl- 
DO 17 J = l @ N  

C F = C F I N I T / C J P H I O  

DO 13 J = l ~ i \ l  
1 3  C J A l J = C J A I J + C ( J I * A (  l eJ )  

Q M O M T H = Q L / S Q R T ( R E I N F ) + C J B 1 J  
RFSIJI3X=REOX* ( ZET*OL 1 

1 2  C J P H I ~ = C J P H I O + C ( J I U ( - l * ~ ) ~ * ~ J - l l s P H f O ( l )  

C,'41J=OaO 

I F (  I C O I J P ~ f s E Q o O )  Z = I C l I J N T  
I F ( Z F T s L T , Z I  GO TO 72  
Z = Z E T + o O l  
W R I T E ( 6 9 6 6 0 )  RESUBXPCF~ZET,QMOMTH 

660 F ~ R M A T ~ / ~ ~ ~ X P ~ H R E S U B X ~ ~ ~ E ~ ~ ~ ~ ~ ~ O X ~ ~ H C F ~ ~ ~ E ~ ~ ~ ~ ~ ~ O X ~ ~ H ~ E T ~ ~  
1 l f - l Z o 6 9 4 X ~ 7 H Q M O M T H = 9 1 t 1 4 . 6 )  

W R I T E ( 6 t 6 6 1 )  I H L F  
661 F O R M A ~ ( ~ O X I S H I H L F = ~ ~ I ~ )  

3 2  C O N T I N U F  
RFTIJRN 
FND 

C 
C SUBROUTINE S H I N T E  E V A L U A T E S  THE S H I N T r J )  VECTOR R E Q U I R E D  IN 
C SUBR JU T I NE DER I V 
C 

SUBROUTINF S H I N T E ( C 1  
D I M E N S I O N  R O S T T H ~ 5 0 ~ ~ C ~ 7 ) ~ U ~ 5 0 ~ , F o , T ~ 5 O ) ~ T ~ 5 0 ~ ~ T O T E ~ 5 0 ) ~  

1 R O S T A R ( 5 O ) ~ T H E T A ~ 5 0 ) ~ Q I N T ( 5 0 ) r Y ( 5 0 ) r E T A ( 5 0 ) ~ U O I J E ~ 5 0 ) 9  
2 QMUOMIJ( 5 0  ,FCT(  5 0 )  rROOROE ( 5 0 )  rQNIJ( 5 0 )  9 
3 S H F C T ( 5 0 ) 9 S H I N T ( 7 )  rAINV(49),A(7r7)rDUDY(50) tEPI(5O)r 
4 E P O 1 5 0 ) r E P ( 5 0 ) , B E T A ( 5 0 )  P P H I O ( ~ ~ ) ~ T A U ( ~ O ) ~ Q M O M E ( ~ O )  

D I M E I I S  I O N  
COMMON B ~ I N I T ~ A I N V ~ S H I N T I C F I N I T ~ R E O X ~ Q L ~ I C O U N T ~ N U ~ U ~ F ~ T E ~ U E ~ N ~ T O ~  

COMMON O K 1  ,RE1 r R E 2  

TAUO( 50 ) 9 TAU I ( 50 ! 9 TAU I YM ( 5 0 )  

1 Q M U € ~ R O E ~ R E I N F P T W ~ Q M E ~ G A M M A ~ Q M U W ~ R O W ~ R E S U B X ~ C F ~ A ~ % S ~ J B O ~ P H I O  

C 
C E V A L U A T E  FLOW V A R I A B L E S  REQUIRED BY THE E D D Y - V I S C O S I T Y  MODFL 
C 

N M l s N - 1  
DO 13 I = 1 9 N U  
ZZZ=2.  * U I  I )  -1 I) 
C A L L  L E P ( Q I N T q Z Z Z 9 N M l )  
C JP J M 1  = O  e 0 
DO 10 J = l r N  
C,'PJMl =C J P J M l + C  ( J + Q  I NT ( J 1 
ROSTTH(1)=CJPJMl~PHIO(I)/(l~-U(I)) 
T ( I ) = T W * ( l ~ + ( T O / T W - l ~ ) ~ ~ ~ I ) + ( T E / T O - i o ) + T O / T W * U ~ I ) * * 2 )  
T O T E ( I ) = T ( I ) / T E  
R O S T A R ( l ) = l e / T O T E ( I )  

C A L L  Q T F G ( U c T H E T A p O I N T 9 N U )  
DO 1 2  I = 1 9 N U  

10 

1 3  THETA(I)=ROSTTH(I)/R3STAR(I) 

