
Open Geospatial Consortium
Date: 2011-01-04

Reference number of this document: 09-156r2

Category: OGC® Engineering Report

Editor: Luis Bermudez

OGC® Ocean Science Interoperability Experiment

Phase II Report

Copyright © 2011 Open Geospatial Consortium.

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. This document is an OGC Public Engineering
Report created as a deliverable in an OGC Interoperability Initiative and is not an
official position of the OGC membership. It is distributed for review and comment. It is
subject to change without notice and may not be referred to as an OGC Standard.
Further, any OGC Engineering Report should not be referenced as required or
mandatory technology in procurements.

Document type: OpenGIS® Engineering Report
Document subtype: NA
Document stage: Approved for release
Document language: English

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium ii

Abstract

This OGC Engineering Report documents the work performed by the participants of the
Ocean Science Interoperability Experiment Phase II. This work is a follow-on to the
OGC Oceans IE Phase 1 activity. Specifically, this IE addressed the following tasks:

Automated metadata/software installation via PUCK protocol.
Offering of complex systems (e.g. observations systems containing other systems)
such as collection of stations.
Linking data from SOS to out-of-band offerings.
Semantic Registry and Services.
Catalogue Service-Web Registry.
IEEE-1451/OGC-SWE harmonization

As a result of this experiment, a number of recommendations and conclusions were
identified.

Keywords

OGC, Oceans, SOS, SensorML, SWE, PUCK, IEEE-1451

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium iii

Table of Contents
1. Introduction

 and Scope
1.2 Foreword
1.1 Summary

1.3 Document contributor contact points
1.4 Revision history
1.5 Future work

2. Working g
3. Topic: Aut

roups and activities
omat

3.1 Goals
ed metadata/software installation via PUCK protocol

3.2 Motivation
3.3 Participants
3.4 Discussion

.4.13 Automatic installation of IEEE-1451 and OGC SWE components using
instruments that implement MBARI PUCK protocol

3.7 Effort required to integrate PUCK
3.8 Recommendations

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium iv

10. Acknowledgements

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 1

OpenGIS® Ocean Science Interoperability Experiment II

1. Introduction

1.1 Summary and Scope
The Oceans Science Interoperability Experiment phase II is intended to consolidate a
portion of the Ocean-Observing community on its understanding of various OGC
specifications, solidify demonstrations for Ocean Science application areas, harden
software implementations, and produce a candidate OGC Best Practices document that
can be used to inform the broader ocean-observing community. To achieve these goals,
the Oceans IE will engage the OGC membership to assure that any community
recommendations coming from the Oceans group will properly leverage the OGC
specifications.

Potentially, Change Requests on OGC Specification will be provided to the OGC
Technical Committee to influence the underlying specifications. It is not anticipated that
this IE will develop any new specifications.

The OGC members that are acting as initiators of the Interoperability Experiment are:

Southeastern Universities Research Association (SURA)

National Oceanographic and Atmospheric Administration (NOAA)

Texas A&M University – Academy for Advanced Telecommunications (TAMU)

National Center for Atmospheric Research (NCAR)

The Monterey Bay Aquarium Research Institute (MBARI)

Gulf of Maine Ocean Observing System (GoMOOS)

The participants are also part of the OOSTethys project. Documentation about
OOSTethys and the Ocean Science Interoperability Experiment, and tools such as
reference implementations toolkits are available at http://www.oostethys.org.

1.2 Foreword
This is an informative document that describes lessons learned and best practices from
using OGC and W3C standards. This document is not an OGC or W3C standard.

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open Geospatial Consortium Inc. shall not be held
responsible for identifying any or all such patent rights.

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 2

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

1.3 Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Name Organization
Luis Bermudez Southeastern Universities Research

Association
David Coyle USGS
Carlos Rueda Monterey Bay Aquarium Research

Institute
Eric Bridger Gulf of Maine Ocean Observing

System
Tom O'Reilly Monterey Bay Aquarium Research

Institute
Manil Maskey University of Alabama
Eric Delory

dBscale Sensing Technologies

1.4 Revision history
Date Release Editor Primary clauses

modified
Description

11/09/09 LB All Merged sections from Google docs an
formatted in the OGC template.

