NASA Technical Memorandum 100708

Data Report for the Siple Coast Project

R. A. Bindschadler, S. N. Stephenson,
E. P. Roberts, D. R. MacAyeal, and D. R. Lindstrom

OCTOBER 1988

NASA Technical Memorandum 100708

Data Report for the Siple Coast Project

R. A. Bindschadler
Goddard Space Flight Center
Greenbelt, Maryland

S. N. Stephenson

Science Applications Research
Lanbam, Maryland
E. P. Roberts

Department of Geology,
University of Maryland
College Park, Maryland
D. R. MacAyeal and D. R. Lindstrom

Department of Geophysical Sciences
University of Cbicago
Cbicago, Illinois

N/SA

National Aeronautics and
Space Administration
Scientific and Technical Information Office

CONTENTS

INTRODUCTION 1
SECTION 1 ICE VELOCITY 5
SECTION 2 STRAIN RATE AND ROTATION 11
SECTION 3 SURFACE ELEVATIONS FROM GEOCEIVER AND OPTICAL LEVELLING 17
SECTION 4 RADIO-ECHO SOUNDING OF ICE THICKNESS 49
SECTION 5 ACCUMULATION RATE 53
SECTION 6 TEN-METER TEMPERATURES AND FIRN DENSITY PROFILES 53
SECTION 7 SPECIAL SITES RESULTS FROM DOUBLE STAKE LINES AT LI AND DNB 64
SECTION 8 AERIAL PHOTOGRAPHY 71
SECTION 9 MULTI-LEG ROSETTES 74
APPENDICES 81

LIST OF FIGURES

Figure 1: Regional map showing station positions.
Figure 2: Regional map showing station velocities.
Figure 3: Velocities across Ice Stream B.
Figure 4: Regional map showing selected strain rates.
Figure 5: Regional map showing lines of optical levelling.
Figure 6: Elevation profiles from optical levelling.
Figure 7: Base and surface topography along two lines near crary. station A2.

Figure $8(a-c):$ Firn density profiles.
Figure 9: Strain rates measured along a double stake line at Ll, across the margin of Crary Ice Rise.

Figure 10: Longitudinal profile of strain rates measured along a double stake line near DNB

Figure $11(a-b):$ Crevasse and undulation traces from aerial photography of Crary Ice Rise.

Figure 12-13: Stake movements and strain rates at station N3 from multi-leg rosette results

LIST OF TABLES

Table	$1:$	Velocity measurements.
Table	$2:$	Velocities across Ice Stream B measured by transect.
Table	3:	Strain rates.
Table	4:	Elevations from geoceiver measurements.
Table	$5:$	Positions of optically levelled traverses.
Table	$6:$	Surface elevation profiles from optical levelling.
Table	7:	Station ice thickness.
Table	8 :	Thickness profile from N 1 to N 4.
Table	$9:$	Thickness profile from A2 (CIR) toward N1.
Table	$10:$	Thickness profile from A2 (CIR) toward H2 (CIR).
Table	11:	Accumulation rates from stake exposures at strain rosettes.
Table	$12:$	Temperature measurements.
Table	13 (a	-c) : Firn density profiles.
Table	$14:$	Velocity profile from double line of stakes which crosses the edge of Crary Ice Rise at station Ll.
Table	$15:$	Strain rate profile from double line of stakes which crosses the edge of Crary Ice Rise at station LI.
Table	$16:$	Velocity profile from double line of stakes parallel to flow in the mouth of Ice Stream B.
Table	17:	Strain rate profile from double line of stakes which parallels ice in the mouth of Ice Stream B near DNB.
Table	18:	Multi-leg rosette results.

This report contains a compilation of the data collected by a combined NASA/University of Chicago field program on Siple Coast, Antarctica from October 1983 to January 1987 and a description of the methods used to obtain the data. In its first three field seasons, beginning in October 1983, the project has concentrated on studying Ice Streams B and C (see Figure 1). A number of publications have resulted from the analysis of these data and they are referenced in Appendix 4. This report will assist in the continuing analysis of these data and adds them to the growing data base that exists for the region.

The NASA/University of Chicago program is part of a larger project which also involves the Byrd Polar Research Center at Ohio State University and the Geophysical and Polar Research Center at the University of Wisconsin. The major goals of this larger project are:

1) To measure the mass balance and configuration of the major ice streams in the Ross Sea drainage basin of the West Antarctic ice sheet;
2) To determine the forces that control the flow of these ice streams;
3) To investigate long-term trends in the drainage basin.

To meet these goals, the NASA/University of Chicago group designed a data acquisition operation with the following specific objectives:

1) Establish a network of stations to measure the surface velocity and strain rate profiles across the widths of Ice Streams B and C at locations near their grounding lines to determine net ice stream discharge rates.
2) Establish stake schemes to measure longitudinal velocity and strain rate profiles to determine the spatial gradients of both ice transport and the forces which restrain the ice stream motion.
3) Establish a network of stations which surround Crary Ice Rise (Figure 1), to measure velocities and strain rates, and thus determine its influence on the flow of Ice Stream B, and the state of mass balance of the ice rise.
4) Establish a network of stations which surround a feature named Ice Rise "a", a feature seen on early airborne photography in the region, to determine its position and characteristics. (We state here that Ice Rise "a" is not a true ice rise at all, as its velocity is the same as the surrounding ice, which is itself, lightly grounded.)
5) Establish a network of stations to measure the ice velocity and strain rate fields in the lower, lightly grounded regions of Ice Stream B referred to as the "ice plain".
6) Map the precise location of the grounding lines of Ice Streams B and C.
7) Perform regional studies of small-scale ice rumples to characterize their effect on the large-scale flow.
8) Establish stake schemes and carry out resection surveys to measure the velocity field in the severely crevassed margins of both ice streams and ice rises, to determine the local stresses in this region.
9) Develop a new method for rapid acquisition of strain rate data using multi-leg rosettes.

Although the data presented within this report are mainly the result of the collaborative effort of the University of chicago
and NASA, the wider collaboration with Ohio State University and the University of Wisconsin is also evident, particularly in the map figures. We have used the results published in Shabtaie and Bentley (1986) as the basis for the boundaries of the ice streams and their grounding lines and the radar definition of ice rises and rumples. We are also grateful for vigorous continuing discussions between the authors and the other collaborating institutes; in particular, with S. Shabtaie, C. R. Bentley and I. M. Whillans.

ORIGNAL PAGE IS OF POOR QUALTY

Figure 1: Regional map showing station positions.

SECTION 1: ICE VELOCITY

During this program, 26 ice velöcities were measured by accurately determining the position of stakes using a Doppler satellite tracking system at several times and then calculating the distance moved during the time intervals. To obtain the distance between two geographic positions, clarke's formulae were used, (see Jackson 1980), with a value for the semi-major axis of 6378.16 km and a flattening of $1 / 298.25$.

A Magnavox MX1502 geoceiver was used for precise position determination. Each successful tracking of a satellite pass provides an independent fix of the receiver position. Successive fixes are averaged together by the receiver so that after about 30 passes, the position reaches a steady value within a sphere of about a 1.6-meter radius. However, this value of the standard deviation cannot be considered the error in absolute position because there is also an error in the broadcast satellite ephemeris which can cause an additional error of up to 20 meters (Whillans, personal communication). This imprecision can be improved with post-processing by using either precise ephemerides or translocation techniques. To obtain 30 passes at 84 degrees south, the average latitude of the field program, the geoceiver must operate for about 24 hours. For operational reasons, a geoceiver was rarely allowed to track more than 40 passes. More often, only about 10 passes were used to obtain a position.

We have adopted the error analysis of Thomas et al (1984) in which for less than 30 passes, they take the root-mean-square radial error as $17.48 / \sqrt{n}$ meters, where n is the number of passes used to obtain a point position. This is twice the error found during the geoceiver test program and about 1.5 times larger than the error calculated by the Magnavox MX1502, but we feel this larger error should be used, given the lack of any other control. This error indicates that for ice moving at a velocity greater than $150 \mathrm{~m} / \mathrm{a}$, and a measurement interval of at least 1 year, as
few as 10 passes will give the velocity to within 5 percent; 30 passes will reduce the error to less than 3 percent. For ice moving $100 \mathrm{~m} / \mathrm{a}$, 30 point positions are needed to give 5 percent accuracy, while for ice moving at $30 \mathrm{~m} / \mathrm{a}$, translocation methods are needed to obtain better than 10 percent accuracy.

Table 1 summarizes the velocities measured by geoceivers. It includes the latitude and longitude of each station, the date at which the original position was observed, the number of passes for the two point position determinations, and the velocity magnitude and direction along with an estimate of their errors. Our computed velocities and those of the Ross Ice Shelf Geophysical and Glaciological Survey (RIGGS) program are plotted in Figure 2.

Table 2 gives the velocity across a $54-\mathrm{km}$ width of Ice Stream B, including station DNB. The width of the glacier at this point is $84 \pm 3 \mathrm{~km}$ taken from the map in Shabtaie and Bentley (1987). The velocities were determined by transecting a line of stakes twice to determine their relative positions and motion, and then adding the velocity determined by Doppler satellite positioning at station DNB. The observations were made over two l-year time intervals; stakes All to B10 were surveyed in 1983 and 1984, and stakes B11 to B19 were surveyed in 1984 and 1985 so all the observations were reduced to two epochs. The rotation of the stake line (about 6 minutes in 2 years) was included in these calculations. The velocity at stake B18 was also determined by Doppler satellite positioning. The misclosure between the two methods is 5 meters in magnitude and 5 degrees in azimuth, which corresponds to a 26 -meter error for both positions each time they were measured. Figure 3 plots the transverse velocity profile.
orieinal page is
OF POOR QUALITY

Figure 2: Regional map showing station velocities.

TABLE 1 VELOCITY MEASUREMENTS

Site	Latitude	Longitude	No. of Passes	Velocity Magnitude Azimuth*		Date
	deg/min/sec	deg/min/sec	YR1 YR2	(m/a)	(deg)	$D / M / Y$
Crary						
E2.3A	$83 \begin{array}{lll}83 & 09.1\end{array}$	1681243	179	$172+7$	$319+2$	30.11184
E3	832244.0	1693433	630	21^{-8}	$144-21$	19.71184
E4	83920.2	1713638	157	78	2349	19.91184
K1	831024.3	16899	58	22510	3263	20.11184
K2	825634.9	1695800	78	2249	323 2	20.21184
K3	824926.6	1710952	134	23910	3132	$25 \quad 1184$
J1	$83 \quad 3526.7$	1713534	611	3879	3101	20.41184
J2	$8319 \quad 3.8$	1730426	315	33311	3142	$20 \quad 1184$
J3	83722.4	1745529	1816	3856	3291	27.91184
C4	845752.1	1653844	114	7518	2513	23.01184
G3	832542.3	1624312	59	31210	338 2	$\begin{array}{lll}21 & 11 & 84\end{array}$
G4	831640.0	1612655	220	26414	3423	23.21184
L1	830611.8	1722521	2540	155	33317	26.21184
LP1	830004.3	1725957	920	167	12624	28.11184
0	$83 \quad 4714.0$	1660128	810	3698	3041	30.91184
CAMP	$83 \quad 3714.4$	1664431	1728	2455	3181	17.01184

Downstream B

MO	84	17	45.9	158	10	58	12	23	471	6	285	1	4	12	84
DNB	84	10	27.6	154	18	43	45	23	517	5	269.5	0.5	19.4	12	84
E19	84	9	3.1	156	51	07	5	38	465	8	279	1	7.2	12	84
G1	84	3	57.6	152	08	59	5	4	534	12	269	1	12.3	12	84
G2	84	0	28.2	150	32	03	17	11	551	7	259.9	0.7	15.9	12	84
A19	84	24	26.5	154	42	21	15	20	487	6	270.6	0.7	11.2	12	84
B18	83	57	00.1	153	33	32	12	23	426	6	279.1	0.8	9.0	12	84
B25	83	52	01.8	153	10	38	4	23	13	9	268	38	9.3	12	84
H2	83	53	49.0	150	25	25	19	38	30	5	203	10	17.3	12	84

