137 research outputs found

    SNP-Typisierung des Buruli-Ulkus-Erregers

    Get PDF
    Zusammenfassung: Mithilfe vergleichender Genomanalysen konnten wir eine Feintypisierungsmethode für Mycobacterium ulcerans, dem genetisch monomorphen Erreger des Buruli-Ulkus, entwickel

    Genetic Diversity of PCR-Positive, Culture-Negative and Culture-Positive Mycobacterium ulcerans Isolated from Buruli Ulcer Patients in Ghana.

    Get PDF
    Culture of Mycobacterium ulcerans from Buruli ulcer patients has very low sensitivity. Thus confirmation of M. ulcerans infection is primarily based on PCR directed against IS2404. In this study we compare the genotypes obtained by variable number of tandem repeat analysis of DNA from IS2404-PCR positive cultures with that obtained from IS2404 positive, culture-negative tissue. A significantly greater genetic heterogeneity was found among culture-negative samples compared with that found in cultured strains but a single genotype is over-represented in both sample sets. This study provides evidence that both the focal location of bacteria in a lesion as well as differences in the ability to culture a particular genotype may underlie the low sensitivity of culture. Though preliminary, data from this work also suggests that mycobacteria previously associated with fish disease (M. pseudoshottsii) may be pathogenic for humans

    A sero-epidemiological approach to explore transmission of Mycobacterium ulcerans

    Get PDF
    The debilitating skin disease Buruli ulcer (BU) is caused by infection with Mycobacterium ulcerans. While various hypotheses on potential reservoirs and vectors of M. ulcerans exist, the mode of transmission has remained unclear. Epidemiological studies have indicated that children below the age of four are less exposed to the pathogen and at lower risk of developing BU than older children. In the present study we compared the age at which children begin to develop antibody responses against M. ulcerans with the age pattern of responses to other pathogens transmitted by various mechanisms. A total of 1,352 sera from individuals living in the BU endemic Offin river valley of Ghana were included in the study. While first serological responses to the mosquito transmitted malaria parasite Plasmodium falciparum and to soil transmitted Strongyloides helminths emerged around the age of one and two years, sero-conversion for M. ulcerans and for the water transmitted trematode Schistosoma mansoni occurred at around four and five years, respectively. Our data suggest that exposure to M. ulcerans intensifies strongly at the age when children start to have more intense contact with the environment, outside the small movement range of young children. Further results from our serological investigations in the Offin river valley also indicate ongoing transmission of Treponema pallidum, the causative agent of yaws

    Spatiotemporal co-existence of two Mycobacterium ulcerans clonal complexes in the Offin River Valley of Ghana

    Get PDF
    In recent years, comparative genome sequence analysis of African Mycobacterium ulcerans strains isolated from Buruli ulcer (BU) lesion specimen has revealed a very limited genetic diversity of closely related isolates and a striking association between genotype and geographical origin of the patients. Here, we compared whole genome sequences of five M. ulcerans strains isolated in 2004 or 2013 from BU lesions of four residents of the Offin river valley with 48 strains isolated between 2002 and 2005 from BU lesions of individuals residing in the Densu river valley of Ghana. While all M. ulcerans isolates from the Densu river valley belonged to the same clonal complex, members of two distinct clonal complexes were found in the Offin river valley over space and time. The Offin strains were closely related to genotypes from either the Densu region or from the Asante Akim North district of Ghana. These results point towards an occasional involvement of a mobile reservoir in the transmission of M. ulcerans, enabling the spread of bacteria across different regions

    Generation of monoclonal antibodies against native viral proteins using antigen-expressing mammalian cells for mouse immunization

    Get PDF
    Due to their rising incidence and progressive geographical spread, infections with mosquito-borne viruses, such as dengue (DENV), chikungunya and zika virus, have developed into major public health challenges. Since all of these viruses may cause similar symptoms and can occur in concurrent epidemics, tools for their differential diagnosis and epidemiological monitoring are of urgent need.; Here we report the application of a novel strategy to rapidly generate monoclonal antibodies (mAbs) against native viral antigens, exemplified for the DENV nonstructural glycoprotein 1 (NS1). The described system is based on the immunization of mice with transfected mammalian cells expressing the target antigens in multiple displays on their cell surface and thereby presenting them efficiently to the host immune system in their native conformation. By applying this cell-based approach to the DENV NS1 protein of serotypes 1 (D1NS1) and 4 (D4NS1), we were able to rapidly generate panels of DENV NS1 serotype cross-reactive, as well as D1NS1- and D4NS1 serotype-specific mAbs. Our data show that the generated mAbs were capable of recognizing the endogenous NS1 protein in DENV-containing biological samples.; The use of this novel immunization strategy, allows for a fast and efficient generation of hybridoma cell lines, producing mAbs against native viral antigens. Envisaged applications of the mAbs include the development of test platforms enabling a differentiation of the DENV serotypes and high resolution immunotyping for epidemiological studies

    Loss of Genomic Diversity in a Neisseria meningitidis Clone Through a Colonization Bottleneck.