11/09/15 TO PUCK section Added OGC recommendation and additional
figures.

11/09/16 LB All General edition.
11/09/17 CR Section 6 General edition and updated recommendations.
11/09/18 ED Section 9 Added IEEE SML harmonization section.
11/09/19 LB All General edition.
11/09/24 LB All General edition.
11/09/30 LB All General edition.
01/21/09 0.19 r2 LB All General edition.

1.5 Future work
Improvements in this document are desirable to amplify details of the specifications and
resources used within the OGC standards. Future work can include topics discussed in
section 2. Not all of them were addressed. The remaining topics can be subject for further
work.

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 3

1.6 Normative References
The following documents are referenced in this document. For dated references,
subsequent amendments to, or revisions of, any of these publications do not apply. For
undated references, the latest edition of the normative document referred to applies.

OGC 07-036 OpenGIS Geography Markup Language (GML) Encoding Standard, 3.2.1,
2007-08-27, http://portal.opengeospatial.org/files/?artifact_id=20509.

OGC 07-022r1, Observations and Measurements – Part 1 - Observation schema 1.0,
2007-12-08 http://portal.opengeospatial.org/files/?artifact_id=22466.

OGC 04-094, Web Feature Service Implementation Specification, 1.1.0, 2005-05-03,
http://www.opengeospatial.org/standards/wfs.

OGC® 07-000, OpenGIS® Sensor Model Language (SensorML) Implementation
Specification, 1.0.0, 2007-07-17,
http://portal.opengeospatial.org/files/index.php?artifact_id=21273&passcode=fxphjb8qrc
a4gwy7g626.

OGC 06-121r3 OGC Web Services Common Specification,
http://portal.opengeospatial.org/files/?artifact_id=20040.

OGC 04-095, OpenGIS Filter Encoding Implementation Specification, 1.1.0, 2005-05-03,
http://portal.opengeospatial.org/files/?artifact_id=8340.

1.7 Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Specification [OGC 06-121r3] clause 4 of Sensor Observation
Service[OGC 06-009r6] and Clause 4 of Observations and Measurements – Part 1
[OGC 07-022r1].

1.8 Conventions

1.8.1 Abbreviated terms
API Application Programming Interface

GML Geography Markup Language

ISO International Organization for Standardization

OGC Open Geospatial Consortium

OWS OGC Web Services

OWL Web Ontology Language

O&M Observations and Measurements

MMI Marine Metadata Interoperability Project

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 4

SensorML Sensor Model Language

RDF Resource Description Framework

SAS Sensor Alert Service

SOS Sensor Observation Service

SPS Sensor Planning Service

SWE Sensor Web Enablement

TML Transducer Markup Language

UML Unified Modeling Language

XML eXtensible Markup Language

1.9 UML Notation
Some diagrams that appear in this specification are presented using the Unified Modeling
Language (UML) static structure diagram, as described in Sub clause 5.2 of [OGC 06-
121r3].

1.10 Background
The Southeastern Universities Research Association (SURA) hosted a workshop in
Baltimore October 2005 called OOS Tech 2005 (note: OOS = Ocean Observing System).
The workshop included approximately 100 ocean scientists, data mangers and computer
science experts from around the country. They learned and talked about “Web Services
for Interoperable Ocean Science.” After the workshop, a subset of the group agreed to
work together on a follow-on activity to implement some of what they had learned. The
agreed to build from their previous experiences using OGC WMS and WFS
specifications. In previous years, they had built some basic elements of a Service
Oriented Architecture (SOA) demo at OpenIOOS (www.openioos.org).

The OOS Tech 2005 follow-on activity began with 5 loosely defined goals: (1) Develop
an end-to-end demonstration of web services increasing the interoperability of various
regional real-time, ocean-observing programs, (2) gain experience with data exchange
using SOAP with different tools on multiple platforms and implementations (3) leverage
previous experiences with WMS and WFS, (4) leverage the Marine Metadata
Interoperability demo focused on semantic interoperability using RDF-based ontologies,
(5) leverage results of a NOAA Coastal Services Center salinity workshop in September
2005.

