143 research outputs found

    In-plane anisotropy of electrical transport in Y0.85_{0.85}Tb0.15_{0.15}Ba2_2Cu3_3O7x_{7-x} films

    Full text link
    We fabricate high-quality c-axis oriented epitaxial YBa2_2Cu3_3O7x_{7-x} films with 15% of yttrium atoms replaced by terbium (YTBCO) and study their electrical properties. The Tb substitution reduces the charge carrier density resulting in increased resistivity and decreased critical current density compared to the pure YBa2_2Cu3_3O7x_{7-x} films. The electrical properties of the YTBCO films show an in-plane anisotropy in both the superconducting and normal state providing evidence for the twin-free film. Unexpectedly, the resistive transition of the bridges also demonstrates the in-plane anisotropy that can be explained within the framework of Tinkham's model of the resistive transition and the Berezinskii-Kosterlitz-Thouless (BKT) model depending on the sample parameters. We consider YTBCO films to be a promising platform for both the fundamental research on the BKT transition in the cuprate superconductors and for the fabrication of devices with high kinetic inductance

    Measurement of the Neutron Spin Structure Function g1ng_1^n with a Polarized ^3He Target

    Get PDF
    Results are reported from the HERMES experiment at HERA on a measurement of the neutron spin structure function g1n(x,Q2)g_1^n(x,Q^2) in deep inelastic scattering using 27.5 GeV longitudinally polarized positrons incident on a polarized 3^3He internal gas target. The data cover the kinematic range 0.023<x<0.60.023<x<0.6 and 1(GeV/c)2<Q2<15(GeV/c)21 (GeV/c)^2 < Q^2 <15 (GeV/c)^2. The integral 0.0230.6g1n(x)dx\int_{0.023}^{0.6} g_1^n(x) dx evaluated at a fixed Q2Q^2 of 2.5(GeV/c)22.5 (GeV/c)^2 is 0.034±0.013(stat.)±0.005(syst.)-0.034\pm 0.013(stat.)\pm 0.005(syst.). Assuming Regge behavior at low xx, the first moment Γ1n=01g1n(x)dx\Gamma_1^n=\int_0^1 g_1^n(x) dx is 0.037±0.013(stat.)±0.005(syst.)±0.006(extrapol.)-0.037\pm 0.013(stat.)\pm 0.005(syst.)\pm 0.006(extrapol.).Comment: 4 pages TEX, text available at http://www.krl.caltech.edu/preprints/OAP.htm

    Flavor Decomposition of the Polarized Quark Distributions in the Nucleon from Inclusive and Semi-inclusive Deep-inelastic Scattering

    Full text link
    Spin asymmetries of semi-inclusive cross sections for the production of positively and negatively charged hadrons have been measured in deep-inelastic scattering of polarized positrons on polarized hydrogen and 3He targets, in the kinematic range 0.023<x<0.6 and 1 GeV^2<Q^2<10 GeV^2. Polarized quark distributions are extracted as a function of x for up $(u+u_bar) and down (d+d_bar) flavors. The up quark polarization is positive and the down quark polarization is negative in the measured range. The polarization of the sea is compatible with zero. The first moments of the polarized quark distributions are presented. The isospin non-singlet combination Delta_q_3 is consistent with the prediction based on the Bjorken sum rule. The moments of the polarized quark distributions are compared to predictions based on SU(3)_f flavor symmetry and to a prediction from lattice QCD.Comment: 14 pages, 6 figures (eps format), 10 tables in Latex New version contains tables of asymmetries and correlation matri

    The HERMES Spectrometer

    Get PDF
    The HERMES experiment is collecting data on inclusive and semi-inclusive deep inelastic scattering of polarised positrons from polarised targets of Il, D, and He-3. These data give information on the spin structure of the nucleon. This paper describes the forward angle spectrometer built for this purpose. The spectrometer includes numerous tracking chambers (micro-strip gas chambers, drift and proportional chambers) in front of and behind a 1.3 T.m magnetic field, as well as an extensive set of detectors for particle identification (a lead-glass calorimeter, a pre-shower detector, a transition radiation detector, and a threshold Cherenkov detector). Two of the main features of the spectrometer are its good acceptance and identification of both positrons and hadrons, in particular pions. These characteristics, together with the purity of the targets, are allowing HERMES to make unique contributions to the understanding of how the spins of the quarks contribute to the spin of the nucleon. (C) 1998 Elsevier Science B.V. All rights reserved

    Observation of a coherence length effect in exclusive ρ(0) electroproduction

    Get PDF
    Exclusive incoherent electroproduction of the ρ0(770) meson from 1H, 2H, 3He, and 14N targets has been studied by the HERMES experiment at squared four-momentum transfer Q^2>0.4 GeV^2 and positron energy loss ν from 9 to 20 GeV. The ratio of the 14N to 1H cross sections per nucleon, known as the nuclear transparency, was found to decrease with increasing coherence length of quark-antiquark fluctuations of the virtual photon. The data provide clear evidence of the interaction of the quark-antiquark fluctuations with the nuclear medium

    Quantum size effects in ultra-thin YBa2Cu3O7-x films

    Full text link
    The d-wave symmetry of the order parameter with zero energy gap in nodal directions stands in the way of using high-temperature superconductors for quantum applications. We investigate the symmetry of the order parameter in ultra-thin YBa2Cu3O7-x (YBCO) films by measuring the electrical transport properties of nanowires and nanoconstrictions aligned at different angles relative to the main crystallographic axes. The anisotropy of the nanowire critical current in the nodal and antinodal directions reduces with the decrease in the film thickness. The Andreev reflection spectroscopy shows the presence of a thickness-dependent energy gap that doesn't exist in bulk YBCO. We find that the thickness-dependent energy gap appears due to the quantum size effects in ultra-thin YBCO films that open the superconducting energy gap along the entire Fermi surface. The fully gapped state of the ultra-thin YBCO films makes them a very promising platform for quantum applications, including quantum computing and quantum communications.Comment: References are updated. (a) and (b) labels are added in Fig.

    Status of fully integrated GaAs particle detectors

    No full text
    In this note we investigate the influence of structural nonlinearity of a simple cantilever beam impacting system on its dynamic responses close to grazing incidence by a means of numerical simulation. To obtain a clear picture of this effect we considered two systems exhibiting impacting motion, where the primary stiffness is either linear (piecewise linear system) or nonlinear (piecewise nonlinear system). Two systems were studied by constructing bifurcation diagrams, basins of attractions, Lyapunov exponents and parameter plots. In our analysis we focused on the grazing transitions from no impact to impact motion. We observed that the dynamic responses of these two similar systems are qualitatively different around the grazing transitions. For the piecewise linear system, we identified on the parameter space a considerable region with chaotic behaviour, while for the piecewise nonlinear system we found just periodic attractors. We postulate that the structural nonlinearity of the cantilever impacting beam suppresses chaos near grazing. (C) 2007 Elsevier Ltd. All rights reserved
    corecore