Downstream C
$\begin{array}{lllllllllllllll}H 5 & 82 & 35 & 25 & 153 & 14 & 54 & 27 & 6 & 5 & 321 & 7 & 12 & 12 & 84\end{array}$
*All azimuths are measured clockwise from true North

TABLE 2 VELOCITIES ACROSS ICE STREAM B MEASURED BY TRANSECT

STATN	LAT	LONG		X		VELOCITY				
				Magnit m/a		de	Azim. deg	Bearing ${ }^{*}$ deg X		
	deg/min/		min/		${ }_{301.68}$	${ }_{602.45}$		0.6	274.3	210.9
B18	835656.9	153	3011	299.79	601.36	431.2	0.5	274.3	210.8	
B17	83.5738 .0	153	$34 \quad 07$	298.54	600.57	445.9	0.5	274.3	210.7	
B16	835818.6	153	3804	297.29	599.79	455.4	0.4	274.1	210.5	
B15	835859.9	153	4206	296.02	598.99	462.3	0.4	274.0	210.3	
B14	835942.8	153	4620	294.69	598.17	467.6	0.4	273.9	210.1	
B13	840021.9	153	$50 \quad 13$	293.49	597.41	471.8	0.4	273.6	209.8	
B12	840103.9	153	5424	292.19	596.61	475.9	0.3	273.5	209.6	
B11	840145.6	153	5833	290.90	595.80	480.0	0.3	273.3	209.3	
B10	840242.2	154	0415	289.15	594.71	485.6	0.3	273.1	210.0	
B9	840329.5	154	0525	288.31	593.49	490.4	0.2	272.7	208.6	
B8	840414.9	154	0632	287.50	592.32	494.7	0.2	272.5	208.3	
B7	840459.8	154	0740	286.70	591.17	498.8	0.2	272.0	207.9	
B6	840546.0	154	0849	285.88	589.98	502.2	0.2	271.6	207.5	
B5	840632.9	154	1000	285.05	588.78	506.2	0.2	271.2	207.0	
B4	840719.8	154	1111	284.21	587.57	509.8	0.1	270.7	206.5	
B3	$\begin{array}{llll}84 & 08 & 06.2\end{array}$	154	$12 \quad 22$	283.39	586.38	512.9	0.1	270.3	206.1	
B2	840852.5	154	1333	282.56	585.19	515.0	0.1	270.0	205.8	
B1	840941.2	154	1448	281.70	583.93	516.2	0.1	269.8	205.5	
DNB				280.87	582.74	517.0	0.1	269.0		
A1	8411110.3	154	1706	280.11	581.64	517.7	0.1	269.6	205.3	
A2	8411156.7	154	$18 \quad 19$	279.28	580.45	518.0	0.1	269.4	205. 1	
A3	841241.7	154	1928	278.49	579.29	517.8	0.1	269.0	204.7	
A4	$8413 \quad 25.6$	154	2037	277.71	578.16	518.1	0.2	268.7	204.3	
A5	841412.3	154	2150	276.88	576.96	517.4	0.2	268.3	204.0	
Á6	841445.4	154	2243	276.29	576.10	517.1	0.2	268.1	203.7	
A7	841531.9	154	2356	275.46	574.91	516.2	0.2	267.9	203.5	
A8	841602.2	154	2444	274.92	574.18	515.7	0.2	267.8	203.4	
A9	841649.0	154	2604	274.08	572.93	516.0	0.3	267.7	203.3	
A10	841719.3	154	2657	273.53	572.15	516.8	0.3	267.6	203.2	
A11	$84 \quad 18 \quad 05.1$	154	2815	272.70	570.98	517.7	0.3	267.7	203.3	

SECTION 2: STRAIN RATE AND ROTATION

The rate of deformation at the surface of an ice sheet with respect to. mutually perpendicular axes (x, y and z) can be expressed by the sum of two second-rank tensors, assuming there is no rotation in the vertical plane,

$$
\left(\begin{array}{ll}
E_{X X} & E_{X Y} \\
E_{Y X} & E_{Y Y}
\end{array}\right) \quad+\left(\begin{array}{cc}
0 & W_{X Y} \\
-W_{Y X} & 0
\end{array}\right)
$$

where the strain rate tensor is given by

$$
E_{i j}=0.5\left(\frac{d U_{i}}{d j}+\frac{d U_{j}}{d i}\right)
$$

and the vorticity tensor is

$$
w_{i j}=0.5\left(\frac{d U_{i}}{d j}-\frac{d U_{j}}{d i}\right)
$$

and $U i$ is the velocity in the i direction. The vertical strain rate is derived from the incompressibility of ice and the sum of the two principal surface strain rates: $E_{Z Z}=-\left(E_{X X}+E_{Y Y}\right)$.

To obtain strain rates in an area, two methods were employed. Either strain rosettes or double lines of stakes were set out and surveyed twice; the second survey typically followed the initial survey after a year. In the case of strain rosettes, the strain rate is determined by assuming a linear velocity field between any three stakes in the rosette (usually the three outlying stakes). Velocities are measured relative to the central
stake, and are given by the horizontal change in position of the outer stakes divided by the time interval between surveys.

The velocity within the rosette is then expressed in the form,

$$
\begin{aligned}
& U_{x}=A 1 x+A 2 y+A 3 \\
& U_{y}=B 1 x+B 2 y+B 3
\end{aligned}
$$

where x and y are position coordinates and U_{x} and U_{Y} are the velocity components in the x and y directions. The position and velocities are known for the three outlying stakes so the constants A1 to B3 can be determined from solving a set of simultaneous equations in the form,

$$
\left(\begin{array}{lll}
x(a) & y(a) & 1 \\
x(b) & y(b) & I \\
x(c) & y(c) & 1
\end{array}\right)\left(\begin{array}{l}
A I \\
A 2 \\
A 3
\end{array}\right)=\left(\begin{array}{l}
U_{X}(a) \\
U_{X}(b) \\
U_{X}(c)
\end{array}\right)
$$

where the letters in parentheses denote the three outlying stakes. There is a similar expression for the components in the y direction. Assuming infinitesimal strain, the strain rates are then given by:

$$
\begin{aligned}
A 1 & =d U_{x} / d x=E_{X X} \\
B 2 & =d U_{Y} / d y=E_{Y Y} \\
0.5(A 2+B 1) & =0.5\left(d U_{x} / d y+d U_{Y} / d x\right)=E_{X Y}
\end{aligned}
$$

where positive values denote extension and negative values denote compression.

For the double line of stakes, the first stage in calculating the strain rates is again to determine the velocity field. This is
done by solving an overdetermined set of time-dependent observation equations to derive, with error estimates, the position and velocity for each stake site, using the method described in Wager et al (1980). The position and velocity of the stakes are then used in a series of interconnecting triangles down the scheme using a different linear velocity field for each triangle.

Measurement Errors

A combination of field measurements of distances, angles and azimuths was made to determine strain rates. During the first field season, 1983-84, distances were measured by CA 1000 Telurometers and HP Electronic Distance Meters (EDM's), which are accurate to within 3 cm per 1500 m and 1 cm per 1500 m , respectively. Geodimeter 112 EDM's were used during the next two field seasons; accurate to $\pm 1 . \mathrm{cm}$ per 1500 m . The greater accuracy of the EDM's made their horizontal positions above the stake significant. The theodolite mounting of the EDM was optically plumbed onto the stake, so we consider a reasonable error to be 1 cm . However, where strain nets were measured using only distances the misclosure was more typically 2 cm .

The mean misclosure between rounds of the angle measurements was 4 seconds of arc. However, one of the instruments in the 1984-85 season consistently misclosed to 20 or 30 seconds of arc. In this case, measurements were repeated up to five times to obtain a consistent reading. In calculating the errors of the strain rate, a minimum error of 5 seconds of arc was used; if the misclosure was greater than 5 seconds, the size of the misclosure was taken as the value of the error.

Azimuths were measured with the least accuracy. The greatest contributions to the azimuth error were in the determinations of time and longitude. A l-second error in time contributes to about a 15-second-of-arc error in azimuth; a 1-second error in longitude gives a l-second-of-arc error in azimuth. Time was
taken from the satellite tracking unit, or from radio time signals. Sometimes wristwatches were used which were later calibrated using a satellite tracking unit. We have not calibrated the time given by these units, but we note that when they have been run concurrently they can differ in time by up to 1 second. Therefore, we have used an error of 1 second for time.

The position in longitude is known to better than 1 minute when a geoceiver position is used, but when single SATNAV fixes are used the longitude error could be up to 10 minutes of arc. SATNAV satellite receivers (Racal-Decca 412) are a single-channel system accurate to $\pm 200 \mathrm{~m}$ after about 5 passes, and were used in the place of the MX1502 geoceivers during the 1983-84 field season. Only a few station positions have been estimated by one SATNAV position; thé remainder are determined using either three SATNAV fixes or up to 50 geoceiver fixes. We have used 45 seconds of arc as the error in azimuth. This may be high for azimuths measured under optimum conditions: where time is taken directly from a geoceiver using a stopwatch to measure lapse time, and longitude is taken from a geoceiver position. Figure 4 and Table 3 present the strain rate data.

Figure 4: Regional map showing selected strain rates.

－OUOOOOOOOOOONNOONÁONNO
 00000000000000000000000

```
```

OOQOOROQOOROROOOOOOOOOO

```
```

```
```

OOQOOROQOOROROOOOOOOOOO

```
```


－ONAFAONOUnimoinvioioonounf

00000000000000000000000
OOOOOOOOOOOOOOOOOFOOOOO

 00000000000000000000000 OOQOQOOOOOHOOOOOOOOOOOO

00000000000000000000
unNnNNNNNNNNNNNNNNNN

 － 0 NN $f=0$ OrwonrNfwowo vo

OートOOOー0000000000000
on orrn wiwwirwifoniwion

 un

 $00000000000000000000000000000000001+$ AOOOOOOOOOOOOOQOOOOOOOOOOOOOOOOQOOOO

 000000000000000000000000000000000000 \＆ANOOROOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
 fwNfffgoroungovinwnirwirioroviofovinionnir $00000000000000000000000000000000001+$ OOOOOOOOOOOHOOOOOOOOFOOOOOOOOOOOOOOO GUNWGNWUWNW NNNWWWROFOOOOOOOOOOOOOOO

 000000000000000000000000000000000000 NNTNNNNNNNNRNNNNNFNNNNNNNNNNNNNNNNNN

 wer wvo anw runNviowio onoviof aforintio OONOOOHFOOONOOOOOOOOUNNOOOOOOHOOOOODt rr Nun urr woogroon oriorinm niwinirio

The Doppler satellite tracking system also provided measurements of surface elevation with respect to the reference ellipsoid wGS 72. This ellipsoid has a semi-major axis of 6378135 m and a flattening of $1 / 298.26$. Table 4 gives the measured elevation with each position determination. At 24 stations the elevation was measured twice; in 21 cases, the agreement was 8 m or less. Again, the standard deviation of elevation provided by the MX1502 decreased as the number of passes increased in the same manner as for the horizontal position. Seventy-five percent of the differences were within one standard deviation of the least accurate of the two elevations, and no differences were more than two standard deviations of the least accurate elevation.

Optical levelling was also carried out to gain detailed profiles of the ice surface. The distance between the level rod and optical level varied from 150 to 250 m . In early surveys, distances were estimated by skidoo odometer; some were remeasured using EDM's as part of the strain-rate survey. During later surveys, upper and lower cross hairs were read which gave the distance between level rod positions and also served as a check on errors. Level lines were not closed. On three occasions, optical levelling was carried out between stations which had elevations that were also determined by geoceiver. The difference in elevation determined by each method typically misclosed by 2 to 3 m . This misclosure is fully accounted for by the error in the geoceiver-determined height and is consistent with the given errors. Table 5 gives geographic position of each profile; Table 6 gives the data. Figure 5 shows the geographic locations of each levelling line and Figure 6 presents the elevation profiles for these lines.