The small OOS Tech follow-on team formed their own “service-definition” team and
began developing some simple SOAP interface definitions that leveraged various other
OGC specifications, including GML, Observations & Measurements and SensorML.
Since then the group has gain momentum and a project OOSTethtys got establish in
2006. OOSTethys members decided that working with standards organizations to pick the
best standards, exercise them and advance them to bring observation system together,

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 5

was the logical path to move forward. OOSTethys members started an OGC Ocean
Science Interoperability Experiment (Oceans IE) in 2007.

The timing of the OOSTethys and Oceans IE coincided with advances in the OGC Sensor
Web Enablement (SWE) initiative. SWE capabilities prompted investigation between the
WFS standard and the relatively new Sensor Observation Service (SOS). Extensive
investigation, software development and real-world testing resulted in the set of open
source SOS reference implementations and community cookbooks on OOSTethys.org.

The Oceans IE Phase I ended in May 2008, when the report was submitted. The Oceans
IE Phase I investigate the use of OGC Web Feature Services (WFS) and OGC Sensor
Observation Services (SOS) for representing and exchanging point data records from
fixed in-situ marine platforms. The Oceans IE Phase I produced an engineering best
practices report and reference implementations for using OGC Sensor Observation
Service. The best practices from this experiment make possible the consideration and
adoption of SOS by NSF's Ocean Observing Initiative, the U.S. government Integrated
Ocean Observing System, Data Integration Framework, and Europe's ESONet program.

Due to the interest of the OOSTethys participants in Phase I, they decided to engage on a
Phase II advancing topics of interest that were depicted as future work in the phase I. A
summary report for each working group is discussed in the following sections.

2. Working groups and activities
OSIE II kickoff date was on March 27, 2009. A one hour meeting was held every week to
track progress, prioritize and discuss main issues. All the minutes are available at the
OOSTethys web site. OSIE II is planned to end on November 2009 after this report is
submitted to OGC.

Working groups were created based on interest of the participants. The common theme
was Sensor Web Enablement for ocean data. The following 21 topics summarize the
collective interests:

1. Automated metadata/software installation via PUCK protocol.
2. SWE Common encoding for vertical and horizontal profiles (e.g. ADCP) and

trajectories (AUV).
3. Long time series services (e.g. 20 years of data).
4. Offering of complex systems (e.g. observations systems containing other

systems) such as collection of stations.
5. Linking data from SOS to out-of-band offerings.
6. Representation of vectors and scalars in SOS vs semantics.
7. Semantic Registry and Services.
8. Alert services for fast detection of coastal events. Offerings that are event based

(e.g. all tsunami sensors within +/-12 hrs of an tsunami).
9. XSLT and SOS responses.
10. CSWRegistry.
11. Portal - Human Interface to discover and download access data
12. Development of KML encodings for SOS.
13. WCS / SOS Chaining

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 6

14. NetCDF/OpenDAP and SOS Chaining Gridded data and stations.
15. IEEE-1451/OGC-SWE harmonization
16. Instruments control.
17. SOS WaterML harmonization
18. Incorporation of QA/QC into SOS services.
19. Deployment of SOS services
20. SOS client – visualization
21. Guidance for capturing metadata fields and lineage using SensorML.

Only the bold topics were advanced enough to be presented in this report. For each
selected topic, the goals, motivation, list of participants, summary of the work and
recommendations and conclusions will be further explained.

3. Topic: Automated metadata/software installation via PUCK protocol

3.1 Goals
This team had the following goals:

Demonstrate automated retrieval and installation of IEEE 1451 and OGC SWE
components from instruments that implement MBARI PUCK protocol. These
components included IEEE 1451 TEDS, SensorML documents, and instrument
driver software to be executed on the instrument "host" computer.

Experiment with approaches to automatically detect when a sensor has been
installed, removed, or exchanged.

