318 research outputs found

    Highly Entangled Ground States in Tripartite Qubit Systems

    Full text link
    We investigate the creation of highly entangled ground states in a system of three exchange-coupled qubits arranged in a ring geometry. Suitable magnetic field configurations yielding approximate GHZ and exact W ground states are identified. The entanglement in the system is studied at finite temperature in terms of the mixed-state tangle tau. By adapting a steepest-descent optimization algorithm we demonstrate that tau can be evaluated efficiently and with high precision. We identify the parameter regime for which the equilibrium entanglement of the tripartite system reaches its maximum.Comment: 4 pages, 2 figure

    Three-tangle for mixtures of generalized GHZ and generalized W states

    Get PDF
    We give a complete solution for the three-tangle of mixed three-qubit states composed of a generalized GHZ state, a|000>+b|111>, and a generalized W state, c|001>+d|010>+f|100>. Using the methods introduced by Lohmayer et al. we provide explicit expressions for the mixed-state three-tangle and the corresponding optimal decompositions for this more general case. Moreover, as a special case we obtain a general solution for a family of states consisting of a generalized GHZ state and an orthogonal product state

    Geometric magic numbers of sodium clusters: Interpretation of the melting behaviour

    Full text link
    Putative global minima of sodium clusters with up to 380 atoms have been located for two model interatomic potentials. Structures based upon the Mackay icosahedra predominate for both potentials, and the magic numbers for the Murrell-Mottram model show excellent agreement with the sizes at which maxima in the latent heat and entropy change at melting have been found in experiment.Comment: 4 pages, 2 figure

    Incoherent dynamics in the toric code subject to disorder

    Full text link
    We numerically study the effects of two forms of quenched disorder on the anyons of the toric code. Firstly, a new class of codes based on random lattices of stabilizer operators is presented, and shown to be superior to the standard square lattice toric code for certain forms of biased noise. It is further argued that these codes are close to optimal, in that they tightly reach the upper bound of error thresholds beyond which no correctable CSS codes can exist. Additionally, we study the classical motion of anyons in toric codes with randomly distributed onsite potentials. In the presence of repulsive long-range interaction between the anyons, a surprising increase with disorder strength of the lifetime of encoded states is reported and explained by an entirely incoherent mechanism. Finally, the coherent transport of the anyons in the presence of both forms of disorder is investigated, and a significant suppression of the anyon motion is found.Comment: 13 pages, 12 figure

    Thermal expansion in small metal clusters and its impact on the electric polarizability

    Get PDF
    The thermal expansion coefficients of NaN\mathrm{Na}_{N} clusters with 8N408 \le N \le 40 and Al7\mathrm{Al}_{7}, Al13\mathrm{Al}_{13}^- and Al14\mathrm{Al}_{14}^- are obtained from {\it ab initio} Born-Oppenheimer LDA molecular dynamics. Thermal expansion of small metal clusters is considerably larger than that in the bulk and size-dependent. We demonstrate that the average static electric dipole polarizability of Na clusters depends linearly on the mean interatomic distance and only to a minor extent on the detailed ionic configuration when the overall shape of the electron density is enforced by electronic shell effects. The polarizability is thus a sensitive indicator for thermal expansion. We show that taking this effect into account brings theoretical and experimental polarizabilities into quantitative agreement.Comment: 4 pages, 2 figures, one table. Accepted for publication in Physical Review Letters. References 10 and 23 update

    Electronic-structure-induced deformations of liquid metal clusters

    Full text link
    Ab initio molecular dynamics is used to study deformations of sodium clusters at temperatures 5001100500\cdots 1100 K. Open-shell Na14_{14} cluster has two shape isomers, prolate and oblate, in the liquid state. The deformation is stabilized by opening a gap at the Fermi level. The closed-shell Na8_8 remains magic also at the liquid state.Comment: REVTex, 11 pages, no figures, figures (2) available upon request (e-mail to hakkinen at jyfl.jyu.fi), submitted to Phys. Rev.

