349 research outputs found

    Wannier Function Approach to Realistic Coulomb Interactions in Layered Materials and Heterostructures

    Get PDF
    We introduce an approach to derive realistic Coulomb interaction terms in free standing layered materials and vertical heterostructures from ab-initio modelling of the corresponding bulk materials. To this end, we establish a combination of calculations within the framework of the constrained random phase approximation, Wannier function representation of Coulomb matrix elements within some low energy Hilbert space and continuum medium electrostatics, which we call Wannier function continuum electrostatics (WFCE). For monolayer and bilayer graphene we reproduce full ab-initio calculations of the Coulomb matrix elements within an accuracy of 0.20.2eV or better. We show that realistic Coulomb interactions in bilayer graphene can be manipulated on the eV scale by different dielectric and metallic environments. A comparison to electronic phase diagrams derived in [M. M. Scherer et al., Phys. Rev. B 85, 235408 (2012)] suggests that the electronic ground state of bilayer graphene is a layered antiferromagnet and remains surprisingly unaffected by these strong changes in the Coulomb interaction.Comment: 12 pages, 8 figure

    IL7RA haplotype-associated alterations in cellular immune function and gene expression patterns in multiple sclerosis

    Full text link
    Interleukin-7 receptor alpha (IL7RA) is among the top listed candidate genes influencing the risk to develop multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system. Soluble IL-7RA (sIL-7RA) protein and mRNA levels vary among the four common IL7RA haplotypes. Here we show and confirm that protective haplotype carriers have three times lower sIL-7RA serum levels than the other three haplotypes. High sIL-7RA concentrations significantly decrease IL-7-mediated STAT5 phosphorylation in CD4(+) T cells. Transcriptome analysis of unstimulated and stimulated CD4(+) T cells of MS patients carrying the different IL7RA haplotypes revealed complex and overlapping patterns in genes participating in cytokine signaling networks, apoptosis, cell cycle progression and cell differentiation. Our findings indicate that genetic variants of IL7RA result in haplotype-associated differential responsiveness to immunological stimuli that influence MS susceptibility not exclusively by varying levels of sIL-7RA

    Sensors and Techniques for On-Line Determination of Cell Viability in Bioprocess Monitoring

    Get PDF
    In recent years, the bioprocessing industry has experienced significant growth and is increasingly emerging as an important economic sector. Here, efficient process management and constant control of cellular growth are essential. Good product quality and yield can only be guaranteed with high cell density and high viability. Whereas the on-line measurement of physical and chemical process parameters has been common practice for many years, the on-line determination of viability remains a challenge and few commercial on-line measurement methods have been developed to date for determining viability in industrial bioprocesses. Thus, numerous studies have recently been conducted to develop sensors for on-line viability estimation, especially in the field of optical spectroscopic sensors, which will be the focus of this review. Spectroscopic sensors are versatile, on-line and mostly non-invasive. Especially in combination with bioinformatic data analysis, they offer great potential for industrial application. Known as soft sensors, they usually enable simultaneous estimation of multiple biological variables besides viability to be obtained from the same set of measurement data. However, the majority of the presented sensors are still in the research stage, and only a few are already commercially available

    Intrauterine instillation of diluted seminal plasma at oocyte pick-up does not increase the IVF pregnancy rate: a double-blind, placebo controlled, randomized study