3.2 Motivation
Standards such as OGC SWE and IEEE 1451 strive to integrate diverse instruments into
networks with minimal human effort and high reliability. Use of these standards requires
several software components that must be installed on the instrument network, including
instrument "drivers", web servers, and metadata documents that describe instruments in a
standard way. Most instrument networks today require careful manual installation and
configuration by technicians to assure that the software components are properly
associated with the physical instruments that they represent. In oceanographic
applications, these installation and configuration steps often must be performed in
shipboard environments that are physiologically and psychologically challenging, thus
increasing the possibility of human procedural errors.

MBARI PUCK addresses these installation and configuration challenges by defining a
standard instrument protocol to store and automatically retrieve metadata and other
information from the instrument device itself. This information can include OGC SWE
SensorML and IEEE 1451 TEDS documents, as well as actual instrument “driver” code.
A host computer that understands PUCK protocol can automatically retrieve and utilize
this information from the instrument itself when the device is installed. For example,
components required by OGC SWE and IEEE 1451 can be physically stored with
instruments and sensors and automatically installed on a sensor network, when the
instrument is plugged in, thereby eliminating tedious and error-prone manual
configuration steps.

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 7

MBARI PUCK defines a small standard “PUCK datasheet” that can be retrieved from a
PUCK-compliant instrument. The datasheet includes a universally unique identifier
(UUID) that is guaranteed to be unique among all PUCK-enabled instruments, as well as
manufacturer and model codes. All compliant instruments must supply the datasheet. In
addition MBARI PUCK defines an optional “PUCK payload” that contains additional
information needed to operate the instrument; this can include instrument driver code and
metadata. MBARI PUCK does not limit the payload format or content, leaving that
decision up to observatory developers and users.

MBARI PUCK protocol augments but does not replace existing instrument protocols.
Thus a manufacturer can modify their instrument’s firmware by adding PUCK commands
to the already existing command set of the instrument. This approach allows
manufacturers to implement MBARI PUCK without abandoning their existing firmware
and software applications.

The majority of today’s oceanographic instruments have a serial RS-232 interface,
compatible with underwater low-power applications. MBARI PUCK protocol is intended
to be a software protocol, compatible with most existing physical instrument interfaces.
Thus MBARI PUCK v1.3 is applicable to RS-232 instruments, and uses just the RX, TX,
and GND signals.

3.3 Participants
Participants on this topic included:

Polytechnical University of Catalunya (UPC-SARTI) – Joaquin del Rio
Fernandez, Dan Toma

Christian Albrechts University at Kiel – Jesper Zedlitz

Bremen University – Christoph Waldmann

SmartBay Canada – Neil Cater, Eric Davis

Axys Technologies – Chris Ng, Reo Phillips

Compusult Ltd – Angela Amerault, Robert Thomas

RBR Ltd – Greg Johnson, Graham Jones

SEND Offshore Electornics GmbH – Klaus Schleisiek

MBARI – Kent Headley, Carlos Rueda, Tom O’Reilly

3.4 Discussion

3.4.1 Automatic installation of IEEE-1451 and OGC SWE components using
instruments that implement MBARI PUCK protocol

Figure PUCK-1 shows the basic system architecture of the PUCK-1451-SWE test-beds
developed and demonstrated for this project. At the lowest level are RS-232 instruments
that implement MBARI PUCK protocol in addition to their manufacturer-specific
protocols. These are plugged into serial ports on an observatory node, which are located

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 8

at UPC-SARTI, Kiel, and MBARI. Each observatory node presents an IEEE 1451.0
HTTP interface to the Internet.

Engineers at each observatory developed instrument drivers and other components suited
to their particular observatory infrastructure. While these components were implemented
differently for each observatory, they all utilize OGC SWE SensorML and IEEE 1451
TEDS, and support IEEE 1451.0 protocol. Technicians used MBARI’s PUCK utilities to
store instrument-specific components – drivers and metadata – in the PUCK-enabled
instruments. Now when the instruments are physically plugged into observatory node
serial ports, the node can retrieve and install the components, using PUCK protocol.