1 2  Y ( I ) = Q L / S O R T ( R E I N F ) + Q I N T ( I )  
NDA TA = NIJ 
QNUW=QMUW/ROW 
X=RESI IB% /REOX 
QNUE=bMUE/ROE 
NTOTALmNDAT A 
DD 14 I = l e N T O T A L  
FTA(I)=SQRT(REINF)/QL*YfI) 
t1r)lJF t 1 ) =U ( I ) 
Q M U O M U ( I ) = 3 c 5 9 E - 7 / Q M U E + ( T ( I ) / 4 9 2 ~ ) ~ ~ 1 ~ 5 ~ 6 ~ 4 ~ ~ ~ T ~ I ) + l 9 2 ~ )  
F C T ( ; ) = l s - U O U E ( I )  

R O O R O E ( I ) = l e / T O T E ( l )  

CALL_OTFG(Y9FCJeQINTsNTOTA~~-- 

T O T F ( I ) = T ( I ) / T E  

ONU( I 1 =QMlJOMU ( I )+OMIJE/ (ROOROE ( I ) *ROE ) 14 



D F L K S l = O f N ' f  ( N T O T A L J  
Do 15 I = l a N D A T A  

C A L L  O T F G ( Y s F C T 9 O I N T 9 N T O T A L )  

DP 16 I = I % N D A T A  

TAUW=DUDY(l)"QMUOIS~I( l )"QMUF 

1 5  F C T (  I)=lo-ROOROE(i)rt\fOUt(I) 

D F L S T = Q I N T ( N T O T A L )  

16 C)UDY( I ) = U E o S Q R T ( R F l , J F ) / Q L / T H E V A f  I )  

c 
C E V A L U A T E  THE E D D Y - V I S C O S I T Y  P R O F l L E  FROM THE CSM E D D Y - V I S C O S I T Y  
C MODEL 
C 

1 

1 7  
C 
C 
C 

3 1  

30 

2 0  

1 8  
C 
C W R I T E  D E S I R E D  P R O F I L E S  AND V A R I A B L E S  
C 

, W R I T E ( 6 9 6 2 4 )  ~ D U D Y ~ I ~ ~ E P I ~ I ~ ~ E P O 1 I ) , Y o ~ , U O U E o r  

6 2 3  F O R M ~ ~ ~ / / ~ ~ ~ X P ~ H D U D Y ~ ~ ~ X P ~ H E P I ~ ~ ~ X ~ ~ H E P O W ~ ~ X ~ ~ H Y ~ ~ ~ X ~  

6 2 4  F O R M A T ( 1 X ~ 6 E 1 9 r 6 ~ 1 F 1 0 a 4 1  

1 Q I N T ( I ) ~ Q M O M E ( I ) e I = l r N D A T A )  

1 4HUOUEq14X~3HTAU97X95HQMOME9/) 

W R I T E ( 6 9 6 2 2 )  5 H I N T I Z ) t D E L S T  
GO T 3  2 1  

6 2 2  F ~ R M A T ( I O X ~ 6 H S H I N T = ~ l € ~ O ~ 4 ~ 4 ~ % ~ 6 H D E L S T = r l E Z O o 4 ~  
19 C O N T I N U E  

IF fRESURXeGEoREl .BNDcRESUBXoLEe(RF1+ ,2F6) )  GO TO 2 0  
I F ( R E S U B X e G E e R E 2 a A N D a R f 7 S U B X e L E . ( R E 2 e r Z F 6 ) )  GO TO 20 

2 1  COMTINIJF 
RETURN 
END 

C 
C F U N C T I O N  H I 2 P  C A L C U L A T E S  THk SECOND D t R I V A T I V E  OF THE W E I G H T I N G  
C F U N C T I O N  HSURY MHERE X =  2 + U O U E - l s  T H I S  F U N C T I O N  IS A P P L I C A B L E  
C UP TO AND I N C L U D I N G  THE S I X T H  A P P R O X I M A T I O N *  
c 

F U N C T I O N  H ? Z P ( I * X )  
GO TO( ~ ~ ~ 2 0 9 3 O 0 4 O s S O ~ ~ ~ ~ 7 ~ )  S I  

RETURN 

RETURN 

RFTURM 

RFTlJRN 

10 H I 2 P s 0 o O  

2 0  H I 2 P a - 4 a 0  

3 0  H S 2 P = 6 * - 1 8 e + X  

40 H I 2 P = 3 0 ~ + X - 6 0 B + X + + 7 + 6 *  



C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

5 0 

BO H 1 2 P a e 2 5 9 ( 1 2 6 0 e * X ~ ~ 3 ~ 4 2 O ~ ~ X - ~ ~ 9 O ~ ~ X ~ ~ 4 + 8 4 O ~ ~ X ~ ~ 2 - 3 O e )  
RFTURN 

70 CONTINUF 
RETIJRId 
FND 

FUNCTION H I P 0  EVALUATES THE F I R S T  D E R I V A T l V E  OF THE WEIGHTING 
FUNCTION HSUHI  A T  tJOlJE= O e  T H I S  FlJNCTION I S  APPL lCARLE UP TO 
AND I N C L U D I N G  THE S l X T H  APPROXIMATIONa 