Figure 5: Regional map showing lines of optical levelling.

星

 －

vンanuजffwWNNTーOO nounoinounounounounoino

 －

N•－OO	$\stackrel{\Omega}{\square}$
ounougr．	\bigcirc
On	\cdots
－	or
즐	$\checkmark 5$
E	ก－Z
	\bigcirc 二 ${ }^{\text {（r）}}$
	\bigcirc ®
ヶートゥゥ	$\stackrel{\square}{ }$
Wf fuwn	\bigcirc
0トO001	\cdots
	N
¢0，0¢日	\bigcirc
Uf	\checkmark

NNFroo
inoinoinoVVaranuff fwwNHEOO unounounounounounounouno tr
$\stackrel{F}{\circ} \stackrel{F}{8}$
灾家
 whininio

NののuルffwwNNFーOOD ounoinoinoinoinoinoinoün
 un onowno oninwioving

0000000000 N
（ur） 25
$02 z \cdot 2 \exists$
3NIT 2.3
713
 oviounourouroinoinoinoinoinour ○元 ！ $\stackrel{\sim}{N}$
 of

 UINNAWNNHFFFのめ66！w ufoonranowwinowooncow ヨ
in

 viraraionjomjonjow win जunurungangaganongauvय －ivif cuor on vinoonnin －जntander

$\mathrm{Li}(\mathrm{X}) \mathrm{CIR}_{\mathrm{LI}}^{\mathrm{LI}}(\mathrm{Z})$

fw		ャー○○ロ	
Un r．	5	$\cdots \cdot{ }^{\circ}$	（T）
OfOル	$\stackrel{\square}{ }$	unounon	N
－ r	8	－	
fwo	$\Sigma \Gamma$		
voog	－ 5	S	
	ก ${ }^{\circ}$	已	－ロZ
	\bigcirc－		－田
	成		内吅
	$\square N$		N
๑0ヶm	$\bullet \quad 0$		0
060－	\bigcirc	ひひひひツ	$\stackrel{+}{ }$
－Nへ	x	ロートワト	$\stackrel{ }{ }$
$\bigcirc \infty$	\checkmark	－${ }^{-1}$	Z
¢u		$\checkmark \infty+6$	\cdots
い		Nowfe	

 oinounounoinovoinounounoinourounounoinor (山y) ${ }^{\circ}{ }^{\circ}$

-

Аよよ

 omonvff whnN

高

- in Minononononononomonononooo

 omunovurounounouncuirn

 甹

ドトトたが oinoúoinoinoinoinoinoinoinoinoinoing un

LINE 1
E10 to C10

LINE 3
A19 to B10

LINE 6
A2 toward N1

LINE 7

Figure 6: Elevation profiles from optical levelling.

LINE 9
C 4 to C 4 (N5)

LINE 10
C4 to C4(S16)

LINE 11
$\mathrm{C} 4(\mathrm{~S} 16)$ to $\mathrm{C} 4(\mathrm{~S} 20)$

LINE 12
E2.3A to E2.5

LINE 15
E2.2 to E2.2(S)

DIST (km)

LINE 13
E2.3A to E2

LINE 14
E2.2 to E2.2(N)

LINE 16
E2.3A to E2.3A(S)

DIST (km)

LINE 17
E2.3A to E2.3A(N)

LINE 18 E2.4 to E2.4(S)

DIST (km)

LINE 19
E2.4 to E2.4(N)

$$
\begin{aligned}
& { }_{\text {(M) }}{ }^{72} \underbrace{72}_{0} \\
& \text { DIST (km) }
\end{aligned}
$$

$\mathrm{L} 1(\mathrm{~W})$ to $\mathrm{L} 1(\mathrm{X})$

0 toward C2

LINE 21
L1 (X) to $\mathrm{L} 1(\mathrm{Z})$

LINE 22
L1(Z) to L1(D)

LINE 26
LINE 25
G2 to G2'

O toward A1

LINE 27
A3 toward 0

LINE 29
0 toward D19

LINE 30

D19 toward 0

LINE 31

 B27 to H5

LINE 32 A4(RISP) to H5

LINE 33

H5 to B2(RISP)

LINE 34
B10 to B18

JECTION 4: RADIO-ECHO SOUNDING OF ICE THICRNESS

Spot measurements of ice thickness were made at several survey stations (Table 7) and along three short profiles near the grounding line of Ice Stream B (Tables 8,9 and 10 and Figure 7). The radio-echo sounder used was on loan from the University of Wisconsin, Geophysics and Polar Science Center. A description of this radio-echo system is given by Shabtaie and Bentley (1987). To reduce the two-way travel time to ice thickness, a velocity of $169 \times 10^{-6} \mathrm{~m} / \mathrm{s}$ was used for the radar energy (Shabtaie, personal communication).

 WOXE A2（CIR） CIR THI
anananaのananaavvor 0066606666066006 VツOOVONHNNUDのかんNG ESS
a゙ョษ
．．

YOIH山

 NESS profile o Mivivinvivorionounonovoa
 NNNNNNNNNNNNNNNiwNNNG
藋 THICKNESS

Gonananonan vanananvuvvon

Figure 7: Base and surface topography along two lines near Crary station A2.

Two methods were used to measure the accumulation rate. The preferred method involved coring to a depth of about 10 m and sampling the core for beta particle activity. There are peaks in this measurement in the 1956 and 1965 horizons associated with global nuclear bomb tests. Cores have been taken at four sites, (DNB, CIR, E19 and DNC) but the analysis has not been completed.

The second method is to repeat measurements of the length of exposed survey stakes. The normal time interval between measurements of stake heights was only 1 year, so the measurement of accumulation rate may not be representative of the longer term average. To convert these stake exposure measurements to mass equivalents, we suggest a value of $388 \mathrm{~kg} / \mathrm{m}^{-3}$ as the average density of the surface firn.

Table 11 includes these measurements indicating location and the time interval. The standard deviation of the accumulation rate is derived from the eight stake exposures (four survey poles and four adjacent bamboo poles) measured at each strain rosette covering an area of typically $7 \mathrm{~km}^{2}$. The stake lines at Downstream B usually consist of 10 stakes along an $15-\mathrm{km}$ line.

TABLE LI: ACCUMULATION RATES FROM STAKE EXPOSURES AT STRAIN ROSETTES

STATION	FIRN ACCUM (cm / a)		$\begin{aligned} & I C E^{\star} \\ & E Q U I V \\ & (\mathrm{~cm} / a) \end{aligned}$		DATE	STATION			$\begin{aligned} & \text { ICE } \\ & \text { EOUIV } \\ & \left(\mathrm{cm}^{\star} / \mathrm{a}\right) \end{aligned}$		Dite					
Crary						Downstream B	\cos	nt)								
Al	$50 \pm$	$\underline{11}$	21		83,84	0			$16 \pm$		83.84					
A2	58		24	6	83, 84			2		1	84.85					
	24	7	10	3	84, 85											
Bl	50	6	21	2	83,84	Downstream C										
B2	70	11	30	5	83,84	A1	26	4	11	2	82,84					
Cl	70	4	30	2	83,84	A2	27	4	11	2	83.84					
C2	68	12	29	5	83,84	B2	16	3	7	1	83,84					
	29	8	12	3	84, 85	C1	21	4	9	2	83,84,					
C3	41	12	17	5	84, 85	C2	18	5	8	2	83.8.					
C4	42	11	18	5	84, 85	0	19	6	8	2	83,84					
D1	62	14	26	6	83.84											
D2	65	4	28	2	83,84											
E'1	20	3	8	1	84,85											
E'2	20	12	8	5	84, 85											
E1	62	3	26	1	84, 85	Stake Lines										
E2	53	11	22	5	84, 85											
E2. 3	19	2	8	1	84, 85	Downstream B										
E2. 5	24	5	10	2	84, 85	C line	46	7	20	3	83.34					
E3	30	13	13	6	84, 85	D line	44	7	19	3	83, 0					
E4	31	17	13	7	84, 85	E line	46	6	20	2	83. 0					
Fl	53	18	22	8	83.84	F line	44	5	19	2	83%					
F2	60	15	25	6	83.84	A line	48	8	20	3	83,8+					
G1	51	12	22	5	83,84											
G2	49	9	21	4	83,84	Downstream E Line	27		11	2	83.84					
G3	16	5	7	2	84, 85			6								
G4	16	14	7	6	84,85											
H1	54	5	23	2	83.84											
H2	48	1	20	1	83,84											
J1	32	28	14	12	84, 85											
J2	29	2	12	1	84,85											
J3	31	5	13	2	84, 85											
K1	21	8	9	3	84, 85											
K2	20	6	8	2	84,85											
K3	7	4	3	2	84,85											
Ll	30	12	13	5	84,85											
0	20	5	8	2	84.85											
						* Density of Eirn $=388 \mathrm{~kg} \mathrm{in}{ }^{-3}$										
Downstream B																
All	45	3	19	1	83.84											
B25	11	3	5	1	84.85											
G1	15	7	6	3	84, 85											
G2	13	5	6	2	84, 85											
MO	22	2	9	1	84, 85											
Ml	27	9	11	4	84, 85											
M2	26	3	11	1	84, 85	ORIEINAE PRGE IS										
93	24	9	10	4	84.85											
14	29	11	12	5	84.85	OF POOR			QUALITY							
M 5	19	3	8	1	84.85											
M6	23	6	10	2	84, 85											

SECTION 6: TEN-METER TEMPERATURE AND FIRN DENSITY PROFILES

At the locations where 10 -meter-long cores were removed, temperature measurements were made in the resulting holes. In 1983, a single thermistor was used at a single depth, while in 1984 and 1985 a thermistor chain was hung in the hole to measure the vertical temperature gradient. The single thermistors were glass bead Fenwall GB32M2 (2000-ohm resistance at 25 degrees C). The thermistor chain alternated these with Fenwall GB41P2 thermistors (10,000 -ohm resistance at 25 degrees C) every meter for 5 m . Each thermistor was calibrated at zero and three subzero temperatures. A precision Wheatston bridge (Leeds and Northrup Model 4289-3) was used. The hole was covered to reduce air circulation. Repeated measurements were made as soon as the core was removed to allow the cooling curve to be determined, giving a more accurate estimate of the equilibrium temperature. Measurements were continued until the cooling rate was less than 0.01 degrees C per hour, which usually occurred after 4 to 6 hours. When possible, a final measurement was made after many hours to confirm the calculated equilibrium temperature. Selfheating of the thermistors caused by the $1-m A$ current output by the measurement bridge limited the accuracy of these temperature measurements to ± 0.05 degrees C. Table 12 presents these data.

Firn density profiles were calculated using volume and weight data collected at sites where 10 -meter-long cores were extracted (Figure 8 and Table 13). In the process of preparing the 10 -meter core for shipment, each core was cut into $10-\mathrm{cm}$ sections and weighed to the nearest tenth of a gram using a sheltered triplebeam balance. During the 1983 and 1984 field seasons the weighing was done after each $10-\mathrm{cm}$ section had been placed in a small plastic bag, while in 1985 the core sections were weighed beforehand. The weight of the bags is considered negligible and within the error of these measurements; hence no attempt is made here to adjust the 1983 and 1984 data. In 1983 and 1984 the diameter of the core was taken to be that of the inside diameter of the coring assembly (7.3 cm), while in the 1985 season, each
core section was measured individually using a caliper. The 1985 datia showed that the core's diameter varied from the inside diameter of the coring assembly by less than 2 mm . Density values obtained from the $10-\mathrm{cm}$ segments of core are assigned to the vertical position of the center point of each segment.