Network clients can access the observatories and instruments through IEEE 1451.0
protocol. One such client is the Smart Transducer Web Service (STWS) developed at the
National Institute of Standards and Technology, which was designed to map between
IEEE 1451 and OGC SWE protocols [Song and Lee, 2007]. The STWS in turn presents
the proposed standard IEEE 1451 STWS interface to the network, which can be accessed
by clients such as the STWS-SOS developed by Northrup Grumman. The SOS provides
instrument access to OGC-SWE clients through SOS protocol. PUCK protocol supports
these clients in two ways:

a) The TEDS and SensorML documents retrieved by clients originates within the
instruments themselves, and are initially retrieved by the observatory node
through PUCK protocol.

b) The instrument drivers executing on the observatory node support and implements
element of the IEEE 1451 protocol, thus enabling access by clients. The
observatory node retrieves the driver code from the instrument using PUCK
protocol, and then executes that code.

This architecture was described by [O’Reilly, Headley et al 2009] and demonstrated at
various stages of development at several venues, including the Ocean Innovations 2008
Interoperability Workshop, the NSF OOI Sensor Workshop, and the Third International
Workshop on Marine Technology.

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 9

Figure PUCK-1: Basic architecture of PUCK-1451-SWE test-bed

In addition to this basic architecture, Compusult developed an “adapter” approach that
maps directly between Sensor Observation Service protocol and observatory protocol,
thus by-passing IEEE 1451.0 protocol. Compusult and MBARI teams collaborated to
demonstrate how MBARI’s “SIAM” instrument middleware could be directly accessed
with a Sensor Observation Service through a Compusult-developed SIAM-SOS adapter.
SIAM was developed before the advent of Sensor Web Enablement, and is portable to
low-bandwidth systems for which Web Service HTTP protocols are not suited. The SIAM
instrument service interface provides Java RMI methods to configure the instrument,
retrieve static and dynamic metadata, and of course acquire data. [O’Reilly, Headley et al
2006]. Many of these methods have a straightforward logical mapping to Sensor
Observation Service operations. For example, SIAM's Instrument.getMetadata() provides
a standardized instrument description document, corresponding to the SOS
DescribeSensor operation. SIAM's Instrument.acquireSample() and
Instrument.getPackets() method are analogous to the SOS GetObservation operation.

The Compusult team incorporated this logical mapping into an adapter component that
translates between SOS and SIAM protocols. Thus the SOS can be readily integrated
with the "legacy" SIAM instrument service. Figure PUCK-2 shows this architecture, and
Figure PUCK-3 describes the sequence of events when retrieving a SensorML document
from a PUCK-enabled sensor.

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 10

Figure PUCK-2: Integration of Compusult SOS with MBARI-SIAM

This direct observatory-SOS adapter approach requires fewer components than the basic
PUCK-1451-SOS architecture described earlier, and is simpler. Obviously the
observatory cannot be accessed through IEEE 1451 without a 1451.0 web server.

Figure PUCK-3: Sequence describing retrieval of SensorML via PUCK protocol, SIAM,
and SOS DescribeSensor operation.

3.5 Multiple PUCK payload components
In the previous section we described how instrument SensorML and TEDS documents as
well as driver code can be stored in an instrument’s PUCK payload. Note that the
instrument driver utilized in a particular observatory may not be applicable to another
observatory. In other words, observatories may conform to standard network interfaces
and metadata formats, but implementation details will differ from one observatory to the
next depending on computing hardware, communications infrastructure, development
history, and other factors. A particular observatory may also require non-standard
configuration information for each instrument.

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 11

Nonetheless, we demonstrated how a single instrument can contain components for
several different observatories in its PUCK payload and how each observatory can search
the payload for the components that it needs. Thus a single PUCK-enabled instrument
can be plugged into various observatories, and be automatically integrated into each. For
example, the UPC-SARTI OBSEA test-bed retrieves and utilizes a IEEE 1451 TEDS
XML document from the instrument. MBARI observatories retrieve and utilize a jar file
containing MBARI SIAM instrument service code and metadata. We demonstrated how
both of these payloads can be stored simultaneously in instrument payload memory, with
each payload preceded by an identifying XML tag, as shown in Figure PUCK-4. The tag
specifies the name, type, and checksum of the payload, as well as the PUCK memory
byte address of the next payload tag. Each tag is immediately followed by the actual
payload component. Thus a particular observatory host can efficiently read through an
instrument's PUCK payload until it finds a component of the desired type. Based on our
experiments we propose an addendum to the PUCK v1.3 specification that defines a
standard layout of tags and payloads, standard tag labels and payload component type
names. This standardization will enable easy sharing of PUCK-enabled instruments
between observatories with different architectures.