    Get PDF
    Neisseria meningitidis is the leading cause of epidemic meningitis in the "meningitis belt" of Africa, where clonal waves of colonization and disease are observed. Point mutations and horizontal gene exchange lead to constant diversification of meningococcal populations during clonal spread. Maintaining a high genomic diversity may be an evolutionary strategy of meningococci that increases chances of fixing occasionally new highly successful "fit genotypes". We have performed a longitudinal study of meningococcal carriage and disease in northern Ghana by analyzing cerebrospinal fluid samples from all suspected meningitis cases and monitoring carriage of meningococci by twice yearly colonization surveys. In the framework of this study, we observed complete replacement of an A: sequence types (ST)-2859 clone by a W: ST-2881 clone. However, after a gap of 1 year, A: ST-2859 meningococci re-emerged both as colonizer and meningitis causing agent. Our whole genome sequencing analyses compared the A population isolated prior to the W colonization and disease wave with the re-emerging A meningococci. This analysis revealed expansion of one clone differing in only one nonsynonymous SNP from several isolates already present in the original A: ST-2859 population. The colonization bottleneck caused by the competing W meningococci thus resulted in a profound reduction in genomic diversity of the A meningococcal population

    Emergence and genomic diversification of a virulent serogroup W:ST-2881(CC175) Neisseria meningitidis clone in the African meningitis belt.

    Get PDF
    Countries of the African 'meningitis belt' are susceptible to meningococcal meningitis outbreaks. While in the past major epidemics have been primarily caused by serogroup A meningococci, W strains are currently responsible for most of the cases. After an epidemic in Mecca in 2000, W:ST-11 strains have caused many outbreaks worldwide. An unrelated W:ST-2881 clone was described for the first time in 2002, with the first meningitis cases caused by these bacteria reported in 2003. Here we describe results of a comparative whole-genome analysis of 74 W:ST-2881 strains isolated within the framework of two longitudinal colonization and disease studies conducted in Ghana and Burkina Faso. Genomic data indicate that the W:ST-2881 clone has emerged from Y:ST-175(CC175) bacteria by capsule switching. The circulating W:ST-2881 populations were composed of a variety of closely related but distinct genomic variants with no systematic differences between colonization and disease isolates. Two distinct and geographically clustered phylogenetic clonal variants were identified in Burkina Faso and a third in Ghana. On the basis of the presence or absence of 17 recombination fragments, the Ghanaian variant could be differentiated into five clusters. All 25 Ghanaian disease isolates clustered together with 23 out of 40 Ghanaian isolates associated with carriage within one cluster, indicating that W:ST-2881 clusters differ in virulence. More than half of the genes affected by horizontal gene transfer encoded proteins of the 'cell envelope' and the 'transport/binding protein' categories, which indicates that exchange of non-capsular antigens plays an important role in immune evasion

    Sero-Epidemiology as a Tool to Screen Populations for Exposure to Mycobacterium ulcerans

    Get PDF
    Sero-epidemiological analyses revealed that a higher proportion of sera from individuals living in the Buruli ulcer (BU) endemic Densu River Valley of Ghana contain Mycobacterium ulcerans 18 kDa small heat shock protein (shsp)-specific IgG than sera from inhabitants of the Volta Region, which was regarded so far as BU non-endemic. However, follow-up studies in the Volta Region showed that the individual with the highest anti-18 kDa shsp-specific serum IgG titer of all participants from the Volta Region had a BU lesion. Identification of more BU patients in the Volta Region by subsequent active case search demonstrated that sero-epidemiology can help identify low endemicity areas. Endemic and non-endemic communities along the Densu River Valley differed neither in sero-prevalence nor in positivity of environmental samples in PCR targeting M. ulcerans genomic and plasmid DNA sequences. A lower risk of developing M. ulcerans disease in the non-endemic communities may either be related to host factors or a lower virulence of local M. ulcerans strains

    Single Nucleotide Polymorphism Typing of Mycobacterium ulcerans Reveals Focal Transmission of Buruli Ulcer in a Highly Endemic Region of Ghana

    Get PDF
    Buruli ulcer (BU) is an emerging necrotizing disease of the skin and subcutaneous tissue caused by Mycobacterium ulcerans. While proximity to stagnant or slow flowing water bodies is a risk factor for acquiring BU, the epidemiology and mode of M. ulcerans transmission is poorly understood. Here we have used high-throughput DNA sequencing and comparisons of the genomes of seven M. ulcerans isolates that appeared monomorphic by existing typing methods. We identified a limited number of single nucleotide polymorphisms (SNPs) and developed a real-time PCR SNP typing method based on these differences. We then investigated clinical isolates of M. ulcerans on which we had detailed information concerning patient location and time of diagnosis. Within the Densu river basin of Ghana we observed dominance of one clonal complex and local clustering of some of the variants belonging to this complex. These results reveal focal transmission and demonstrate, that micro-epidemiological analyses by SNP typing has great potential to help us understand how M. ulcerans is transmitted
    corecore