$\stackrel{ }{-}$	$\stackrel{ }{-}$	\vdash	\vdash	\vdash	$\stackrel{\rightharpoonup}{ }$	\ldots	-	H
N	N	N	\vdash	\vdash	N	N	N	∞
\vdash	N	-	\vdash	\vdash			30	品
$\stackrel{\sim}{\sim}$	\wedge	ur	φ	\checkmark	ω	N	$\cdots \square$	
∞	$\infty \times$	N						
ω	u	ャ	ω	ω	\wedge	\pm		

TABLE 12: TEMPERATURE MEASUREMENTS

为

Abstract

9Ω
980
$\begin{array}{rl}10 \\ 0 \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}$

Figure 8 (a-c): Firn density profiles.

Firn Density Profile At E19 (DNB) Camp (Dec. 1985)

SECTION 7: SPECIAL SITES
 RESULTS FROM DOUBLE STARE LINES AT LI AND DNB

Special sites refer to two areas where double stake lines were established to determine the detailed strain field in an extended region. The relative velocities and strain rate were determined as previously described in Section 2

TABLE 14: VELOCITY PROFILE FROM DOUBLE LINE OF STAKES WHICH CROSSES THE EDGE OF CRARY ICE RISE NEAR STATION L1 (see Fig 11(a))

STATION NAME	COORDINATES*		VELOCITY	
	X	Y	X-comp.	Y-comp
	(m)	(m)	(m/a)	(m / a)
W	50000.00	50000.00	0.00	0.00
X	49590.38	50187.44	0.51	1.06
A3	50468.18	50180.27	0.52	-1.13
Y	49741.70	50964.61	2.75	1.02
A2	50505.86	50981.21	2.73	-0.88
2	49827.13	51614.92	4.78	1.22
Al	50536.26	51583.82	4.67	-0.63
AO	49860.28	52300.72	9.66	1.46
0	50572.51	52265.96	8.56	-0.41
A	49879.28	52737.89	22.90	2.33
1	50782.65	52820.14	23.85	-0.02
B	49886.65	53322.97	42.55	3.56
2	50752.39	53544.42	48.81	1.67
C	49914.35	54282.94	74.44	5.04
3	50747.48	54509.57	81.04	2.21
D	49954.55	55430.03	109.08	5.00
4	50852.28	55476.13	110.58	2.31
E	49991.85	56612.34	141.96	4.56
5	50989.94	56690.43	144.82	1.13
F	50027.91	57774.16	173.96	3.52
6	51043.10	57828.09	176.34	0.46
G	50062.47	58725.45	197.69	2.64
7	51085.83	58867.63	202.36	-0. 56
H	50093.00	59677.40	219.57	1.96
8	51135.38	59928.41	226.66	-1.83
I	50125.66	60685.17	241.91	1.02
9	51175.01	60694.78	243.77	-2.77
J	50190.23	61808.99	265.53	-0.33
10	51231.68	61743.33	265.92	-4.23

[^0]| STATIONS | | | COORDINATES* | | $\begin{gathered} \mathrm{Pl}^{+} \\ \left(10^{-3} \mathrm{a}^{-1}\right) \end{gathered}$ | $\begin{gathered} \mathrm{P} 2^{+} \\ \left(10^{-3} a^{-1}\right) \end{gathered}$ | $\left.\begin{array}{c} p 3^{+} \\ \left(10^{-3}\right. \\ a \end{array}\right)^{-1}$ | ANG:LE OF P1 WRT X -a:is |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | $\mathrm{X}(\mathrm{m})$ | $Y(m)$ | | | | |
| W | X | A3 | 50019 | 50122 | 0.2 ± 0.2 | -0.0 ± 0.2 | -0.2 ± 0.3 | 59.3 ± 0.3 |
| X | A3 | Y | 49933 | 50444 | 0.520 .06 | -0.04 0.09 | -0.5 0.1 | 67.740 .128 |
| A3 | Y | A2 | 50238 | 50708 | 0.450 .06 | -0.12 0.09 | -0.3 0.1 | $76.70 \quad 0.08$ |
| Y | A2 | 2 | 50025 | 51187 | 0.750 .07 | -0.2 0.1 | -0.5 0.1 | 69.650 .05 |
| A2 | 2 | Al | 50290 | 51393 | 0.690 .08 | -0.1 0.1 | -0.5 0.1 | $65.18 \quad 0.07$ |
| 2 | A1 | AO | 50074 | 51833 | 2.590 .08 | -1.95 0.08 | -0.6 0.1 | $46.99 \quad 0.01$ |
| Al | AO | 0 | 50323 | 52050 | 1.390 .09 | -2.21 0.08 | 0.80 .1 | 59.480 .01 |
| AO | 0 | A | 50104 | 52434 | 14.90 .1 | -12.9 0.1 | -2.0 0.1 | 47.240 .00 |
| 0 | A | 1 | 50411 | 52608 | 12.920 .08 | -12.69 0.08 | -0.2 0.1 | 48.650 .00 |
| A | 1 | B | 50182 | 52960 | 15.610 .08 | -15.49 0.08 | -0.1 0.1 | 48.8319 .00 |
| 1 | B | 2 | 50473 | 53229 | 16.260 .07 | -15.60 0.07 | -0.65 0.09 | 48.410 .00 |
| B | 2 | C | 50184 | 53716 | 15.570 .06 | -15.23 0.06 | -0.34 0.08 | $47.70 \quad 0.00$ |
| 2 | C | 3 | 50471 | 54112 | 14.630 .06 | -15.26 0.06 | 0.630 .08 | $46.64 \quad 0.00$ |
| C | 3 | D | 50205 | 54704 | 13.300 .06 | -13.50 0.05 | 0.210 .08 | $45.42 \quad 0.00$ |
| 3 | D | 4 | 50518 | 55138 | 14.040 .06 | -13.50 0.06 | -0.54 0.08 | 45.350 .00 |
| D | 4 | E | 50266 | 55839 | 12.390 .05 | -12.43 0.05 | 0.040 .08 | 44.400 .00 |
| 4 | E | 5 | 50611 | 56259 | 12.420 .05 | -12.34 0.05 | -0.07 0.07 | $43 \quad 56 \quad 0.00$ |
| E | 5 | F | 50336 | 57025 | 12.050 .05 | -12.14 0.05 | 0.860 .07 | 43.230 .00 |
| 5 | F | 6 | 50687 | 57430 | 12.570 .05 | -12.14 0.05 | -0.43 0.07 | 43.45 il .90 |
| F | 6 | G | 50377 | 58109 | 11.120 .05 | -10.90 0.06 | -0.21 0.08 | $42.60 \quad 0.011$ |
| 5 | G | 7 | 50730 | 58474 | 11.140 .05 | -10.91 0.05 | -0.22 0.07 | 42.46000 |
| G | 7 | H | 50413 | 59090 | 10.370 .06 | -9.62 0.06 | -0.76 0.08 | 42.150 .00 |
| 7 | H | 8 | 50771 | 59491 | 9.920 .05 | $-9.670 .05$ | -0.25 0.07 | 42.590 .00 |
| H | 8 | I | 50451 | 60097 | 9.720 .05 | -9.09 0.05 | -0.64 0.08 | 41.500 .00 |
| 8 | I | 9 | 50812 | 60436 | 9.680 .06 | -9.15 0.07 | -0.53 0.09 | 41.030 .00 |
| I | 9 | J | 50497 | 61063 | 9.050 .06 | -8.47 0.07 | -0.58 0.07 | $40.78 \quad 0.00$ |
| 9 | J | 10 | 50865 | 61416 | 8.980 .07 | -8.470.06 | -0.50 0.08 | 40.230 .00 |

[^1]

Figure 9: Strain rates measured along a double stake line at L1, across the margin of Crary Ice Rise.

TABLE 16: VELOCITY PROFILE FROM DOUBLE LINE OF STAKES PARALLEL TO FLOW IN THE MOUTH OF ICE STREAM B.

STATION NAME	COORDINATES*		VELOCITY	
	$\begin{gathered} X \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} Y \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{X}-\mathrm{comp} . \\ (\mathrm{m} / \mathrm{a}) \end{gathered}$	$\begin{aligned} & Y-\text { comp } \\ & (\mathrm{m} / \mathrm{a}) \end{aligned}$
F10	48722.25	65058.83	-47.29	495.84
E10	47123.69	64442.66	-53.71	498.97
F9	48667.88	63612.12	-51.58	497.55
E9	47083.31	63002.17	-57.15	500.27
F8	48614.64	62199.78	-55.19	498.63
E8	47043.61	61580.14	-60.07	501.56
F7	48559.75	60746.05	-58.74	499.84
E7	47004.03	60149.06	-63.26	502.21
F6	48504.94	59312.11	-61.99	501.06
E6	46965.05	58715.93	-65.90	502.75
FS	48450.11	57894.97	-64.67	502.02
E5	46925.04	57248.23	-68.72	503.54
F4	48394.46	56468.13	-67.50	502.78
E4	46885.73	55817.89	-70.98	504.50
F3	48338.80	55037.41	-70.06	504.54
E3	46845.75	54354.00	-74.02	505.78
F2	48283.48	53615.69	-73.13	506.66
E2	46804.46	52842.80	-78.67	507.22
F1	48238.29	52169.61	-77.17	508.23
El	46765.76	51429.91	-83.15	508.76
Al	48660.00	50000.00	-83.96	510.92
A2	47208.94	50000.00	-86. 21	510.74
D1	48138.31	49481.45	-86.68	511.58
C1	46786.96	48832.68	-91.37	511.56
D2	48091.78	48221.00	-91.18	512.99
C2	46861.04	47383.77	-96.03	513.81
D3	48040.47	46856.76	-95.49	514.64
C3	46936.43	45934.86	-100.61	515.35
D4	47991.46	45543.27	-99.90	516.02
C4	47013.62	44481.85	-104.74	516.90
D5	47942.21	44218.70	-104.21	517.35
C5	47090.69	43038.58	-108.88	518.34
D6	47892.79	42887.81	-108.17	518.78
C6	47169.13	41569.26	-113.30	519.28
D7	47843.64	41564.22	-112.25	519.62
C7	47243.96	40177.83	-118.18	520.49
D8	47778.92	39804.28	-118.64	521.08
C8	47318.40	38791.39	-121.23	521.17
D9	47730.55	38479.92	-121.70	521.77
C9	47396.86	37328.70	-125.18	522.68
D10	47683.85	37153.12	-125.62	523.23
C10	47471.54	35941.58	-128.17	523.51

[^2]table 17: itrain rate profile from double line of stakes which parallels ice flow in the mouth of ice stream b (see Fig. 10)

