10,409 research outputs found
Recommended from our members
A pilot study for the collaborative development of new ways of visualising seasonal climate forecasts
Radio Images of 3C 58: Expansion and Motion of its Wisp
New 1.4 GHz VLA observations of the pulsar-powered supernova remnant 3C 58
have resulted in the highest-quality radio images of this object to date. The
images show filamentary structure over the body of the nebula. The present
observations were combined with earlier ones from 1984 and 1991 to investigate
the variability of the radio emission on a variety of time-scales. No
significant changes are seen over a 110 day interval. In particular, the upper
limit on the apparent projected velocity of the wisp is 0.05c. The expansion
rate of the radio nebula was determined between 1984 and 2004, and is
0.014+/-0.003%/year, corresponding to a velocity of 630+/-70 km/s along the
major axis. If 3C 58 is the remnant of SN 1181, it must have been strongly
decelerated, which is unlikely given the absence of emission from the supernova
shell. Alternatively, the low expansion speed and a number of other arguments
suggest that 3C 58 may be several thousand years old and not be the remnant of
SN 1181.Comment: 12 pages; accepted for publication in the Astrophysical Journa
Scaling of Non-Perturbatively O(a) Improved Wilson Fermions: Hadron Spectrum, Quark Masses and Decay Constants
We compute the hadron mass spectrum, the quark masses and the meson decay
constants in quenched lattice QCD with non-perturbatively improved
Wilson fermions. The calculations are done for two values of the coupling
constant, and 6.2, and the results are compared with the
predictions of ordinary Wilson fermions. We find that the improved action
reduces lattice artifacts as expected
Data report for the Siple Coast (Antarctica) project
This report presents data collected during three field seasons of glaciological studies in the Antarctica and describes the methods employed. The region investigated covers the mouths of Ice Streams B and C (the Siple Coast) and Crary Ice Rise on the Ross Ice Shelf. Measurements included in the report are as follows: surface velocity and deformation from repeated satellite geoceiver positions; surface topography from optical levelling; radar sounding of ice thickness; accumulation rates; near-surface densities and temperature profiles; and mapping from aerial photography
Theoretical And Experimental Studies Of Collision-Induced Electronic Energy Transfer From v=0-3 Of The E(0g+) Ion-Pair State Of Br2: Collisions With He And Ar
Collisions of Br(2), prepared in the E(0(g)(+)) ion-pair (IP) electronic state, with He or Ar result in electronic energy transfer to the D, D(\u27), and beta IP states. These events have been examined in experimental and theoretical investigations. Experimentally, analysis of the wavelength resolved emission spectra reveals the distribution of population in the vibrational levels of the final electronic states and the relative efficiencies of He and Ar collisions in promoting a specific electronic energy transfer channel. Theoretically, semiempirical rare gas-Br(2) potential energy surfaces and diabatic couplings are used in quantum scattering calculations of the state-to-state rate constants for electronic energy transfer and distributions of population in the final electronic state vibrational levels. Agreement between theory and experiment is excellent. Comparison of the results with those obtained for similar processes in the IP excited I(2) molecule points to the general importance of Franck-Condon effects in determining vibrational populations, although this effect is more important for He collisions than for Ar collisions
Effect of antiferromagnetic exchange interactions on the Glauber dynamics of one-dimensional Ising models
We study the effect of antiferromagnetic interactions on the single spin-flip
Glauber dynamics of two different one-dimensional (1D) Ising models with spin
. The first model is an Ising chain with antiferromagnetic exchange
interaction limited to nearest neighbors and subject to an oscillating magnetic
field. The system of master equations describing the time evolution of
sublattice magnetizations can easily be solved within a linear field
approximation and a long time limit. Resonant behavior of the magnetization as
a function of temperature (stochastic resonance) is found, at low frequency,
only when spins on opposite sublattices are uncompensated owing to different
gyromagnetic factors (i.e., in the presence of a ferrimagnetic short range
order). The second model is the axial next-nearest neighbor Ising (ANNNI)
chain, where an antiferromagnetic exchange between next-nearest neighbors (nnn)
is assumed to compete with a nearest-neighbor (nn) exchange interaction of
either sign. The long time response of the model to a weak, oscillating
magnetic field is investigated in the framework of a decoupling approximation
for three-spin correlation functions, which is required to close the system of
master equations. The calculation, within such an approximate theoretical
scheme, of the dynamic critical exponent z, defined as (where \tau is the longest relaxation time and \xi is the
correlation length of the chain), suggests that the T=0 single spin-flip
Glauber dynamics of the ANNNI chain is in a different universality class than
that of the unfrustrated Ising chain.Comment: 5 figures. Phys. Rev. B (accepted July 12, 2007
Frustrated quantum Heisenberg ferrimagnetic chains
We study the ground-state properties of weakly frustrated Heisenberg
ferrimagnetic chains with nearest and next-nearest neighbor antiferromagnetic
exchange interactions and two types of alternating sublattice spins S_1 > S_2,
using 1/S spin-wave expansions, density-matrix renormalization group, and
exact- diagonalization techniques. It is argued that the zero-point spin
fluctuations completely destroy the classical commensurate- incommensurate
continuous transition. Instead, the long-range ferrimagnetic state disappears
through a discontinuous transition to a singlet state at a larger value of the
frustration parameter. In the ferrimagnetic phase we find a disorder point
marking the onset of incommensurate real-space short-range spin-spin
correlations.Comment: 16 pages (LaTex 2.09), 6 eps figure
- …