H I 2P =-(I L) 3 5 * I 47 0 e * X  ** 2- 60 e - 7 00 s *% * 0 7 + 1 A0 e 0 X ) 

RFTIIRIu 

FUNCTION H I P O ( 1 )  
GO T 0 ( 1 0 1 2 0 9 3 0 9 4 0 9 5 0 9 6 0 9 7 ~ ) ~ 1  

RFTURN 

R F T URN 

RETURN 

R F: TtJRN 

RFTURN 

RETURN 
70 CONTINUE 

RFTURN 
FF") 

THE FOLLOWING SlJBROUTINES WERE OBTAINED FROM THE 
L IBRARY OF THE PURDUE U N I V E R S I T Y  COMPUTER CENTER 

10 H1PO=- le  

2 0  H l P O s 3 c  

30  H lPOS-7c  

40 H I P 0 = 1 3 s  

5 0  H I P O = - Z l o  

60 HIPOS31.  

sueRou-T I NE 

M I N V  001 

SUBROUTINE M I N V  

PURPOSE 
TNVERT A MATRIX  

USAGE 
C A L L  M I N V I  A s N  9DeL 9 M )  

D E S  R I P T I O N  OF PARAMETERS 

RESULTANT INVERSE% 
A - I N P U T  MATRIX, DESTROYED I N  COW'UTATION AND REPLACED-BY 

N - ORDER OF MATRIX  A 
D - RESULTANT DETERMINANT 

' L - WORK VECTOR OF LENGTH N 
M - WORK VECTOR OF LENGTH N 

REMARKS 
MATRIX  P MUST BE A GENERAL MATRIX  

SUBROUTINES AND FUNCTION SUBPROGRAMS 
NONE 

METHOD 

REQUIRED 

THE STANDARD GAUSS-JORDAN METHOD IS USEDe THE DETERMINANT 
I S  ALSO CALCULATED. A DFTERMINANT OF ZERO I N D I C A T E S  THAT 
THE M A T R I X  IS SINGULAR* 

SUBROU1 I N E  M I N V ( A 9 N s D s L e P )  
DIMENSION W I l ) e L ( l ) r M ( l )  

M I N V  003 
M I N V  004 
M I N V  005 
M I N V  006 
M I N V  007 
M I N V  008 
M I N V  009 
M I N V  010 
M I N V  011 
M I N V  012 
M I N V  013 
M I N V  014 
M I N V  015 
M l N V  016 
M I N V  017 
M I N V  018 
M I N V  019 
M I N V  020 
M I N V  0 2 1  
M I N V  022 
M I N V  023 
M I N V  024 
M l N V  025 
M I N V  026 
M I N V  027 
M I N V  028 
M I N V  0 2 9  
M I N V  030 
M I N V  032  
M l N V  033 
MINV 034  



MINU b35 
~ ~ s ~ ~ ~ s ~ ~ ~ ~ a ~ ~ ~ ~ ~ ~ ~ e e ~ e 5 a e ~ ~ m ~ ~ e ~ m e e ~ a 0 ~ e ~ ~ ~ s ~ ~ ~ ~ ~ o e e e ~ m a ~ a ~ e e a ~ M I N V  036 

MINV 037 
I F  A DOUBLE P R F C l S l O N  VERSION OF THIS ROUTINE 15 DESIRFDo THE' M I M V  038 
C I N  COLUMN 1 SHOULIJ BE REMOVFD FROM THE OOUBLF P R F C I S I O N  M I N V  039 
STATEMENT WHICH FOLtOWSs MINV 040 

M l N V  041 
DOUBLE P k E C I S I O N  AeDrDIGAeHOLD MINV 042 

MINV 0 4 3  
THE C MUST ALSO RE REMOVED FROM DOUBLE P R E C I S f O N  STATEMENTS MIMV 044 
APPEARING I N  OTHER ROUTINES USED I N  CONJUNCTION WITH T H I S  M l N V  045  
ROUT 1 NEB M I N V  046 

M I N V  047 
THE DOUBLE PRECIS ION VERSION OF T H I 5  SUBROUTINE MUST ALSO M I N V  048 
CONTAIN DOUBLE P R E C I S I O N  FORTRAN FUNCTIONSO ABS I N  STATEMENT M I N V  049 
10 MUST BE CHANGED TO DABSo M I N V  0 5 0  

MINV 051 
~ ~ ~ ~ ~ m e ~ ~ ~ o ~ m ~ ~ ~ ~ ~ ~ ~ e ~ e ~ m ~ ~ ~ ~ ~ o ~ e o ~ o e o ~ ~ m ~ ~ ~ m ~ m ~ ~ ~ ~ ~ ~ e a ~ e ~ e ~ ~ a ~ ~ I N V  052 