ATIONS			COORDINATES*		$\left(10^{\mathrm{P} \frac{1}{3}} a^{-1}\right)$	$\left(10^{-3}{ }^{\mathrm{P} 2}-1\right)$	$\left(10^{-3^{3}} a^{-1}\right)$	LE OF P1
F10	E10	F9	48171	64371	3.02 ± 0.01	-1.24 ± 0.04	-1.79 ± 0.05	9.14 ± 0.00
E10	F9	E9	47625	63686	2.680 .01	-. 930.05	-1.76 0.05	7.490 .00
F9	E9	F8	48122	62938	2.650 .01	-. 790.05	-1.86 0.05	8.610 .00
E9	F8	E8	47580	62261	2.340 .01	-. 880.05	-1.46 0.05	4.150 .00
F8	E8	F7	48073	61509	2.230 .01	-. 820.05	-1.410.05	590.01
E8	F7	E7	47536	60825	2.140 .01	-. 480.05	-1.66 0.05	9.010 .01
F7	E7	F6	48023	60069	2.150 .01	. 890.05	-1.26 0.05	9.310 .01
E7	F6	E6	47491	59392	1.920 .01	. 430.05	-1.49 0.05	10.270 .01
F6	E6	F5	47973	58641	1.930 .02	-. 73.0 .05	-1.20 0.05	10.710 .01
E6	F5	E5	47447	57953	1.980 .02	-. 640.05	-1.35 0.05	12.320 .01
F5	E5	F4	47923	57204	1.980 .02	-. 630.05	-1.35 0.05	12.730 .01
ES	F4	E4	47402	56511	1.700 .01	-. 690.05	-1.00 0.05	8.070 .01
F4	E4	F3	47873	55774	1.670 .02	-1.32 0.04	-. 350.05	10.920 .01
E4	F3	E3	47357	55070	1.950 .02	-1.09 0.04	-. 860.05	15.880 .01
F3	E3	F2	47823	54336	1.970 .02	-1.75 0.04	. 220.05	15.740 .00
E3	F2	E2	47311	53604	2.820 .02	-1.60 0.04	-1.22 0.05	22.570 .00
F2	E2	F1	47775	52876	2.860 .02	-1.63 0.04	-1.23 0.05	20.220 .00
E2	F1	E1	47270	52147	3.140 .02	-1.74 0.04	-1.40 0.05	21.210 .00
F1	El	A1	47888	51200	3.110 .02	-2.04 0.03	-1.08 0.04	23.860 .00
El	A1	A2	47545	50477	2.100 .03	-1.89 0.05	.210 .06	21.730 .01
A1	A2	D1	48002	49827	2.480 .05	-2.34 0.09	150.10	26.130 .01
A2	D1	C1	47378	49438	2.850 .03	-2.08 0.05	. 770.06	29.870 .01
D1	C1	D2	47672	48845	2.830 .03	-2.18 0.05	. 640.05	27.110 .00
C1	D2	C2	47247	48146	2.530 .03	-2.37 0.04	-. 160.05	$24.38 \quad 0.00$
D2	C2	D3	47664	47487	2.540 .03	-1.91 0.05	-. 630.05	$23.38 \quad 0.00$
C2	D3	C3	47279	46725	2.730 .03	-1.86 0.04	-. 870.05	24.800 .00
D3	C3	D4	47656	46112	2.720 .03	-1.88 0.05	-. 840.06	25.010 .00
C3	D4	C4	47314	45320	2.480 .03	-1.77 0.05	. 710.06	24.180 .01
D4	C4	D5	47649	44748	2.340 .04	-1.88 0.05	-. 460.06	26.840 .01
C4	D5	C5	47349	43913	2.190 .04	-1.76 0.05	-. 42.0 .06	26.400 .01
D5	C5	D6	47642	43382	2.240 .04	-1.89 0.05	-. 350.07	25.220 .01
C5	D6	C6	47384	42498	2.460 .04	-1.62 0.05	-. 840.06	29.690 .01
D6	C6	D7	47635	42007	2.540 .05	-1.62 0.06	. 920.08	28.840 .01
C6	D7	C7	47419	41104	2.740 .05	$-2.000 .06$	-. 740.07	29.690 .01
D7	C7	D8	47622	40515	2.770 .05	-2.00 0.06	-. 780.08	29.380 .01
C7	D8	C8	47447	39591	1.740 .05	-1.50 0.06	-. 250.08	34.620 .01
D8	C8	D9	47609	39025	1.780 .06	-1.75 0.07	-. 030.10	35.440 .01
C8	D9	C9	47482	38200	1.960 .07	-2.01 0.07	.050 .10	30.450 .01
D9	C9	D10	47604	37654	1.770 .09	-2.65 0.10	880.14	35.700 .01
c9	D10	C10	47517	36808	1.520 .10	-2.26 0.10	. 740.14	42.80

[^3]

LONGITUDINAL LINE DOWNSTREAM B

Figure 10: Longitudinal profile of strain rates measured along a double stake line near DNB.

SECTION 8: AERIAL PHOTOGRAPHY

In January 1985 the U. S. Geological Survey took aerial photographs of the Crary Ice Rise. The photographs covered an area of approximately 175 km by 70 km and were taken at an altitude of 25,000 feet. In all, 570 photographs were obtained. Using every other photograph, a mosaic was created by matching features (stratsugi and crevasses) on adjacent photographs. Overlays were then prepared of crevasses, crests of undulations and open rifts in the ice shelf downstream of the ice rise. Identification of ground control stations provided an estimation of the scale to be $1: 47,400$. The mosaic and overlays were then photographically reduced to scales of $1: 250,000$ and $1: 500,000$. Figures $11(\mathrm{a})$ and $11(\mathrm{~b})$ show the crevasse and undulation overlays with a geographic grid.

There is a gap in the photographic coverage along a thin strip to the grid northeast of the ice rise. Bad weather forced the data to be collected in. two missions separated by 3 days. While an extra photographic strip was taken to provide ample overlay, poor navigation caused errors in position large enough to create the gap. Fortunately, there were two control points on the smaller mosaic which allowed a separate calculation of scale, and allowed this piece to be aligned relative to the larger section. The gap is relatively small and its effect on the mapped features is small. The most apparent difference in the two data sets are the crevasses downstream of the ice rise. In the smaller mosaic, more crevasses are apparent compared to the larger mosaic. This is most likely a result of differing solar azimuth and elevation at the time of each photographic mission.

SECTION 9: MULTI-LEG ROSETTES

The multi-leg strain rosette technique outlined in MacAyeal (1985) was used at three stations near the grounding line of the ice stream, N1, N3 and N4. A fourth multi-leg rosette was planted at $N 2$, but it was not resurveyed by the end of the 19851986 field season. This technique was chosen because it provides a means of reducing measurement uncertainty under circumstances where the time period between initial station deployment and resurvey is short. Our goal was to recover the strain rate data after approximately 15 days. A redundancy of 40 measurement legs was used by planting 10 outlying stakes and surveying them from four independent central stakes. The details of this innovative method are discussed in Appendix 3. The data are presented in Table 18. Figure 12 shows the similarity of velocities of the ten outlying stakes relative to the velocity of four center stakes. The computed strain rate is indicated in the center of this figure. Figure 13 indicates the scatter of calculated strain rates.

TABLE 18: MULTI-LEG ROSETTE RESULTS

L8(a): Comparison between weighted, unweighted and linear method*

		Pl	Weighted Method			Unweighted Method				Linear Method				
		P2	PZ	$\begin{aligned} & \text { Pl-Azimuth } \\ & \mathrm{d} \quad \mathrm{~m} d \end{aligned}$	P 1	P2	PZ	$\begin{gathered} \mathrm{Pl}-\mathrm{Azi} \\ \mathrm{~d} \quad \mathrm{~m} \end{gathered}$	Pl	P2	P\%	$\begin{gathered} P 1-A Z 1 \\ 1 \end{gathered}$		
	C3		$0.22+0.03$	$-0.09+0.02$	$-0.13+0.04$	077-33+4.2	0.17	-0.06	-0.17	080-52	0.20	-0.06	-0. 14	079
	E'1	$13.60-0.03$	-13.87-0.03	$0.27^{-} 0.04$	070-42-.05	13.59	13.94	0.35	070-36	13.6	-13.9	0.3	070-36	
	E'2	16.950 .03	-13.61 0.03	-3.61 0.04	061-06 .02	16.60	-13.77	-2.83	060-04	16.6	-13.8	-2.8	060-06	
	E2.3	29.890 .03	-24.43 0.03	-5.46 0.05	076-25 . 01	29.41	-22.18	-7.23	074-08	28.8	-22.8	-6.0	074-13	
	E2.5	28.080 .03	-37.33 0.03	9.250 .04	056-31 . 01	30.76	-37.99	7.23	060-27	30.9	-37.9	7.0	2	
	E3	1.520 .03	-0.20 0.03	1.330 .04	084-56 . 78	1.42	-0.20	-1.21	090-54	1.41	-0.24	-1.17	(1)89-5.4	
	E4	$0.80 \quad 0.02$	0.140 .03	-0.95 0.04	342-31 1.8	0.80	0.27	-1.07	344-46	0.80	(). 25	5		
	J 1	2.810 .03	-2.45 0.03	-0.36 0.04	069-11 . 24	2.86	-2.40	-0.46	068-36	2.88	2.35	-0. 51	30	
\checkmark	J2	2.790 .03	-2.85 0.03	0.060 .04	096-08 . 21	2.83	-2.62	-0.21	094-51	2.83	-2.62	-0.-1	094-54	
\cdots	J3	1.670 .03	0.450 .03	-2.12 0.05	318-16.1.1	1.67	0.44	-2.11	318-42	1.67	0.46	-2.13	318	

GEARAS. PRQE is
OF POOR QUALITY

3-1eg rosettes				
	P2	P1	PZ	$\begin{gathered} \text { Pl-Azimuth } \\ \text { d im } \end{gathered}$
Al El Hl	-2.08	2.00	0.75	337-34
B1 Fl Il	-1.45	2.04	-0.60	338-13
C1 G1 J1	-1.64	1.66	-0.02	335-32
A2 E2 H2	-2.18	1.97	0.20	337-10
B2 F2 I2	-1.56	2.12	-0.56	342-11
C2 G2 J2	-1. 52	1.52	0.00	$334-49$
A3 E3 H3	-2.17	1.91	0.26	336-46
B3 F3 I3	-1.54	1.91	-0.37	340-27
C3 G3 J3	-1.59	1.50	0.09	334-20
A4 E4 H4	-2.14	1.89	0.25	336-40
B4 F4 I4	-1.72	2.08	-0.36	240-59
C4 G4 J4	-1.90.	2.21	-0.31	335-24
Sample Mean	$-1.8+0.3$	1.9 ± 0.3	-0.1 ± 0.3	337-30

10-1eg rosette
P2 P1

P1
$\begin{array}{llll}1.65 & 0.03 & 0.05 & 0.05\end{array}$
$1.75 \quad 0.03 \quad-0.07 \quad 0.05$
$\begin{array}{llll}1.65 & 0.03 & -0.06 & 0.05\end{array}$
1.540 .03 $0.30 \quad 0.05$
1.65 ± 0.09
0.07 ± 0.16
336-00

40-leg rosette

	P 2	Pl	PZ	Pl -Azimuth
A1 - J40	-1.73 ± 0.02	1.62 ± 0.02	0.11 ± 0.03	$335-46$

${ }^{+}$Strain rates are in units of $\left(\times 10^{-10} \mathrm{~s}^{-1}\right)$

Scale

\uparrow NORTH

x

Figure 12-13: Stake movements and strain rates at station N 3 from multi-leg rosette results.

ACRNOWLEDGEMENTS

These data were collected due to the considerable efforts of the following field assistants: James Foster, Richard Otto, John Scofield, Matthew Sturm, David Thompson and Jay Zwally. Publications from these data (Appendix 4) will never adequately reflect their sacrifices made to this field program.

This research was supported by NSF grants DPP-8207320, DPP8405287 and DPP-8514543.

Boas. M. L., 1983. Mathematical Methods in the Physical Sciences. Second edition. John Wiley and Sons, New York.

Jackson, J. E., 1980. Sphere, Spheroid and Projections for Surveyors. Granda Publishing, London.

Jaeger, J. C. and N. G. W. Cook, 1976. Fundamentals of Rock Mechanics. Chapman and Hall, London.

MacAyeal. D. R., 1985. Optimal Measurement of Ice Sheet Deformation From Surface Marker Arrays, Journal of Glaciology, Volume 31, Number 107.

Shabtaie, S. and C. R. Bentley, 1987. West Antarctic Ice Streams Draining into the Ross Ice Shelf: Configuration and Mass Balance, Journal of Geophysical Research, Volume 92 , Number B2.

Thomas, R. H., D. R. MacAyeal, D. H. Eilers, and D. R. Gaylord, 1984. Glaciological Studies on the Ross Ice Shelf. Antarctic Research Series, Volume 42. American Geophysical Union.

Wager, A. C., C. S. M. Doake, J. G. Paren, and J. L. W. Walton, 1980. Survey Reduction for Glacier Movement Studies, Survey Review, Vol. 25.

