27 research outputs found

    Cloud morphology and dynamics in Saturn’s northern polar region

    Get PDF
    We present a study of the cloud morphology and motions in the north polar region of Saturn, from latitude ∼ 70°N to the pole based on Cassini ISS images obtained between January 2009 and November 2014. This region shows a variety of dynamical structures: the permanent hexagon wave and its intense eastward jet, a large field of permanent “puffy” clouds with scales from 10 – 500 km, probably of convective origin, local cyclone and anticyclones vortices with sizes of ∼1,000 km embedded in this field, and finally the intense cyclonic polar vortex. We report changes in the albedo of the clouds that delineate rings of circulation around the polar vortex and the presence of “plume-like” activity in the hexagon jet, in both cases not accompanied with significant variations in the corresponding jets. No meridional migration is observed in the clouds forming and merging in the field of puffy clouds, suggesting that their mergers do not contribute to the maintenance of the polar vortex. Finally, we analyze the dominant growing modes for barotropic and baroclinic instabilities in the hexagon jet, showing that a mode 6 barotropic instability is dominant at the latitude of the hexagon.This work was supported by the Spanish MICIIN projects AYA2015-65041 with FEDER support, Grupos Gobierno Vasco IT -765-13, and UFI11/55 from UPV/EHU

    The diverse meteorology of Jezero crater over the first 250 sols of Perseverance on Mars

    Get PDF
    NASA's Perseverance rover's Mars Environmental Dynamics Analyzer is collecting data at Jezero crater, characterizing the physical processes in the lowest layer of the Martian atmosphere. Here we present measurements from the instrument's first 250 sols of operation, revealing a spatially and temporally variable meteorology at Jezero. We find that temperature measurements at four heights capture the response of the atmospheric surface layer to multiple phenomena. We observe the transition from a stable night-time thermal inversion to a daytime, highly turbulent convective regime, with large vertical thermal gradients. Measurement of multiple daily optical depths suggests aerosol concentrations are higher in the morning than in the afternoon. Measured wind patterns are driven mainly by local topography, with a small contribution from regional winds. Daily and seasonal variability of relative humidity shows a complex hydrologic cycle. These observations suggest that changes in some local surface properties, such as surface albedo and thermal inertia, play an influential role. On a larger scale, surface pressure measurements show typical signatures of gravity waves and baroclinic eddies in a part of the seasonal cycle previously characterized as low wave activity. These observations, both combined and simultaneous, unveil the diversity of processes driving change on today's Martian surface at Jezero crater.This work has been funded by the Spanish Ministry of Economy and Competitiveness, through the projects no. ESP2014-54256-C4-1-R (also -2-R, -3-R and -4-R); Ministry of Science, Innovation and Universities, projects no. ESP2016-79612-C3-1-R (also -2-R and -3-R); Ministry of Science and Innovation/State Agency of Research (10.13039/501100011033), projects no. ESP2016-80320-C2-1-R, RTI2018-098728-B-C31 (also -C32 and -C33), RTI2018-099825-B-C31, PID2019-109467GB-I00 and PRE2020-092562; Instituto Nacional de Técnica Aeroespacial; Ministry of Science and Innovation’s Centre for the Development of Industrial Technology; Spanish State Research Agency (AEI) Project MDM-2017-0737 Unidad de Excelencia “María de Maeztu”—Centro de Astrobiología; Grupos Gobierno Vasco IT1366-19; and European Research Council Consolidator Grant no 818602. The US co-authors performed their work under sponsorship from NASA’s Mars 2020 project, from the Game Changing Development programme within the Space Technology Mission Directorate and from the Human Exploration and Operations Directorate. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). G.M. acknowledges JPL funding from USRA Contract Number 1638782. A.G.F. is supported by the European Research Council, Consolidator Grant no. 818602

    Cost Optimisation in Freight Distribution with Cross-Docking: N-Echelon Location Routing Problem

    Get PDF
    Freight transportation constitutes one of the main activities that influence the economy and society, as it assures a vital link between suppliers and customers and represents a major source of employment. Multi-echelon distribution is one of the most common strategies adopted by the transportation companies in an aim of cost reduction. Although vehicle routing problems are very common in operational research, they are essentially related to single-echelon cases. This paper presents the main concepts of multi-echelon distribution with cross-docks and a unified notation for the N-echelon location routing problem. A literature review is also presented, in order to list the main problems and methods that can be helpful for scientists and transportation practitioners

    The 2018 Martian Global Dust Storm over the South Polar Region studied with MEx/VMC

    Get PDF
    We study the 2018 Martian global dust storm (GDS 2018) over the Southern Polar Region using images obtained by the Visual Monitoring Camera (VMC) on board Mars Express (MEx) during June and July 2018. Dust penetrated into the polar cap region but never covered the cap completely, and its spatial distribution was nonhomogeneous and rapidly changing. However, we detected long but narrow aerosol curved arcs with a length of ~2,000–3,000 km traversing part of the cap and crossing the terminator into the nightside. Tracking discrete dust clouds allowed measurements of their motions that were toward the terminator with velocities up to 100 m/s. The images of the dust projected into the Martian limb show maximum altitudes of ~70 km but with large spatial and temporal variations. We discuss these results in the context of the predictions of a numerical model for dust storm scenario.This work has been supported by the Spanish project AYA2015-65041-P (MINECO/FEDER, UE) and Grupos Gobierno Vasco IT-1366-19. J. H. B. was supported by ESA Contract 4000118461/16/ES/JD, Scientific Support for Mars Express Visual Monitoring Camera. We acknowledge support from the Faculty of the European Space Astronomy Centre (ESAC). VMC raw images used in this study can be accessed through VMC raw file gallery http://blogs.esa.int/ftp/. VMC raw and calibrated images will be available in ESA PSA in the near future. A list of observations used in this paper is provided in the supporting information. MCD database files are available in http://www-mars.lmd.jussieu.fr/mars.html

