1,129 research outputs found

    Oceans of Tomorrow sensor interoperability for in-situ ocean monitoring

    Get PDF
    The Oceans of Tomorrow (OoT) projects, funded by the European Commission’s FP7 program, are developing a new generation of sensors supporting physical, biogeochemical and biological oceanographic monitoring. The sensors range from acoustic to optical fluorometers to labs on a chip. The result is that the outputs are diverse in a variety of formats and communication methodologies. The interfaces with platforms such as floats, gliders and cable observatories are each different. Thus, sensorPeer ReviewedPostprint (author's final draft

    TS-MUWSN: Time synchronization for mobile underwater sensor networks

    Get PDF
    Time synchronization is an important, yet challenging, problem in underwater sensor networks (UWSNs). This challenge can be attributed to: 1) messaging timestamping; 2) node mobility; and 3) Doppler scale effect. To mitigate these problems, we present an acoustic-based time-synchronization algorithm for UWSN, where we compare several message time-stamping algorithms in addition to different Doppler scale estimators. A synchronization system is based on a bidirectional message exchange between a reference node and a slave one, which has to be synchronized. Therefore, we take as reference the DA-Sync-like protocol (Liu et al., 2014), which takes into account node's movement by using first-order kinematic equations, which refine Doppler scale factor estimation accuracy, and result in better synchronization performance. In our study, we propose to modify both time-stamping and Doppler scale estimation procedures. Besides simulation, we also perform real tests in controlled underwater communication in a water test tank and a shallow-water test in the Mediterranean Sea.Peer ReviewedPostprint (author's final draft

    Aplicación del protocolo OGC Puck para instrumentación lug and playRS232 y TCPIP

    Get PDF
    In the small market of precision measuring instruments there is no standardization of the communication protocols used for control and instrument configuration. Each manufacturer defines their own syntax and set of commands for each instrument. Due to this particular problem it is necessary to create a communication protocol that uses a common syntax and a set of common commands in addition to the specific commands of these instruments. Such protocol is the OGC ® PUCK Protocol Standard that can be implemented in any measuring instrument or apparatus. This new protocol works through RS232 serial communication, most common for measuring instruments, but also for Ethernet communication (TCP-IP).Peer Reviewe

    OGC® Ocean Science Interoperability Experiment : Phase II Report

    Get PDF
    This OGC Engineering Report documents the work performed by the participants of the Ocean Science Interoperability Experiment Phase II.This OGC Engineering Report documents the work performed by the participants of the Ocean Science Interoperability Experiment Phase II. This work is a follow-on to the OGC Oceans IE Phase 1 activity. Specifically, this IE addressed the following tasks: • Automated metadata/software installation via PUCK protocol. • Offering of complex systems (e.g. observations systems containing other systems) such as collection of stations. • Linking data from SOS to out-of-band offerings. • Semantic Registry and Services. • Catalogue Service-Web Registry. • IEEE-1451/OGC-SWE harmonization As a result of this experiment, a number of recommendations and conclusions were identified.Postprint (published version

    From ocean sensors to traceable knowledge by harmonizing ocean observing systems

    Get PDF
    Society is requesting more than ever being better informed on the state and effects of Earth’s changing oceans. This has direct implications on ocean observing systems, including scientific planning and technology. For instance better knowledge implies that data on health, climate and overall dynamics of our oceans have a known level of quality, be up-to-date, be easily discoverable, be easily searchable both in time and space, and be human- and machine-readable in order to generate faster decisions when and where needed. Requirements with respect to spatial regions and scales (seas and ocean basins, from millimeters to hundreds of kilometers), time scope and scales (past, present, future, from microseconds to decades) indeed have direct implications on observing systems’ spatio-temporal sampling capabilities. Possibly high spatial and temporal resolution also means unprecedented amounts of data, communication bandwidth and processing power needs. Technological implications are thus quite substantial and, in this short article, we will try to provide a review of some initiatives of global and local focus that are aiming to respond to at least some of these needs, starting with the application of the Global Earth Observation System of Systems (GEOSS) guidelines to ocean observatories. Then we will address real scenarios in real ocean observing facilities, first with the European Seas Observatory Network and the European Multidisciplinary Seafloor Observation (ESONET-EMSO), then two recently associated Spanish initiatives, the Oceanic Platform of the Canary Islands (PLOCAN) infrastructure and deep sea observatory in the Canary Islands, and the Expandable Seafloor Observatory (OBSEA) shallow water Western-Mediterranean observatory of the Technical University of Catalonia, one of the first real-time ocean observatories implemented with state-of- the-art interoperable concepts, down to the sensor interface.Postprint (published version

    Optical power model of a laser bar diode

    Get PDF
    This article proposes a modelling method for laser diodes optical output power including its dependency on temperature. The device used for this study is a 40 W Monocrom's diode, with 808 nm wavelength emitted light and with a 19 emitters CS mount laser bar, mounted using the patented Monocrom's clamping method. The aim of this study is to propose a Pspice modelling of the laser diode device, mainly focusing in the optical output power variation with the temperature and allowing its computer simulation. Also to setup a characterization system to obtain the necessary parameters values for the optical model mathematical expressions. Therefore, the article explains the proposed method for the optical output power model generation of the laser bar diode and how its parameters values are obtained, an optical output power measurement setup and its calibration, the obtained Pspice model and its simulation, and the characterization system that allows to obtain the necessary parameters with short rise up time current slopes. Finally, evaluation of results and related conclusions are exposed.Peer ReviewedPostprint (author's final draft

    European Multidisciplinary and Water-Column Observatory - European Research Infrastructure Consortium (EMSO ERIC): Challenges and opportunities for Strategic European Marine Sciences

    Get PDF
    EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org) is a large-scale European Research Infrastructure I. It is a distributed infrastructure of strategically placed, deep-sea seafloor and water column observatory nodes with the essential scientific objective of real-time, long-term observation of environmental processes related to the interaction between the geosphere, biosphere, and hydrosphere. The geographic locations of the EMSO observatory nodes represent key sites in European waters, from the Arctic, through the Atlantic and Mediterranean, to the Black Sea (Figure 1), as defined through previous studies performed in FP6 and FP7 EC projects such as ESONET-CA, ESONET-NoE, EMSO-PP (Person et al., 2015).Peer ReviewedPostprint (published version

    Underwater light estimation using the OBSEA camera

    Get PDF
    This is a description of the method used in the OBSEA observatory to obtain a value for the amount of light present in the seafoor using the existing video surveillance camera.Peer Reviewe

    Automatic panoramic image creation system from OBSEA PTZ underwater camera

    Get PDF
    This article is a description about how to take advantage of an underwater PTZ camera to obtain an immersive panoramic image of the seabed environment.Peer Reviewe
    • …
    corecore