    Get PDF
    STUDY QUESTION Does intrauterine application of diluted seminal plasma (SP) at the time of ovum pick-up improve the pregnancy rate by ≥14% in IVF treatment? SUMMARY ANSWER Intrauterine instillation of diluted SP at the time of ovum pick-up is unlikely to increase the pregnancy rate by ≥14% in IVF. WHAT IS KNOWN ALREADY SP modulates endometrial function, and sexual intercourse around the time of embryo transfer has been suggested to increase the likelihood of pregnancy. A previous randomized double-blind pilot study demonstrated a strong trend towards increased pregnancy rates following the intracervical application of undiluted SP. As this study was not conclusive and as the finding could have been confounded by sexual intercourse, the intrauterine application of diluted SP was investigated in the present trial. STUDY DESIGN, SIZE, DURATION A single-centre, prospective, double-blind, placebo-controlled, randomized, superiority trial on women undergoing IVF was conducted from April 2007 until February 2012 at the University Department of Gynaecological Endocrinology and Reproductive Medicine, Heidelberg, Germany. PARTICIPANTS/MATERIALS, SETTING, METHODS The study was powered to detect an 14% increase in the clinical pregnancy rate and two sequential tests were planned using the Pocock spending function. At the first interim analysis, 279 women had been randomly assigned to intrauterine diluted SP (20% SP in saline from the patients' partner) (n = 138) or placebo (n = 141) at the time of ovum pick-up. MAIN RESULTS AND THE ROLE OF CHANCE The clinical pregnancy rate per randomized patient was 37/138 (26.8%) in the SP group and 41/141 (29.1%) in the placebo group (difference: −2.3%, 95% confidence interval of the difference: −12.7 to +8.2%; P = 0.69). The live birth rate per randomized patient was 28/138 (20.3%) in the SP group and 33/141 (23.4%) in the placebo group (difference: −3.1%, 95% confidence interval of the difference: −12.7 to +6.6%; P = 0.56). It was decided to terminate the trial due to futility at the first interim analysis, at a conditional power of 62%. LIMITATIONS, REASONS FOR CAUTION The confidence interval of the difference remains wide, thus clinically relevant differences cannot reliably be excluded based on this single study. WIDER IMPLICATIONS OF THE FINDINGS The results of this study cast doubt on the validity of the concept that SP increases endometrial receptivity and thus implantation in humans. STUDY FUNDING/COMPETING INTEREST(S) Funding was provided by the department's own research facilities. TRIAL REGISTRATION NUMBER DRKS0000461

    Extreme rejuvenation of a bulk metallic glass at the nanoscale by swift heavy ion irradiation

    Get PDF
    Swift heavy ions can be used as a tool to tune material properties by generating high aspect ratio, nanometric trails of defects, or new disordered phases. This work explores different aspects of using this tool for rejuvenating and enhancing plasticity in bulk metallic glasses. An amorphous alloy with a nominal composition of Pd40Ni40P20 was irradiated with GeV-accelerated Au ions. Irradiation-induced out-of-plane swelling steps up to approxi- mately 100 nm in height are measured at the boundary between irradiated and non-irradiated areas. Changes of the relaxation enthalpy have been investigated using differential scanning calorimetry. Low-temperature heat capacity measurements substantiate an irradiation-induced increase of the boson peak height with increasing fluences. Accompanying transport measurements using radioactive Ag atoms as tracer also revealed increased diffusion rates in the irradiated samples dependent on the total fluence. Nano-indentation measurements show enhanced plasticity in the ion-irradiated glass which can be correlated with an increased heterogeneity as indicated by variable resolution fluctuation electron microscopy. The whole volume of the derived data sub- stantiates a prominent enhancement of the excess volume in the solidified ion tracks and the irradiation-induced modifications are discussed and analyzed in the framework of strong glass rejuvenation within the nanometric ion tracks

    Common microscopic origin of the phase transitions in Ta<sub>2</sub>NiS<sub>5</sub> and the excitonic insulator candidate Ta<sub>2</sub>NiSe<sub>5</sub>

    Get PDF
    The structural phase transition in Ta2NiSe5 has been envisioned as driven by the formation of an excitonic insulating phase. However, the role of structural and electronic instabilities on crystal symmetry breaking has yet to be disentangled. Meanwhile, the phase transition in its complementary material Ta2NiS5 does not show any experimental hints of an excitonic insulating phase. We present a microscopic investigation of the electronic and phononic effects involved in the structural phase transition in Ta2NiSe5 and Ta2NiS5 using extensive first-principles calculations. In both materials the crystal symmetries are broken by phonon instabilities, which in turn lead to changes in the electronic bandstructure also observed in the experiment. A total energy landscape analysis shows no tendency towards a purely electronic instability and we find that a sizeable lattice distortion is needed to open a bandgap. We conclude that an excitonic instability is not needed to explain the phase transition in both Ta2NiSe5 and Ta2NiS5
    • …
    corecore