    A complex storm system in Saturn’s north polar atmosphere in 2018

    Get PDF
    Producción CientíficaSaturn’s convective storms usually fall in two categories. One consists of mid-sized storms ∼2,000 km wide, appearing as irregular bright cloud systems that evolve rapidly, on scales of a few days. The other includes the Great White Spots, planetary-scale giant storms ten times larger than the mid-sized ones, which disturb a full latitude band, enduring several months, and have been observed only seven times since 1876. Here we report a new intermediate type, observed in 2018 in the north polar region. Four large storms with east–west lengths ∼4,000–8,000 km (the first one lasting longer than 200 days) formed sequentially in close latitudes, experiencing mutual encounters and leading to zonal disturbances affecting a full latitude band ∼8,000 km wide, during at least eight months. Dynamical simulations indicate that each storm required energies around ten times larger than mid-sized storms but ∼100 times smaller than those necessary for a Great White Spot. This event occurred at about the same latitude and season as the Great White Spot in 1960, in close correspondence with the cycle of approximately 60 years hypothesized for equatorial Great White Spots.Ministerio de Economía, Industria y Competitividad - Fondo Europeo de Desarrollo Regional (project AYA2015-65041-P)Gobierno Vasco (project IT-366-19

    An Extremely Elongated Cloud Over Arsia Mons Volcano on Mars: I. Life Cycle

    Get PDF
    We report a previously unnoticed annually repeating phenomenon consisting of the daily formation of an extremely elongated cloud extending as far as 1,800 km westward from Arsia Mons. It takes place in the solar longitude (Ls) range of ∼220°–320°, around the Southern solstice. We study this Arsia Mons Elongated Cloud (AMEC) using images from different orbiters, including ESA Mars Express, NASA MAVEN, Viking 2, MRO, and ISRO Mars Orbiter Mission (MOM). We study the AMEC in detail in Martian year (MY) 34 in terms of local time and Ls and find that it exhibits a very rapid daily cycle: the cloud growth starts before sunrise on the western slope of the volcano, followed by a westward expansion that lasts 2.5 h with a velocity of around 170 m/s in the mesosphere (∼45 km over the areoid). The cloud formation then ceases, detaches from its formation point, and continues moving westward until it evaporates before the afternoon, when most sun-synchronous orbiters make observations. Moreover, we comparatively study observations from different years (i.e., MYs 29–34) in search of interannual variations and find that in MY33 the cloud exhibits lower activity, while in MY34 the beginning of its formation was delayed compared with other years, most likely due to the Global Dust Storm. This phenomenon takes place in a season known for the general lack of clouds on Mars. In this paper we focus on observations, and a theoretical interpretation will be the subject of a separate paper.This work has been supported by the Spanish project AYA2015-65041-P and PID2019-109467GB-I00 (MINECO/FEDER, UE) and Grupos Gobierno Vasco IT-1366-19. JHB was supported by ESA Contract No. 4000118461/16/ES/JD, Scientific Support for Mars Express Visual Monitoring Camera. The Aula EspaZio Gela is supported by a grant from the Diputación Foral de Bizkaia (BFA). We acknowledge support from the Faculty of the European Space Astronomy Center (ESAC). Special thanks are due to the Mars Express Science Ground Segment and Flight Control Team at ESAC and ESOC. The contributions by K.C and N.M.S were supported by NASA through the MAVEN project

    A planetary-scale disturbance in a long living three vortex coupled system in Saturn's atmosphere

    Get PDF
    The zonal wind profile of Saturn has a unique structure at 60°N with a double-peaked jet that reaches maximum zonal velocities close to 100 ms−1. In this region, a singular group of vortices consisting of a cyclone surrounded by two anticyclones was active since 2012 until the time of this report. Our observation demonstrates that vortices in Saturn can be long-lived. The three-vortex system drifts at u = 69.0 ± 1.6 ms−1, similar to the speed of the local wind. Local motions reveal that the relative vorticity of the vortices comprising the system is ∼2–3 times the ambient zonal vorticity. In May 2015, a disturbance developed at the location of the triple vortex system, and expanded eastwards covering in two months a third of the latitudinal circle, but leaving the vortices essentially unchanged. At the time of the onset of the disturbance, a fourth vortex was present at 55°N, south of the three vortices and the evolution of the disturbance proved to be linked to the motion of this vortex. Measurements of local motions of the disturbed region show that cloud features moved essentially at the local wind speeds, suggesting that the disturbance consisted of passively advecting clouds generated by the interaction of the triple vortex system with the fourth vortex to the south. Nonlinear simulations are able to reproduce the stability and longevity of the triple vortex system under low vertical wind shear and high static stability in the upper troposphere of Saturn.This work was supported by the Spanish MICIIN projects AYA2015-65041-P (MINECO/FEDER, UE), Grupos Gobierno Vasco IT-765-13, and UFI11/55 from UPV/EHU. EGM is supported by the Serra Hunter Programme, Generalitat de Catalunya. A. Simon, K. Sayanagi and M.H. Wong were supported by a NASA Cassini Data Analysisgrant (NNX15AD33G and NNX15AD34G). We acknowledge the three orbits assigned by the Director Discretionary time from HST for this research (DD Program 14064, IP A. Sánchez-Lavega). We are very grateful to amateur astronomers contributing with their images to open databases such as PVOL (http://pvol2.ehu.eus/) and ALPO-Japan (http://alpo-j.asahikawa-med.ac.jp/)
    corecore