APPENDIX 1 STATION COORDINATES

APPENDIX 2 STATIONS OCCUPIED ONCE WITH GEOCEIVERS BY NASA FIELD PARTIES (AS OF JAN 1986)

APPENDIX 3 DETAILS OF MULTI-LEG ROSETTE TECHNIQUE

APPENDIX 4 SCIENTIFIC PUBLICATIONS

STATION		GEOGRAPHIC			POLAR STEROGRAPHIC		GRID						SoLP
	d	m s	d m	s	(km)	(km)	d] m	s		m	s	
CRARY													
CAMP	83	3715	16644	30	162.484	-689.595	6	12	33	1	27	47	Q?
	83	3708	16645	20	162.366	-689.845	6	12	41	1	27	43	g 3
0	83	4714	16601	28	166.631	-669.539	6	01	44	1	30	02	g 2
	83	4707	16602	43	166.440	-669.810	6	01	53	1	29	55	g 3
A1	83	5241	16507	48	174.469	-657.088	5	55	01	1	34	16	sl
A2	83	5729	16416	24	181.861	-645.838	5	48	57	1	38	16	g 3
B1	83	5513	16558	09	163.688	-655.015	5	53	54	1	28	26	s 1
	83	5516	16600	02	163.307	-655.015	5	53	54	1	28	14	s2
B2	84	0258	16556	21	160.540	-640.990	5	46	20	1	26	45	S 1
	84	0302	16557	31	160.292	-640.924	5	46	18	1	26	36	s2
Cl	33	5300	16646	17	155.442	-661.244	5	57	16	1	23	59	s2
C2	83	5732	16741	16	143.054	-655.433	5	54	08	1	17	18	g 3
C3	84	2608	16657	08	139.486	-601.891	5	25	15	1	15	22	g 3
C4	84	5752	16538	44	138.596	-541.585	4	52	42	1	14	54	g2
	84	5750	16538	32	138.643	-541.637	4	52	44	1	14	56	g 3
D1	83	4737	16712	13	152.660	-672.133	6	03	08	1	22		s 1
	83	4740	16713	29	152.392	-672.099	6	03	07	1	22	20	52
D2	83	4744	16822	02	138.936	-674.883	6	04	37	1	15	04	sl
E1	83	4208	16652	00	158.921	-681.128	6	07	59	1	25	52	S1
	83	4225	16652	29	158.706	-680.638	6	07	43	1	25	44	S2
E2	83	3638	16741	37	151.249	-693.317	6	14	34	1	21		51
E1'	83	3514	16807	42	146.518	-696.986	6	16	32	1	19		el
E2'	83	$33 \quad 32$	16752	18	150.301	-699.406	6	17	50	1	21		el
E2.3A	83	3309	16812	43	146.290	-700.982	5	18	42	1	19	02	g^{2}
	83	3305	16813	14	146.211	-701.128	6	18	46	1	18	59	g 3
E2. 5	83	$30 \quad 04$	16839	35	141.932	-707.712	6	22	19	1	16		el
E3	83	2244	16934	34	133.057	-723.272	6	30	43	1	11	53	g2
	83	2245	16934	30	133.065	- 723.238	6	30	42	1	11	53	g 3
E4	83	0920	17136	38	110.924	-752.137	6	46	16	0	59	55	g^{2}
	83	0920	17136	40	110.917	-752.138	6	46	16	0	59		g 3
Fl	83	3943	16601	13	170.048	-683.055	6	09	01	1	31	52	s 1
	83	3944	16558	18	170.620	-682.881	6	08	56	1	32	11	S2
F2	83	3159	16602	37	173.229	-697.045	6	16	34	1	33	35	sl
	83	3155	16602	57	173.192	-697.182	6	16	38	1	33		s2
G1	83	4138	16506	18	180.024	-676.816	6	05	39	1	37	16	sl
G2	83	3538	16423	28	191.437	-685.239	6	10	12	1	43	25	g 3
G3	83	2542	16243	09	216.822	-696.957	6	16	30	1	57	08	g ?
	83	2533	16243	45	216.783	-697.260	6	16	40	1	57	06	53
G4	83	1640	16126	55	237.555	-707.867	6	22	23	2	08	19	g 2
	83	1632	16127	17	237.558	-708.127	6	22	31	2	08	20	g 3
Hl	83	4702	16448	42	180.862	-666.220	5	59	56	1	37	43	s1.
	83	4658	16448	44	180.888	-666.342	6	00	00	1	37	44	52
H2	83	4609	16340	13	194.558	-664.058	5	58	46	1	45	07	g 3
J 1	83	$35 \quad 26$	17135	33	104.081	-704.199	6	20	26		35	14	9
	83	3519	17137	00	103.816	- 704.457	5	20	34	0	56	05	g 3
J 2	83	1904	17304	26	89.503	-736.795	6	38	00		48	21	g 2
	83	1856	17305	32	89.297	-737.069	5	38	04		$\therefore 8$	14	P
J3	83	0722	17455	29	67.580	-760.927	5	51	01		36	30	$\underline{2}$
	83	0712	17456	21	67.415	-761.252	6	51	11		36	25	g 3
Kl	83	1024	16809	09	155.683	-742.140	6	40	52		24	06	g 2

| | 83 | 10 | 18 | 168 | 09 | 44 | 155.595 | -742.348 | 6 | 40 | 59 | 1 | 24 | 03 | g 3 |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| K 2 | 82 | 56.35 | 169 | 57 | 59 | 136.582 | -771.946 | 6 | 56 | 56 | 1 | 13 | 46 | g 2 | |
| | 82 | 56 | 29 | 169 | 58 | 35 | 136.479 | -772.152 | 6 | 57 | 03 | 1 | 13 | 43 | g 3 |
| K 3 | 82 | 49 | 26 | 171 | 09 | 53 | 122.447 | -787.748 | 7 | 05 | 28 | 1 | 06 | 08 | g 2 |
| | 82 | 49 | 21 | 171 | 10 | 36 | 122.306 | -787.926 | 7 | 05 | 33 | 1 | 06 | 03 | g 3 |
| L 1 | 83 | 06 | 12 | 172 | 25 | 21 | 101.022 | -759.397 | 6 | 50 | 11 | 0 | 54 | 34 | g 2 |
| | 83 | 06 | 11 | 172 | 25 | 23 | 101.018 | -759.429 | 6 | 50 | 12 | 0 | 54 | 34 | g 3 |
| LP 1 | 83 | 00 | 04 | 172 | 59 | 57 | 94.761 | -771.674 | 6 | 56 | 48 | 0 | 51 | 11 | g 2 |
| | 83 | 00 | 05 | 172 | 59 | 53 | 94.772 | -771.641 | 6 | 56 | 47 | 0 | 51 | 11 | g 3 |

DOWNSTREAM B

DOWNSTREAM C

DNC	82	49	18	152	26	55	368.858	-707.021	6	21	51	3	19	13	g 2
A1	82	59	48	152	28	50	359.458	-689.941	6	12	39	3	14	09	g 2
A2	83	10	43	152	30	45	349.723	-672.169	6	03	05	3	08	54	g 2
A3	83	18	42	152	32	05	342.620	-659.161	5	56	04	3	05	05	g 2
B1	82	38	48	152	25	46	378.117	-724.178	6	31	06	3	24	12	g 2
B2	82	30	50	152	24	33	385.225	-737.155	6	38	05	3	28	02	g 2
B3	82	18	07	152	23	07	396.480	-757.922	6	49	16	3	34	06	O 2
C1	82	49	11	151	21	23	382.372	-700.051	6	18	06	3	26	31	g 2
C2	82	49	02	150	15	28	395.862	-692.833	6	14	12	3	33	48	S1
C3	82	42	46	149	06	00	415.755	-694.676	6	15	10	3	44	32	g2

D19	82	$48 \quad 55$	155	$17 \quad 34$	333.619	-725.099	6	31	37		00	11	g2
H5	82	$35 \quad 24$	153	1502	370.542	.735.160	6	37	01	3	20	07	g2
WISCONSIN STATIONS ON ROSS ICE SHELF													
C2	83	5732	167	4116	143.054	-655.433	5	54	C,8	1	17	18	
W3	84	$55 \quad 53$	155	4405	231.253	- 512.998	4	37	15	2	04	59	
W4	84	49.29	161	0239	186.643	-543.411	4	53	41	1	40	52	
W4525	84	5605	154	3746	240.947	-508.107	4	34	36	2	10	13	g 3
W5	84	3531	166	3735	138.884	-584.169	5	15	41	,	15	03	g 3
W6	84	2514	169	2155	114.329	-608.869	5	29	01	1	01		g 3
W9	84	1910	159	4637	218.037	-591.872	5	19	49	1.	57	49	g 3

SOURCES:

```
g2: GEOCEIVER FIX FROM 1984-1985 FIELD SEASON
g3: GEOCEIVER FIX FROM 1985-1986 FIELD SEASON
sl: SAT NAV FIX FROM 1983.1984 FIELD SEASON
s2: SAT NAV FIX FROM 1984-1985 FIELD SEASON
el: EXTRAPOLATION USING GEOC. POSITION OF E2.3A AND SKIDOO ODOMETER
e2: EXTRAPOLATION USING GEOC. POSITION OF DNB AND SKIDOO ODOMETER
e 3: EXTRAPOLATION USING GEOC. POSITION OF MO
```


APPENDIX 3: DETAILS OF MULTI-LEG ROSETTE TECHNIQUE

Four multi-leg rosettes were planted between lst December and 6 th December, 1985 by two independent two-man survey teams. At each site, four central stakes (labeled O1 to O4) were planted into the snow using post levels to maintain verticality. These four central stakes were positioned to form the corners of a square with $150-m$ sides. Ten outlying stakes were positioned in an array surrounding the central square. Their distance from the central square was approximately 1500 m , and they were separated from each other by an angle of 36 degrees about 01 .

Distances were measured between each of the four central stakes and the ten outlying stakes using a Geodimeter 112 EDM with a nominal accuracy of 0.01 m over 1500 m ; the times of each measurement were recorded to the nearest minute. Rounds of angles between a reference outlying stake, 'A' and the other 9 outlying stakes were measured using a wild T-2 theodolite to a nominal accuracy of 3 seconds of arc, mounted on a tripod optically plumbed over the center of each of the four central stakes. The commencement time of each round was recorded. The true azimuth of the ' A ' stake from each of the four central stakes was measured using observations onto the sun. The Magnavox MX1502 geoceiver provided both the time and the longitude used for the calculation of azimuth. The estimated error is 15 seconds of arc. This is greater than the error in observing angles between the outlying stakes, but the azimuth is only used to determine the relative vorticity (rigid body rotation). The geoceiver was also used to determine the geodetic position of one of the central stakes to an estimated error of 20 meters, (see Section 1).

Resurvey of three of the four multi-leg rosettes was accomplished using the same measurement techniques by one two-man survey party between 16 December and 19 December, 1985. After the resurvey, three outlying stakes and one central stake were extended so that the station could be resurveyed in the future as a 3-leg.rosette.

Data Organization

The observed relative position of the Nth outlying stake with respect to each of the four central stakes is described in polar coordinates ($R_{n}, \theta_{n}, t_{R_{n}}, t_{H_{n}}$) where R_{n} denotes the radial distance, θ_{n} denotes the true azimuth (determined by adding the azimuth of the 'A' stake to the angular separation between the ' A ' stake and the Nth stake), and $t_{R_{n}}$ and $t_{\theta_{n}}$ denote the times at which R_{n} and θ_{n} are observed.

The four sets of ten relative positions were combined to comprise one set of 40 relative positions. The effect of lumping the data together in this manner is to average out any strain rate gradients within the $150-\mathrm{m}$ box formed by the four central stakes. This averaging is not considered detrimental because our primary objective is to determine the average strain rate within the whole rosette and not the strain rate gradient.

Another modification made to the data was that the initial observations of the 'A' stake's azimuth were substituted for the final observations of the azimuth made during the resurvey. This was done to avoid introducing the azimuth uncertainty into the determination of stake displacements. Effectively, the azimuth data is used to determine the average positions of the stakes with respect to each other, but not to determine their relative displacements. Comparisons were made between strain rate reductions in which this substitution was and was not done, and no significant differences (they were less than 0.01 times the standard deviation of the strain rate components) were noticed. The relative vorticity determined as a result of this substitution must be corrected by adding the relative vorticity associated with the 'rigid rotation' determined by the rate of change of the true azimuth. We describe the uncertainty associated with the determination of the relative vorticity separately, below.