M I N V  053  

e 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C SEARCH FOR LARGEST ELEMENT 
C 

B . r f . 0  
NK=-N 
DO 80 K = l r N  
NK=NK+N 
L ( K I = K  
M1Kl.K 
KK=NK+K 
B I G A I A I  KK) 
DO 20 J=K9N 
I t = N * l J - l )  
DO 20 I = K I N  
I J= I Z+I 

10 IF1 A B S I B I G A I -  A R q f A ( I J 1 ) )  15rZOe2n 
15 B l t A = A l ! J )  

L ( K ) = I  
@! Y 9 n.J 

20 CONTINUE 
C 
C INTERCHAMeF WOWS 
C 

J s L I K )  
IFtJ-KI 3 5 ~ 3 5 9 2 5  

ng 70 I = l r N  
Kt=K1+R 
H O L D = - A ( k I )  
J I=K ! -K+J  
A ( K 1 1 = A t J I )  

30 A ( J I )  =HOLD 

25 IY1-K-N 

c 
c TMTFRCHhMGE COLUMNS 
C 

3 5  ISM(#) 

38 JB=N+( 1-1 1 

J K  =NK+J 
J I = J P  rJ 
H O L D a - A t J K )  
81 J K l = A l J I )  

40 A t J l )  =HOLn 

PFII-KI 45e45930 

DO 40 u J = I g N  

C 
C D I V I D F  COLUMN f3V MINUS P t V o f  ~ V & L ~ J F  OF P l V O T  FLFMFNT IS 
C CONIAYNED IN P I G A )  
C 

M I N V  054 
MINV 055 
M I N V  056 
MINV 057 
M I N V  058  
MINV 059  
MIWV 060  
M I N V  061 
MINV 062 
MINV 063 
MINV n64 
PlWV 06" 
r\rlF!V ngr, 
M l N V  n47 
@dr?V nan 
MlNV 040 
MlMV 870 
M l N V  077 
M I N V  073 
M I N V  077 
M l N V  074  
M l N V  075 
M l N V  076 
M l N V  077 

M l N V  070 
M I N V  000 
M I N V  OR1 
M I N V  092  
MlNV 0'3 
M I N V  0°4 

H l W  086 

M l N V  oen 
MfNV 000 
M l N V  001 
MINV 002 

*MINV 001 
M l Q V  034 
MIMV 0°C 
U l Y V  006 
MlWV 0-7 
MlhlV OOR 
M I N V  003 
M I N V  100 

MINV 079 

M r w  o n =  

M I N V  On7 
M l N V  ORs 



46 

48 

50  

5 5  
C 
C 
C 

bo 
62 

65 
C 
C 
C 

7 0  
95 

C 
C 
C 

C 
C 
C 

eo  
C 
C 
C 

100 

105 

108 

110 
120 

179 

170 

REDtlCE MA TR P X 

DO 65  I = l r N  
1 K=MK+ I 

W 0 1 9 = A (  f K  1 
I J z I - N  
DO 65 J = l e N  
I J'= 1 J-4 
IF(1- IC)  h0*65960 
I F I J - K )  C 7 * h 5 r h 7  
KJ-1 J-l+k 
A I  I J ) = t i O L D ~ ~ f K J ) + A ( I J J  
CONT 1 NUF 

D I V I D F  ROW R Y  P I V O T  

K JmK-N 
DO 75 J = I s N  
KJ=KJ+N 

A t  K J )  =/I I K J l  / R I G A  
CONTINUE 

I F I J - K )  7 0 9 7 5 9 7 0  

PRODUCT OF P I V O T S  

D=D*RI GA 

RFPLACE P I V O T  BY RECJPROCAL 

AtKK)= l .O/RTGf i  
CONT t HUE 

F I N A L  ROW AND c n ~ U s ' N  INTFRCHANGF 

KEN 
K= f K - l  1 
f F ( K )  1 5 6 ~ 1 5 0 e 1 0 5  

IFfI-Yl 1 7 C l r l 7 0 s l O ~  
JQ.N*lK-II 
JR=N*( 1-1 ) 
DO 110 J = l r N  
J K  )I JO+ J 
H0l DaA( J K  1 
J l=JR+J 
A (  J K ) = - A f  JI 1 
A I J I )  =HOLD 
J = M I K )  

I = L I K )  

I F ( J - K )  300~100e175 
K I =K-N 
DO 1 7 0  I = l c N  
KY =KI+N 
HOLD.rA I K I 1 
J I * K  I - K + J  
A ( K I ) = - A I J I )  
A ( J I )  =HOC* 
Gn T n  10n 



e 
e 
C 
C 
C 
C 
C 
C 
C 
c 
c 
C 

C 
C 
C 
C 
c 
C 
C 

C 
. e  
C 
C 
c 
C 

C 

C 
c 
C 
C 
c 
C 
C 
C 
C 
C 
C 
c 



C- 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
e 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
L 
c 
c 

