1,830 research outputs found
Crystal Symmetry Lowering in Chiral Multiferroic BaTaFeSiO observed by X-Ray Magnetic Scattering
Chiral multiferroic langasites have attracted attention due to their
doubly-chiral magnetic ground state within an enantiomorphic crystal. We report
on a detailed resonant soft X-ray diffraction study of the multiferroic
BaTaFeSiO at the Fe and oxygen edges. Below
() we observe the satellite reflections ,
, and where . The dependence of the scattering intensity on X-ray polarization and
azimuthal angle indicate that the odd harmonics are dominated by the
out-of-plane (-axis) magnetic dipole while the
originates from the electron density distortions accompanying magnetic order.
We observe dissimilar energy dependences of the diffraction intensity of the
purely magnetic odd-harmonic satellites at the Fe edge. Utilizing
first-principles calculations, we show that this is a consequence of the loss
of threefold crystal symmetry in the multiferroic phase
Energy dissipation in the time domain governed by bosons in a correlated material
In complex materials various interactions play important roles in determining
the material properties. Angle Resolved Photoelectron Spectroscopy (ARPES) has
been used to study these processes by resolving the complex single particle
self energy and quantifying how quantum interactions modify bare
electronic states. However, ambiguities in the measurement of the real part of
the self energy and an intrinsic inability to disentangle various contributions
to the imaginary part of the self energy often leave the implications of such
measurements open to debate. Here we employ a combined theoretical and
experimental treatment of femtosecond time-resolved ARPES (tr-ARPES) and show
how measuring the population dynamics using tr-ARPES can be used to separate
electron-boson interactions from electron-electron interactions. We demonstrate
the analysis of a well-defined electron-boson interaction in the unoccupied
spectrum of the cuprate BiSrCaCuO characterized by an
excited population decay time constant that maps directly to a
discrete component of the equilibrium self energy not readily isolated by
static ARPES experiments.Comment: 19 pages with 6 figure
Recommended from our members
Study of the phase transition dynamics of the L to H transition
A highly radiating zone (MARFE) just above the divertor X-point has been used to access the marginal transition regime P{sub sep} {approx} P{sub thres} to study the existence of a critical point for the L to H transition. Phase transition models predict that at the critical point, the transition duration increases and the plasma parameters vary continuously between L-mode and H-mode. In these experiments, the L to H transition duration increased 50--100 times over fast transitions. However, the evolution of E{sub r} shear, edge density gradient, H-mode pedestal, and fluctuations is essentially unchanged from that in fast transitions. The only difference is in the speed with which and the degree to which the fluctuation amplitudes are transiently reduced. This difference is understandable in terms of the time scales for fluctuation amplitude reduction ({le} 100 {micro}s) and edge pressure gradient increase (several ms), provided the edge fluctuations are pressure-gradient driven
Ultrafast Momentum-resolved Hot Electron Dynamics in the Two-dimensional Topological Insulator Bismuthene
Two-dimensional quantum spin Hall (QSH) insulators are a promising material
class for spintronic applications based on topologically-protected spin
currents in their edges. Yet, they have not lived up to their technological
potential, as experimental realizations are scarce and limited to cryogenic
temperatures. These constraints have also severely restricted characterization
of their dynamical properties. Here, we report on the electron dynamics of the
novel room-temperature QSH candidate bismuthene after photoexcitation using
time- and angle-resolved photoemission spectroscopy. We map the transiently
occupied conduction band and track the full relaxation pathway of hot
photocarriers. Intriguingly, we observe photocarrier lifetimes much shorter
than in \red{conventional} semiconductors. This is ascribed to the presence of
topological in-gap states already established by local probes. Indeed, we find
spectral signatures consistent with these earlier findings. Demonstration of
the large band gap and the view into photoelectron dynamics mark a critical
step toward optical control of QSH functionalities.Comment: 13 pages, 11 figure
Temporal and Geospatial Trends of Pediatric Cancer Incidence in Nebraska Over a 24-Year Period
BACKGROUND: Data from the Surveillance, Epidemiology, and End Results (SEER) revealed that the incidence of pediatric cancer in Nebraska exceeded the national average during 2009-2013. Further investigation could help understand these patterns.
METHODS: This retrospective cohort study investigated pediatric cancer (0-19 years old) age adjusted incidence rates (AAR) in Nebraska using the Nebraska Cancer Registry. SEER AARs were also calculated as a proxy for pediatric cancer incidence in the United States (1990-2013) and compared to the Nebraska data. Geographic Information System (GIS) mapping was also used to display the spatial distribution of cancer in Nebraska at the county level. Finally, location-allocation analysis (LAA) was performed to identify a site for the placement of a medical center to best accommodate rural pediatric cancer cases.
RESULTS: The AAR of pediatric cancers was 173.3 per 1,000,000 in Nebraska compared to 167.1 per 1,000,000 in SEER. The AAR for lymphoma was significantly higher in Nebraska (28.1 vs. 24.6 per 1,000,000; p = 0.009). For the 15-19 age group, the AAR for the 3 most common pediatric cancers were higher in Nebraska (p \u3c 0.05). Twenty-three counties located \u3e2 h driving distance to care facilities showed at least a 10% higher incidence than the overall state AAR. GIS mapping identified a second potential treatment site that would alleviate this geographic burden.
CONCLUSIONS: Regional differences within Nebraska present a challenge for rural populations. Novel use of GIS mapping to highlight regional differences and identify solutions for access to care issues could be used by similar states
Recommended from our members
Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons
Time- and angle-resolved extreme ultraviolet photoemission spectroscopy is used to study the electronic structure dynamics in BaFe2As2 around the high-symmetry points Γ and M. A global oscillation of the Fermi level at the frequency of the A1g(As) phonon mode is observed. It is argued that this behavior reflects a modulation of the effective chemical potential in the photoexcited surface region that arises from the high sensitivity of the band structure near the Fermi level to the A1g(As) phonon mode combined with a low electron diffusivity perpendicular to the layers. The results establish a novel way to tune the electronic properties of iron pnictides: coherent control of the effective chemical potential. The results further suggest that the equilibration time for the effective chemical potential needs to be considered in the ultrafast electronic structure dynamics of materials with weak interlayer coupling. © 2014 American Physical Society
Ultrafast Light-Induced Lifshitz Transition
Fermi surface is at the heart of our understanding of metals and strongly correlated many-body systems. An abrupt change in the Fermi surface topology, also called Lifshitz transition, can lead to the emergence of fascinating phenomena like colossal magnetoresistance and superconductivity. While Lifshitz transitions have been demonstrated for a broad range of materials and using different types of static external perturbations such as strain, doping, pressure and temperature, a non-equilibrium route toward ultrafast and transient modification of the Fermi surface topology has not been experimentally demonstrated. Combining time-resolved multidimensional photoemission spectroscopy with state-of-the-art TDDFT+U simulations, we introduce a scheme for driving an ultrafast Lifshitz transition in the correlated Weyl semimetal Td-MoTe2. We demonstrate that this non-equilibrium topological electronic transition finds its microscopic origin in the dynamical modification of the effective electronic correlations. These results shed light on a novel ultrafast and all-optical scheme for controlling the Fermi surface topology in correlated quantum materials
- …