Once two sets of 40 stake positions representing the initial and final survey are established, average positions $\bar{R}_{n}, \bar{\Pi}_{n}$ and relative velocities $\dot{R}_{n}, \dot{\theta}_{n}$ are computed:

$$
\begin{align*}
& \bar{R}_{n}=1 / 2\left(R_{n}^{\prime}+R_{n}^{t}\right) \tag{1}\\
& \bar{\theta}_{n}=1 / 2\left(\Theta_{n}^{\prime}+\theta_{n}^{i}\right) \tag{2}\\
& \dot{R}_{n}=\frac{R_{n}^{\prime}-R_{n}^{i}}{t_{R_{n}}^{f}-t_{R_{n}}^{i}} \tag{3}\\
& \dot{\theta}_{n}=\frac{\theta_{n}^{i}-\theta_{n}^{\prime}}{t_{\Theta_{n}}^{\prime}-t_{\theta_{n}}^{\prime}} \tag{4}
\end{align*}
$$

where superscripts i and f denote values determined during the initial and final surveys, respectively.

These data are next converted to average positions \bar{x}_{n}, \bar{y}_{n} and relative velocities \dot{x}_{n}, \dot{y}_{n} in a coordinate system having an X axis aligned with true North and a Y-axis aligned with true West,

$$
\begin{equation*}
\bar{x}_{n}=\bar{R}_{n} \cos \bar{\theta}_{n} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\bar{y}_{n}=-\bar{R}_{n} \sin \bar{\theta}_{n} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\dot{x}_{n}=\dot{R}_{n} \cos \bar{\Theta}_{n}-\bar{R}_{n} \sin \bar{\theta}_{n} \dot{\theta}_{n} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\dot{y}_{n}=-\dot{R}_{n} \sin \bar{\Theta}_{n}-\bar{R}_{n} \cos \bar{\Theta}_{n} \dot{\theta}_{n} \tag{8}
\end{equation*}
$$

Determination of Strain Rates

The determination of strain rates from a 40-leg, over-determined stake velocity data set requires a least-squares procedure known as singular value decomposition. Here we outline the details of this calculation.

The strain rates are determined from the gradients in u and v where u and v are components of the velocity in the x and y directions, respectively (following Jaeger and Cook, 1976). The first step is to determine these velocity gradients by solving for S, the least-squares estimate of the velocity gradient column vector, in the following equation. (Note that here we write the equations in terms of a 40 -leg rosette; the equations are easily modified to address an N -leg rosette where N is arbitrary.)

$$
\begin{equation*}
\underline{A} \times \underline{S}=\underline{d}-\underline{z} \tag{9}
\end{equation*}
$$

where,

$$
\left.\left.\begin{array}{l}
\underline{\underline{A}}=\left[\begin{array}{cccc}
\bar{x}_{1} & \bar{y}_{1} & 0 & 0 \\
\vdots & & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots \\
\bar{x}_{40} & \bar{y}_{40} & 0 & 0 \\
0 & 0 & \bar{x}_{1} & \bar{y}_{1} \\
\vdots & \vdots & \vdots & \vdots \\
\vdots & 0 & \bar{x}_{40} & \bar{y}_{40}
\end{array}\right] \\
\underline{\underline{d}}=\left[\begin{array}{c}
\frac{S u}{\partial x} \\
\frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} \\
\frac{\partial v}{\partial y}
\end{array}\right] \\
\dot{x}_{40} \\
\dot{y}_{1} \\
\vdots \\
\dot{y}_{40}
\end{array}\right] \quad \underline{\underline{\dot{x}_{1}}} \begin{array}{l}
\\
\vdots \\
\vdots \\
z_{40}
\end{array}\right] .
$$

and z represents the measurement error in the observed values of d. We assume that the covariance of z is given by:

$$
\begin{equation*}
i=1,40 \quad \operatorname{cov}\left(z_{i}, z_{i}\right)=\left\{\frac{\sigma_{R}^{2} \cos ^{2} \bar{\theta}_{i}}{\left(t_{R_{i}}^{\dagger}-t_{R_{i}}^{i}\right)^{2}}+\frac{\sigma_{\theta_{i}}^{2} \bar{R}_{i}^{2} \sin ^{2} \bar{\Theta}_{i}}{\left(t_{\theta_{i}}^{i}-t_{i_{i}}^{1}\right)^{2}}\right\} \quad \hat{o}_{i j} \tag{10}
\end{equation*}
$$

$$
i=41,80 \quad \operatorname{cov}\left(z_{i}, z_{i}\right)=\left\{\frac{\sigma_{R}^{2} \sin ^{2} \bar{\Theta}_{i}}{\left(t_{R_{i}}^{1}-t_{R_{i}}^{i}\right)^{2}}+\frac{\sigma_{1}^{2} \bar{R}_{B}^{2} \cos ^{2} \Theta_{i}}{\left(t_{t_{i}}^{t}-t_{H_{i}}^{1}\right)^{2}}\right\} \quad \dot{\sigma}_{i i}
$$

where $\hat{o}_{i,}$ is the Kroneker delta, σ_{R} is the standard deviation estimate of the measurments of R_{n} in meters, and σ_{θ}, is the standard deviation estimate of the measurement of θ_{n} in radians. This assumes covariance is consistent with the assumption that each of the 40 measurements of the stake velocities are statistically independent. However, the measurements are not completely independent because certain types of error associated with disturbing outlying stakes can affect four of the data points, one each associated with the observation from each central stake. We assume that these statistical dependencies produce only small off-diagonal terms in the covariance matrix of z compared to the diagonal terms. As stated previously, we assume that $\sigma_{\mathrm{R}}=0.01 \mathrm{~m}$ and $\sigma_{\Theta}=3 \mathrm{sec}$ in radians.

To correct for some components of z being larger than others by virtue of the inequality of σ_{R} and $\bar{R}_{n} \sigma_{\theta}$, we weight the data matrix \underline{d} and the position matrix $\underset{\underline{A}}{ }$,

$$
\begin{equation*}
d_{i}^{w}=d_{i}\left[\frac{\sigma^{2}}{\operatorname{cov}\left(z_{i}, z_{i}\right)}\right]^{1 / 2} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
A_{i j}^{w}=A_{i j}\left[\frac{\sigma^{2}}{\operatorname{Cov}\left(z_{i}, z_{i}\right)}\right]^{1 / 2} \tag{12}
\end{equation*}
$$

and,

$$
\begin{equation*}
z_{1}^{w}=z_{[}\left[\frac{\sigma^{2}}{\operatorname{cov}\left(z_{1}, z_{1}\right)}\right]^{\cdot} \tag{13}
\end{equation*}
$$

where the superscript w's denote weighted elements, and

$$
\begin{equation*}
\sigma^{2}=\frac{1}{80} \sum_{i=1}^{80} \operatorname{cov}\left(z_{i}, z_{i}\right) \tag{14}
\end{equation*}
$$

Equation (9) now becomes,

$$
\begin{equation*}
\underline{\underline{A}}^{w} \times \underline{S}=\underline{d}^{w}+\underline{z}^{w} \tag{15}
\end{equation*}
$$

where the covariance matrix of \underline{z}^{w} is now σ^{2} on the diagonal.
To invert $\underline{\underline{A}}^{w}$ for determining $S_{i j}$, the four eigenvalues λ_{k} and the eigenvectors I_{k} of $\left[\underline{A}^{w}\right]^{\top}\left[\underline{A}^{w}\right]$ are computed:

$$
\begin{align*}
& \lambda_{1}=\frac{\alpha_{1}+\gamma_{1}}{2}+\left\{\frac{\left(\alpha_{1}+\gamma^{2}\right.}{4}-\left(\alpha_{1} \gamma_{1}-\beta_{1}^{2}\right)\right\}^{1 / 2} \tag{16}\\
& \lambda_{2}=\frac{\alpha_{1}+\gamma_{1}}{2}-\left\{\frac{\alpha_{1}+\gamma_{1}}{4}-\left(\alpha_{1 \gamma_{1}}-\beta_{1}^{2}\right)\right\}^{1 / 2} \tag{17}
\end{align*}
$$

with

$$
\begin{align*}
& \alpha_{1}=\sum_{i=1}^{40}\left[\frac{\sigma^{2}}{\operatorname{cov}\left(z_{i}, z_{i}\right)}\right] \bar{x}_{i}^{2} \tag{25}\\
& \beta_{1}=\sum_{i=1}^{40}\left[\frac{\sigma^{2}}{\operatorname{cov}\left(z_{i}, z_{i}\right)}\right] \bar{x}_{i} \bar{y}_{i} \tag{26}\\
& \gamma_{1}=\sum_{i=1}^{40}\left[\frac{\sigma^{2}}{\operatorname{cov}\left(z_{i}, z_{i}\right)}\right] \bar{y}_{i}^{2} \tag{27}\\
& \alpha_{2}=\sum_{i=1}^{40}\left[\frac{\sigma^{2}}{\operatorname{cov}\left(z_{i}+40, z_{i+40}\right)}\right] \bar{x}_{i}^{2} \tag{28}\\
& \beta_{2}=\sum_{i=1}^{40}\left[\frac{\sigma^{2}}{\operatorname{cov}\left(z_{i+40}, z_{i+40}\right)}\right] \bar{x}_{i} \bar{y}_{i} \tag{29}
\end{align*}
$$

and,

$$
\begin{equation*}
\gamma_{2}=\sum_{i=1}^{40}\left[\frac{\sigma^{2}}{\operatorname{cov}\left(z_{i+40}, z_{i+40}\right)}\right] \vec{y}_{i}^{2} \tag{30}
\end{equation*}
$$

The least-squares estimate of \underline{s} is found by constructing the inverse of A,

$$
\begin{equation*}
\left[\underline{A}^{\omega_{w}}\right]^{-1}=\underline{\underline{R}} \cdot \underline{\underline{\Gamma}}^{-1} \cdot \underline{\underline{Q}}^{\top} \tag{31}
\end{equation*}
$$

where R, Γ and Q are matrices defined in MacAyeal (1985). In component notation,

$$
\begin{align*}
& S_{i}=\sum_{k=1}^{4} r_{i}^{k} \frac{1}{\lambda_{k}}\left\{\sum_{i=1}^{40}\left(\bar{x}_{i} r_{1}^{k}+\bar{y}_{i} r_{2}^{k}\right) \frac{\sigma^{2}}{\operatorname{cov}\left(z_{i}, z_{i}\right)} d_{i}\right. \tag{32}\\
& \left.+\sum_{i=41}^{80}\left(\bar{x}_{i-40} r_{3}^{k}+\bar{y}_{i-40} r_{4}^{k}\right) \frac{\sigma^{2}}{\operatorname{cov}\left(z_{i}, z_{i}\right)} d_{i}\right\}
\end{align*}
$$

where the superscript k refers to the eigenvector number.

The principal axes el and e2 of the horizontal strain rate tensor are determined from s by using the relations (Jaeger and cook, 1976)

$$
\begin{equation*}
\theta=1 / 2 \tan ^{-1}\left(\frac{S_{2}+S_{3}}{S_{1}+S_{4}}\right) \tag{33}
\end{equation*}
$$

$$
\begin{equation*}
\dot{e}_{1}=S_{1} \cos ^{2} \theta+1 / 2\left(S_{2}+S_{3}\right) \sin 2 \theta+S_{4} \sin ^{2} \theta \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{e}_{2}=S_{1} \sin ^{2} \theta-1 / 2\left(S_{2}+S_{3}\right) \sin 2 \theta+S_{4} \cos ^{2} \theta \tag{35}
\end{equation*}
$$

where θ is the counterclockwise angle (in radians) between the x axis, or north, and the el-axis.

Computation of Error

Perhaps the most critical element of our analysis is the computation of expected uncertainty for the derived values of θ, \dot{e}_{1}, \dot{e}_{2}, and $\dot{e}_{z z}=-\dot{e}_{1}-\dot{e}_{2}$. This is critical for two reasons. Firstly, the short time period over which the $40-1$ eg rosette was allowed to deform means that the observed stake displacements may be close to the limits of detectability, and secondly, the value of one of the strain rate principal components may be several orders of magnitude less than the maximum component and its value may be statistically insignificant.