C 

c 
c 
G 
c 
C 
C 

DESCRIPfPOM O F  PARAMPIERS 
MOFF - CODF INPICAflNC TYPF OF CONVFRSION 

1 - FRCM S'IIVGLF TO 00U13LF h Y " F P I S i ~ "  
9 - FROM DOUSLF TO S1Nf.LF nPMrNSrn*' 

I - NUMqFR Or R(1WS IN AfPUhL ' ) A T A  V A t R I X  

RI - NUMRER OF QOWS SPECIFII.I> FOR THF MATRI% D 
DIMTIVSION STATFMFN? 

I .  - NUMRER OF COLUMNS SPEC1FIL I )  FOR THF M A f R I X  
D I M E N S I O N  SVATFMFNT 

b - l F  M O D F S l r  T H I S  VECTOR CONTAINS9 AS INPUT9 
M A T R I X  OF SIZE I BY J I N  CONSrC\JTlVF LOCAT 
COLUMN-WISF- 1F MO"F=*r I T  CONTCTNS f i  PAT 
OF THF SAMF S I Z E  AS OUfPlJTe T H F  LFNGTH OF 

J - NUMRER nF CN,VWS IN RCPIJAL naTA M A T Q P X  

4 Of>fly()? * 
ARRAYOlk  
A R R A Y Q l ~  
PRRAYOlh  
AI?Ol\yOl7 
ARRAYOtP 
ARRAY01 0 
ARRAY070 

N ARRAY n3 1 
b RRA Y 0 3  7 

D I N  ARRAYn73 
ARRAY0?4 

A DATA ARRAYn?C 
ONS A RR A Y 07 r> 

MATRIX ARRAYn-7 
VFCTOR S ARRAY030 

1.5 I J I  WHERFI I J = f * J e  ARRAY070 
D - I F  M O D F = l r  T H I S  YATRIX I N  TlY M )  CONTAINS, A S  OUTPUT9 ARRAY030 

A D A T A  MATRIX OF SIZF I I ~ Y  J IN FIRST r ROWS AND ARRAYDaI  
J COLUMNS. I F  MODEZ29 I T  CONTAINS A DATA M A T R I X  OF ARRAYO?? 
1 H E  SAMF S 1 2 E  AS INPIJTe ARRhYrJa3 

ARRAY 034 
RFMARKS ARRAY025 

I5 RFFERRED AS A M A t R I X  I N  OTHER SSP ROUTINFS, S I N C E  I T  ARRAY037 
CONTAINS A DATA M A T R I X o  ARRAY03A 
IHIS S U R R O U I I N r  CONVERTS ONLY GENI-RAL DATA IJATRICFS (STORAGEARRAYO?Q 
MODE OF 0 )  e ARRAY 0 4  

A R R A Y W l  
SURROU? I N E S  ANO FClNCf I O N  SUBROUTlNF.5 RFQUIRFO ARRAYOh? 

NON F ARRAYW? 
P R R A Y O h  t i  

MFPHOD ARRAY()&% 
REFER TO   HE DIJCUSSlOb4 6N V A R I A H L F  DATA SIZF I N  THE SECTIONARRAY046 
D E S C R I R I N G  OVFRALL R U L E S  FOR USAGE I N  THIS MANUAL. ARRAY 047 

ARRAY 048 
P ~ O ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ O ~ ~ O ~ O O ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ O ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ A R R A Y O ~ ~  

ARRAY 050 
WJRROUIINF ARRAY IMODEOY~JBNIMPSID) ARRAY051 
t)fMENSION S (  1 )  r b (  1 )  ARRAY052 

ARRAY053 
N I =N-I ARRAY054 

ARRAY055 
IESI I Y P E  OF CONVERSION ARRAY 056 

ARRAY057 
IFIMODE-11 1lJUr l U U s  12U ARRAYQSQ 

& RRA Y n+O 

VECTOR C CAN RF I N  ?HF SAMF LOCATION AS MATRIX 0. VECTOR S ARRAY076 

CONVFRI FRCM S I N G L F  I O  DOURLF D I M F N S I O Y  

C 
C CONVER 
C 

120 IJ.0 
NMaO 
DO I 7 0  K =  
DO 175  L= 
I JrI J+!. 

9 J  

9 r  



h M * N M i 1  P m P F  y e 9 0  

125 31 IJI=D(NM) ARRAY 080 
ARRRYOAI 

C ERRAYOR7 
140 RFTURN ARRAYOR? 