    Electronic entropy, shell structure, and size-evolutionary patterns of metal clusters

    Full text link
    We show that electronic-entropy effects in the size-evolutionary patterns of relatively small (as small as 20 atoms), simple-metal clusters become prominent already at moderate temperatures. Detailed agreement between our finite-temperature-shell-correction-method calculations and experimental results is obtained for certain temperatures. This agreement includes a size-dependent smearing out of fine-structure features, accompanied by a measurable reduction of the heights of the steps marking major-shell and subshell closings, thus allowing for a quantitative analysis of cluster temperatures.Comment: Latex/Revtex, 4 pages with 3 Postscript figure

    Magic Numbers of Silicon Clusters

    Full text link
    A structural model for intermediate sized silicon clusters is proposed that is able to generate unique structures without any dangling bonds. This structural model consists of bulk-like core of five atoms surrounded by fullerene-like surface. Reconstruction of the ideal fullerene geometry results in the formation of crown atoms surrounded by π\pi-bonded dimer pairs. This model yields unique structures for \Si{33}, \Si{39}, and \Si{45} clusters without any dangling bonds and hence explains why these clusters are least reactive towards chemisorption of ammonia, methanol, ethylene, and water. This model is also consistent with the experimental finding that silicon clusters undergo a transition from prolate to spherical shapes at \Si{27}. Finally, reagent specific chemisorption reactivities observed experimentally is explained based on the electronic structures of the reagents.Comment: 4 pages + 3 figures (postscript files after \end{document}

    Density-functional-based predictions of Raman and IR spectra for small Si clusters

    Get PDF
    We have used a density-functional-based approach to study the response of silicon clusters to applied electric fields. For the dynamical response, we have calculated the Raman activities and infrared (IR) intensities for all of the vibrational modes of several clusters (SiN with N=3-8, 10, 13, 20, and 21) using the local density approximation (LDA). For the smaller clusters (N=3-8) our results are in good agreement with previous quantum-chemical calculations and experimental measurements, establishing that LDA-based IR and Raman data can be used in conjunction with measured spectra to determine the structure of clusters observed in experiment. To illustrate the potential of the method for larger clusters, we present calculated IR and Raman data for two low-energy isomers of Si10 and for the lowest-energy structure of Si13 found to date. For the static response, we compare our calculated polarizabilities for N=10, 13, 20, and 21 to recent experimental measurements. The calculated results are in rough agreement with experiment, but show less variation with cluster size than the measurements. Taken together, our results show that LDA calculations can offer a powerful means for establishing the structures of experimentally fabricated clusters and nanoscale systems

    Cloud computing and validation of expandable in silico livers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Silico Livers (ISLs) are works in progress. They are used to challenge multilevel, multi-attribute, mechanistic hypotheses about the hepatic disposition of xenobiotics coupled with hepatic responses. To enhance ISL-to-liver mappings, we added discrete time metabolism, biliary elimination, and bolus dosing features to a previously validated ISL and initiated re-validated experiments that required scaling experiments to use more simulated lobules than previously, more than could be achieved using the local cluster technology. Rather than dramatically increasing the size of our local cluster we undertook the re-validation experiments using the Amazon EC2 cloud platform. So doing required demonstrating the efficacy of scaling a simulation to use more cluster nodes and assessing the scientific equivalence of local cluster validation experiments with those executed using the cloud platform.</p> <p>Results</p> <p>The local cluster technology was duplicated in the Amazon EC2 cloud platform. Synthetic modeling protocols were followed to identify a successful parameterization. Experiment sample sizes (number of simulated lobules) on both platforms were 49, 70, 84, and 152 (cloud only). Experimental indistinguishability was demonstrated for ISL outflow profiles of diltiazem using both platforms for experiments consisting of 84 or more samples. The process was analogous to demonstration of results equivalency from two different wet-labs.</p> <p>Conclusions</p> <p>The results provide additional evidence that disposition simulations using ISLs can cover the behavior space of liver experiments in distinct experimental contexts (there is in silico-to-wet-lab phenotype similarity). The scientific value of experimenting with multiscale biomedical models has been limited to research groups with access to computer clusters. The availability of cloud technology coupled with the evidence of scientific equivalency has lowered the barrier and will greatly facilitate model sharing as well as provide straightforward tools for scaling simulations to encompass greater detail with no extra investment in hardware.</p
    corecore