The expected uncertainty, or estimated standard deviation of the components of \underline{s}, are determined formally through the singular value decomposition procedure (MacAyeal, 1985).

$$
\begin{equation*}
\sigma_{S_{i}}=\left[\operatorname{cov}\left(\mathrm{S}_{\mathrm{i}}-\mathrm{S}_{\mathrm{i}}^{*}, \mathrm{~S}_{\mathrm{i}}-\mathrm{S}_{\mathrm{i}}^{*}\right)\right]^{1 / 2} \tag{36}
\end{equation*}
$$

where S^{\prime} is composed of the 'true' value of the velocity gradients, and \underline{S} is, as stated before, the least-squares estimate of s^{*}. Observe that the components of is depend only on the covariance of z^{w}, the eigenvectors and the eigenvalues of $\left[A^{N}\right]^{\top}\left[A^{w}\right]$; the latter two of which depend only on stake positioning. In component notation,

$$
\begin{equation*}
\sigma_{s_{i}}=\left\{\sum_{k=1}^{4} \sum_{i=1}^{4} \frac{r_{1}^{\prime} r_{k}}{\lambda_{k}} \cdot \sigma^{2}\right\}^{1 / 2} \tag{37}
\end{equation*}
$$

where σ^{2} is given by Equation (14), and subscripts i refer to eigenvector number.

The uncertainty of $\Theta, \dot{e}_{1}, \dot{e}_{2}$ are computed from the σ_{s} 's using the relationship for functions of random variables (Boas, 1983).

$$
\begin{align*}
& \left.\sigma_{\Theta}=1 / 2\left(1+\frac{\mathrm{S}_{2}-\mathrm{S}_{3}}{\mathrm{~S}_{1}+\mathrm{S}_{4}}\right)\right)\left(\frac{\mathrm{S}_{2}+\mathrm{S}_{3}}{\left(\frac{\left.\mathrm{~S}_{1}-\mathrm{S}_{4}\right)^{2}}{}\right)^{2}\left(\sigma_{\mathrm{S}_{1}}^{2}+\sigma_{\mathrm{S}_{4}}^{2}\right)}\right. \tag{38}\\
& \left.+\left(\frac{1}{\mathrm{~S}_{1}-\mathrm{S}_{4}}\right)^{2}\left(\sigma_{\mathrm{S}_{2}}^{2}+\sigma_{\mathrm{S}_{3}}^{2}\right)\right\}^{1 / 2} \\
& \sigma_{\mathrm{e}_{1}}^{\cdot}=\left\{\cos ^{4} \theta \sigma_{\mathrm{S}_{1}}^{2}\right. \tag{39}\\
& \quad+1 / 4 \sin ^{2} 2 \theta\left(\sigma_{\mathrm{S}_{2}}^{2}+\sigma_{\mathrm{S}_{3}}^{2}\right)+\sin ^{4} \theta \sigma_{\mathrm{S}_{4}}^{2} \\
& \\
& \left.\quad+\left(\left(\mathrm{S}_{4}-\mathrm{S}_{1}\right) \sin 2 \theta+\left(\mathrm{S}_{2}+\mathrm{S}_{3} \cos 2 \theta\right)^{2}\right) \sigma_{4}^{2}\right\}^{2}
\end{align*}
$$

and,

$$
\begin{align*}
\sigma_{e_{2}}=\left\{\sin ^{4} \Theta \sigma_{S_{1}}^{2}\right. & +1 / 4 \sin ^{2} 2 \theta\left(\sigma_{S_{2}}^{2}+\sigma_{S_{3}}^{2}\right)+\cos ^{4} \Theta \sigma_{S_{4}}^{2} \tag{40}\\
& \left.+\left(\left(S_{1}-S_{4}\right) \sin 2 \theta-\left(S_{2}+S_{3}\right) \cos 2 \theta\right)^{2} \sigma^{2},\right\}^{2}
\end{align*}
$$

Data reduction programs

The above technique for reducing $40-1$ leg rosette data can be used to reduce any rosette design (including the standard 3-leg rosette), or other strain figures which yield data in the form $\bar{x}_{i}, \bar{y}_{i}, x_{i}$, and y_{i}. A reliable calculator program which will reduce rosettes having up to 100 legs (a limit imposed by the size of calculator memory) has been developed and tested. This program was tested by two means. First, the results of reducing several $3-1$ eg rosettes were compared with results using other methods, and second, multi-leg rosette data were synthesized using a known strain rate, and then reduced by the program to test whether the known strain rate is reproduced. This program, available on request, requires the following equipment: HewlettPackard 41-CX hand calculator having "Date" and "Time" functions and at least 3 modules for memory extension, an HP magnetic card reader to input the program, and an $H P$ thermal printer to verify correct data input. The use of a hand calculator was chosen to allow data reduction in the field and this battery powered equipment operated well within the tented shelters used during the field program.

Results

Here, we present information comparing the SVD method with other methods of data reduction. First, the SVD method is compared to the method used in Section 2 of this report for calculating
strain rates from 3 -leg rosette data to check the reliability of both these methods. Second, subsets of the $40-l e g$ rosette data are used, which illustrate that the derived strain rate converges as the number of legs is increased.

Table 18 presents strain rates derived by both methods from 3-leg strain rosettes surrounding the Crary Ice Rise. To illustrate the effect of weighting, Table 18 also includes results obtained when the data is not weighted in the SVD method. It is seen that data weighting may be considered unnecessary in the analysis of 3-leg rosette data because errors in the distance and angle measurements are insignificant compared to actual changes in those quantities over the survey period. For all 14 stations, the principal horizontal strain rate components derived by the two methods differed by less than 10 percent and fall within the computed uncertainty limits obtained by both methods. This comparison serves as a useful check on both our data-analysis techniques.

To illustrate convergence of the SVD technique in producing an accurate estimate of the horizontal strain rates from the $40-1 \mathrm{leg}$ rosette N3, twelve independent $3-1 e g$ rosettes and four independent $10-1$ leg rosettes from the $40-1$ eg rosette data are synthesized by considering subsets of the stake array. The results are given in Table 18. There is considerable scatter in the results of the twelve 3 -leg rosette as expected from the short time period before which the 3 -leg rosettes were resurveyed, but the strain rate falls within the sample standard deviation of the strain rate derived from the analysis of the $40-$ leg data. The sample standard deviation of the twelve 3-leg rosettes results is larger than the confidence limits computed from 40-leg rosette data. This could have resulted from three factors: 1) our estimates of measurement error on R and Θ are too low, 2) the sample of twelve $3-l e g$ rosettes is too small to produce an accurate sample standard deviation, and 3) there is strain rate variation within the confines of our stake array that is averaged out by the $40-1 \mathrm{l}$ g analysis. All these possible
explanations have some validity. However, the possible underestimate of the measurement accuracy seriously affects the scientific conclusions of our study; certainly any underestimate is not a factor of 10 , which is needed if that alone causes the discrepancy.

As another illustration of the multi-leg rosette analysis, four 10-leg rosette sub-sets were analyzed, each of the 4 central stakes being the center of a separate stake array. There is much less scatter in these results (Table 18) when compared to the twelve 3 -leg rosettes. The sample standard deviation is also consistent with the confidence limits of the $40 .-\operatorname{leg}$ rosette showing there is a convergence in both the derived strain rate and the confidence limits as the number of stakes is increased.

INSTRUMENT CORRECTIONS

Benchmark comparisons were made periodically between all EDM's used in the $1985-1986$ field season. These comparisons revealed that 1 EDM used in the initial and final surveys of $40-1$ eg stations N 1 and N 4 requires a $-5.5 \times 10^{-5}+0.1 \times 10^{-5}$ parts-per-part correction to the initial measured distance.

MULTI-LEG ROSETTE UTILITY

Multi-leg rosettes can serve a useful purpose under circumstances when more practical 3 -leg rosettes will not provide sufficient accuracy over the time interval between survey and resurvey. Consideration must be taken of the large commitment in time required to deploy these rosettes. Experienced surveyors, in good weather, needed 1.5 days to deploy a $40-\mathrm{leg}$ rosette and 1 day to resurvey it. The method also requires instrument dependability.

APPENDIX 4: SCIENTIFIC PUBLICATIONS

1) Bindschadler, R.A., B. Koci, S. Shabtaie, and E.P. Roberts, in press. Evolution of Crary Ice Rise, Antarctica, Annals of Glaciology, 12.
2) Bindschadler, R.A., P.L. Vornberger, S.N. Stephenson, E.P. Roberts, S. Shabtaie, and D.R. MacAyeal, in press. Ice-Shelf Flow at the Boundary of Crary Ice Rise, Annals of Glaciology, 11.
3) Bindschadler, R.A., D.R. MacAyeal, and S.N. Stephenson, 1987. Ice Stream-Ice Shelf Interaction in west Antarctica. In The Dynamics of the West Antarctic Ice Sheet (C.J. Van der Veen and J. Oerlemans, eds.), D. Reidel Pub. Co., p. 161-180.
4) Bindschadler, R.A., S.N. Stephenson, D.R. MacAyeal, and S. Shabtaie, 1987. Ice Dynamics at the Mouth of Ice Stream B, Antarctica, J. Geophys. Res., 92, No. B9, p. 8885-8894.
5) Lindstrom, D.R., submitted. West Antarctic Ice Sheet Formation, Annals of Glaciology, 11 .
6) Lindstrom, D.R. and D.R. MacAyeal, 1987. Environmental Constraints on West Antarctic Ice Sheet Formation, J. Glaciology, 33, No. 115, p. 1-11.
7) MacAyeal, D.R., 1987. Ice-Shelf Backpressure: Form Drag vs. Dynamic Drag, In The Dynamics of the West Antarctic Ice Sheet (C.J. Van der Veen and J. Oerlemans, eds.), D. Reidel Pub. Co., p.141-160.
8) Mactyeal, D.R., R.A. Bindschadler, K.C. Jezek, and S.

Shabtaie, in press. Can Relict Crevasse Plumes on Antarctic Ice Shelves Reveal a History of Ice-Stream Fluctuation?, Annals of Glaciology, 11.
9) MacAyeal, D.R., R.A. Bindschadler, S. Shabtaie, S.N. Stephenson, and C.R. Bentley, 1987. Force, Mass, and Energy Budgets of the Crary Ice Rise Complex, J. Glaciology, 33, No. 114, p. 218-230.
10) Shabtaie, S., C.R. Bentley, R.A. Bindschadler, and D.R. MacAyeal, in press. Mass Balance Studies of Ice Streams A, B, and C and Possible Surging Behavior of Ice Stream B, Annals of Glaciology, 11.
11) Stephenson, S.N. and R.A. Bindschadler, 1988. Observed Velocity Fluctuations on a Major Antarctic Ice Stream, Nature 334.
12) Thomas, R.H., S.N. Stephenson, R.A. Bindschadler, S.Shabtaie, and C.R. Bentley, in press. Thinning and Grounding Line Retreat on the Ross Ice Shelf. Annals of Glaciology, 11.

Report Documentation Page

NASA FORM 1626 OCT 86

National Aeronautics and
Space Administration
Washington, D.C.
20546
Official Business
Penalty for Private Use, $\$ 300$

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

[^0]: *Azimuth of X -axis is 316.9 degrees. Geographic coordinaces of station W are: S83006'11", W1720 25'23'.

[^1]: *Azimuth of X -axis is 316.9 degrees
 ${ }^{+}$Pl and P2 are principal axes of horizontal tension and compression, respectively. $P 3=-(P 1+P 2)$ is vertical strain rate

[^2]: *Azimuth of X -axis is 289.7 degrees. Geographic coordinates of station A1 are: S840 10'52", W1540 10'08".

[^3]: *Azimuth of X -axis is 289.7 degrees. Geographic coordinates of station Al are: S84잉́s2", W154010'08".