4 I! R A Y 0 8 4 

C TFG 001 
c ~ ~ e e o e ~ ~ a e ~ ~ e a ~ a ~ ~ e ~ e ~ ~ ~ ~ ~ ~ d e e ~ ~ e e ~ o a ~ ~ o o e e a a b e a n ~ ~ e ~ e b ~ e ~ ~ ~ e o e m ~ e  TFG 002 
c TFG 003 
C SIJRROIJT I NF OTF6 TFG AOf* 
C TFG 005 
C PURPO S E TFG 006 
C IO COYPLI1E IHF VECTOR OF INTFGRAL VALIIFS FOR A G I V F N  TFG 009 
C GENFRAL TARLF OF ARGUMENT AND FIJNCTTON VALIlFSa TFG 008 
c TFG 009 
c usmt TFG 010 
c C A L L  Q T k O  ( X I Y P L ~ N D I M )  TFG 011 
c TFG 012 
c UtbLKIPlION OF P W R A M k l t H S  f F C  013 
C X - IHE YNPUI WECIOR O F  ARGUMENT VALUFSe TFG 014 
C Y - lHt I N P U I  V E t l O R  OF FUNCTION VALUES. TFG 015 
C L - IHE RFSULtfNG VECTOR OF !NTFGRAL VALUFSe Z MAY R E  TFG 016 
t I D E N T I C A L  W I T H  X OR Ya TFG 017 
c NDIH - I H E  D I M E N S I O N  OF VECTORS X,Y*Ze TFG 018 
c TFG 019 
c HkMARKS TFG 020 
c bl0 A C f I O N  I N  CASE N D I M  LE55 THAN l e  TFG 021 
c TFG 022 
c X J J H O U I I N E S  RND F U N C I I O N  MJBPROGRAMS RFOII IRED TFG 023 
c N O N t  TFG 024 
L TFG 025 
C ME I HOD TFG 026 

TFG 027 c L j tC i INNING W I l H  Lll)rUe EVALUATION OF VECTOR 2 IS DONE BY 
C MEANS OF I R R P F L O l b A L  RULE fSECOND ORDER FOQMULA). TFG 020 
C FOR REFFRENCF. SFF TFC 090 

TFG 0‘0 C Fet3eHIL@FI IRANns INTRODUCT I O N  TO NUf‘FRTCAL ANRLYSI  SI 
t MCGRAW-H?LLP NFN YORK/TORONTO/LONDON~ 10569 P P o 7 5 e  TFG 011 

TFG 032 C 
c ~ o ~ e ~ o ~ ~ ~ m ~ ~ e ~ ~ ~ ~ ~ e ~ ~ ~ ~ e ~ ~ ~ ~ ~ m ~ e ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ a o ~ o ~ ~ m ~ ~ ~ e ~ e ~ ~ o ~ e ~ ~  TFG 0 3 3  
c TFG 034 

SUBROUI INE Q ~ F G ~ X S Y ~ Z I ~ V D I M )  TFG 0 1 5  
TFG 036 c 

c TFG 037 
D I M E N S I O N  X ( 1 l r Y f l ) ~ Z I I )  TFC 0 q R  

t TFG 039 
SUM2 a 0  o TFG 040 
IF(NBfM-1)49791 TFG 041 

C TFG 042 
c I N I E G R A I I O N  LOOP TFG 043 

1 DO 2 f a 2 9 N D I M  TFG 044 
bUMl = W M 2  TFG 045 
b U M 2 = s U M ? 9 . 5 * ( A ~ 2 ) - X f I - 1 ) ) 8 1 Y 1 1 ) 9 Y ( I - l ) )  TFG 046 

TFG 047 2 Lf I-l)=suMl 
7 L t N D I M ) = S U M 7  TFG 04R 
4 KE IUHM TFG 049 

END TFG 050 

130 N M E N ~ ~ ~ ~  

END 

C 
c o e m 0 e ~ ~ ~ ~ o ~ 8 ~ ~ 8 0 8 a e ~ ~ ~ ~ ~ m ~ e a ~ ~ e e a a ~ o ~ ~ ~ e ~ ~ ~ ~ e o ~ ~ ~ ~ ~ ~ e ~ o ~ ~ ~ m ~ ~ m m ~ ~ e  

C 
C SIIHKOUI I N t  L t P  
c 
C PIJLPOSE 
C CUMPUIE I H F  VALlJE5 OF IHE LFtrlrllN3r POLYNOh”!ALS P I N e X )  
c POW AKGlJMEHl VALUE X AND OROFRS 0 IJP TO Ne 
c 
L J J b ~ b t  



C 
e 
C 
C 
c 
c 
C 
c 
C 
C 
c 
C 
C 
C 

c 
t 
C 

C A L L  L E P ( Y r X c Q 1  

D F S C R 9 P l l O N  OF PAPAVFTEPS 
Y - RFSlJL I V r C ? > P  OF f ~ I V T h l S ! ~ f l  > l + l  C W ? t . I " I N r .  T b l r  V a l  I F 5  

OF LET1FNI)RF POLYNOYlALS Of' ORncR 0 UP TO IV 
FOR CIfVFN ARGlJWFNT X e  
V9LUES ARF ORDERFI) FROM LOW T O  HFGtI  ORPFR 

X - ARGUMENI OF LEGENDRE POLYNOMIAL 
N - OHDEW UF LEOFNDHF POLYNOMlAL 

RkMAHKCI 
PI L f b b  IHAN U IS 1RFAtTT) AS IF N WFRF 0 

bUHROUl I N F S  ANT) FUNC1 ION !AJT\PROGPLMS RFDUIRFCl 
NONt 

MF I HOD 
E V A L U A l l O N  15 qASFP Oh1 THF RFCURPFNCF FQUbTl f lN  ynn 
LEGENDRF POLYNOVIALS P ( N * X I  
P ( N + ~ ~ X ) = ~ + X * P ( N I X ) - P ( ~ - ~ ~ X I - ( X * ~ ( N ~ X ) - P ~ N - ~ ~ X ~ ~ / ~ N ~ ~ ) *  
WHFRF IHE F I R S T  l E R M  I N  f 3 R A C K T T Z  IS THF ORnFRe 
I H E  SECOND IS THE ARGUMFNT. 
3 l A R I I N G  VALUFb ARE P t U ~ X l ~ l ~  P t I * X I ~ X  

C 
C 
C 
C 
e 

C 
C 

C 
C 
C 
C 
C 

DFSCRIP 
I'RMT 

I' R 1.4 T 

I O N  OF PARAMFTFRS - AN TNPUT AND OIJTPI IT  VFCTOR W I T I I  rlIP+Ck!SlChl GRFATFR 
OR Ff)lIAL TO K v  WHICH S P I C I F l " 5  711' P t R 4 Y ' T T R q  OF 
THE I N T r R V A L  A V O  OF ACCURACY AND WHICH SCRVfiS FOR 
COMMIJNICPTION P t  TWFFN OUTPlJT SlJCIROIJTINF (FURNISHFD 
BY THF USER)  AND SlJRROlJTINF kIP('G. I XTFP'P P R M T ( L )  
THE fWPC,UENTS ARE NOT DFSTRQYFC P Y  SIJ I tRO?ITINt  
HPCG PfiO THEY ART 

i ) -  I q q F n  fan(j.on ,-c f!lr i *'T'" V " I  ( :"-UT1 *) 



- 
c 
c 
c 
C 
C 
C 
C 
C 
c 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
c 
C 
c 
e 

e 

C 
C 

C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PkP 
PHk 

PRM 

OlJTPltT SURROIJT TNEo 
PRMT(S1-  NO TNPllT PARAMFTFR. S I J R R n l J T l N ~  HPCr? l N I T I A L l 7 F S  

Y 

DEPY 

N B I M  

1 H L F  

FCT 

O U f P  

AUX 

REHnRKS 



C 
C 
C 

C 
c 
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c 

c c 

C 
C 

C 
C 

C 

C 

C 

C 
C 
C 



C POSSIBLE BREAK-POINT FOR L INKAGE pcn 7c4 
C DCG ?CC 

. P C G  2 7 2  
PCC 371 
PCC 974 
pcc 275 
PCG 276 
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214 IF (N-7) 2 0 1  21 8 9 2 1  R 
2 1 8  I F  ( I STEP-4 ) 2 0 1  9 2 1 9  97 19 

PCG 2 8 8  

P ( G  270 
prr. 7-1 

DCr, 7-7 
P C G  7 9 3  
PCG 9r)4 

PCG 295 
o m  7-96 
P r G  739 
Prt 738 
PCC 737 
PCG -00 
PCG 301 
P V  302  
OCG 3 0 3  
P ~ G  ? n b  
P C t  3 n 5  
PCG *06 
PCG 3 0 7  
PCC 3 0 8  
PCG 
W G  110 

PCG 3 1 2  
PCG 3 1 3  
PCC 7 1 4  
DCG *IS 
PCG 7 1 5  
PCG 3 1 7  
PCG 3 1 8  
DCG "1'7 

PCG - 2 1  
o c t  -22 
W G  3 2 3  
PCG 3 2 4  
PCG 3 2 5  
PCG 3 2 6  
PCG 127 
OCC 7 7 0  
PCG 3 2 9  
PCG 330 
PCG 7 3 1  
PCG 332 
PCG y - 1  
PCG 3 7 4  
PCC 1 7 5  
PCG 336 
net, 737  
V G  238 
PCG * y o  
PCG 741) 
PCG 341 
PCG 3 4 2  
"Ct 1 4 3  
PCG 1 4 4  
PCG 3 4 5  
PCC 1 4 6  
PCC 347 
PCG 140 
PCG 74s 
PCG * S O  
PCG 1 5 1  
PCG 3 5 1  

Or'. 7 8 0  

PCC 711 

OCG = 2 n  

PCQ 25-3 
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CONVERGENCE OF THE MWR SOLUTIONS 

C, 1 Discussion 

Calculations were made for the first, second, and third 

imations of the y employing the CSM eddy-viscosity 

model in the tusrbulen r information terms. The calcu- 

lated velocity profileas Mach-number profiles, and slcin- 

friction distribution are shown in Figures C1 to C15 for 

four different free-stream Mach numbers and all three ap- 

proximations, The convergence properties of these solutions 

are particularly satisfying, since very 1.i tle success has 

previously been o tained for approximations above the second 

order for turbulent flow, The kin-friction calculations 

converge toward the experimental data for successive approxi- 

mations, The calculations of velocity and Mach-number pro- 

files also display convergence in the sense that the third 

imation is a1 nearer to the second than the 

second approximation is to t e first; however, the profile 

calculations are not always convergent to the experimental 

data, This ma e the comparison between callcula- 

tion and experiment is not totally vaEi for velocity and 

ac=h-nu&er profixes as disc 

The small difference between %he 
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and the second in this work supports the contention of 

Forsnes and Wlobott [ C l J  and Deiweart and Wbbott CC21 that the 

second approximakion is sufficient for most engineering 

purposes e 
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APPENDIX D 

De 1 %ntrodue-tion 

A method i s  devised by which the c a l c u l a t e d  va lue  of 

dCf/dRex a t  t h e  i n i t i a l  c a l c u l a t i o n  s t a t i o n  of t h e  MWR 

p r e d i c t i o n  procedure can be fo rced  t o  match t h e  experimental  

va lue  of dCf/dRex a t  xoe For t h e  purposes of t h i s  r e p o r t ,  

t h e  experimental  va lue  of dCf/dRex a t  xo is de f ined  a s  t h e  

va lue  obta ined  by: (1) f i t t i n g  a s t r a i g h t  l i n e  t o  t h e  

experimental  r e s u l t s  on a p l o t  of log  Cf ve r sus  log Rex  i n  

t h e  reg ion  n e a  x 

r e p r e s e n t s  t h i s  s t r a i g h t  Panep Cf = a R e x ,  and ( 3 )  ana ly t -  

i c a l l y  d i f f e r e n t i a t i n g  this equation a t  xo. 

(2) determining t h e  equat ion  which 
O 8  

40 

D . 2  Analepsis 

The b a s i c  assumption underlying t h i s  dCf/dRex i n i t i a l -  

i z a t i o n  procedure i s  t h a t  t h e  f r a c t i o n a l  error i n  t h e  cal- 
e 

c u l a t e d  va lue  of the shear integral g2  a t  xo is  assumed t o  

be t h e  same as t h e  f r a c t i o n a l  error i n  t h e  c a l c u l a t e d  

va lues  of g2 a t  a l l  streamwise s t a t i o n s ,  For t h e  p r e s e n t  

t h e  i n i t i a l i z a t i o n  procedure i s  r e s t r i c t e d  t o  a second 

approximation of t h e  RMR<. 

From equat ion  (3,74) reproduced below, 

( 3  5 74) 



€or a second approximation, Differentiation of equation 

( D e l )  yields 

Equation ( 3  55) I reproduced below, 

simplifies to 

where 

and 

- I 1  c "ki ij j e 

AINBk = Aki B (D.5) 

Substitution of equation (De3) into equation (De2) and 

conversion to the physical variable x yield 

 he experimental vaiue of dCf/dRex ak the initial station. 

is substituted i n t o  equation (%so6) ,  the remaining terms 
xO 
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are also evaluated at xog aasd the equation is solved for the 

value of g2 - denote irbia vakue by the sylrifoal g 
2desired’ 

This is the value ~f g2 at xg wb.ickg if used in the MWR 

calculation program, w i S 1  y i e l d  the experimental value of 

at FF i.5 calculated 

by using a specified shear model - denote this value by the 
dCf/dRex at xo, N o w  the va.l.\re g2 “‘-0 

symbol CJ e This value of g Z 8  substituted into equa- 
2model 

tion (B-6) I would most l i k e l y  yield a value of dCf/dRex 

different than the experimental value of dCf/dRex at xo. 

Then in the prediction program whenever a value of g2 is 

calculated using a specified shear model, this value can 

be multiplied by the constant corrective factor of 

This procedure assures that the cal- 
model / 92 desired 42 

culations w i l l  at Least skar t  with the experimental value 

of dCf/dRex at xoe 