In addition, the Kiel team has demonstrated the use of digital signatures on payload
components, which the host computer can examine to verify that the components come
from a trusted source. This type of security verification could become especially
important as instruments are exchanged between observatories.

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 12

Figure PUCK-4: PUCK memory map example showing multiple “tagged” payload
components

3.6 Instrument installation and removal detection
As noted earlier, MBARI PUCK protocol requires just RX, TX, and GND RS-232 signals
in order to be compatible with existing oceanographic instruments and applications,
connectors and cables. Oceanographic instruments are often deployed on the end of long
cables, e.g. hanging from a mooring. Many oceanographic instruments are also deployed
on platforms that are limited in available power. The RS-232 serial protocol is compatible
with these constraints, and so is the most common oceanographic instrument interface. In
addition, underwater systems are usually designed to minimize the number of wires in
order to control housing and connector complexity, cable weight, and cost.

Thus unlike USB or IEEE-1451.2, PUCK protocol does not utilize a single dedicated
connector pin signal to detect when an instrument is physically installed or removed from
a host computer port. Instead other approaches that utilize just RX, TX, and GND must
be used to determine when these events have occurred. The OSIE-PUCK teams
investigated several approaches to detect instrument installation and removal:

a) PUCK detection at boot time: In this approach, the host computer attempts to contact
instruments with the PUCK "soft break" command on each serial port immediately after
the host is booted. The soft break must be issued at all possible baud rates since PUCK
protocol does not specify a "discovery" baud rate. If the host receives a PUCK response
from a port, it can then retrieve the PUCK datasheet and optional payload from the

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 13

instrument and utilize them to load the appropriate instrument driver and metadata. If a
PUCK response is not received at any baud, then the next serial port is tried until are
ports are checked. This approach was implemented on an Axys Technologies
Watchman500 buoy controller by the SmartBay and Axys Technologies teams. In this
case, the controller utilizes the PUCK datasheet’s instrument manufacturer and model
codes to load an appropriate driver from a library stored onboard the controller. After all
ports have been processed, the Watchman500 intializes all discovered instruments and
goes into normal operations mode. This approach requires the instrument host computer
to be rebooted when instruments are installed or removed. However this requirement is
quite acceptable for many systems in which instruments are changed relatively
infrequently.

b) Manual notification of instrument installation and removal: In this approach, a human
operator runs a simple utility that notifies the instrument host that a PUCK-enabled
instrument has been installed or removed from a serial port. When notified that an
instrument has been physically installed, the host uses PUCK protocol to automatically
retrieve the PUCK datasheet and optional payload, and installs appropriate instrument
drivers and metadata. This approach sacrifices automated device detection and “hot-
swapping” but conserves power and avoids safety and corrosion issues associated with
applying power to exposed underwater wires. MBARI currently uses this approach on its
deployed buoy-based and cable-to-shore observatories.

c) Instrument detection based on serial port file existence and asynchronous data
detection: The Kiel team's instrument host utilized USB ports and USB-to-serial adapters
to communicate with serial instruments, and the team developed a simple algorithm to
detect instrument plug-in based on the existence of the USB serial port. For actual serial
ports, their host software automatically detects the presence of streaming instruments by
the asynchronous arrival of data at the serial port. The latter technique is limited to
streaming instruments, i.e. it does not apply to synchronously polled devices. Once an
instrument is detected, PUCK protocol was utilized to retrieve the instrument's metadata
and a jar file containing the driver code.

d) Automated detection of installation installation and removal using PUCK protocol:
The UPC-SARTI team developed a “hot swapping” approach that does not require any
manual steps other than physical installation or removal of an instrument. Figure PUCK-
5 illustrates this algorithm as a flowchart. The host computer periodically interrogates the
serial port for a PUCK-enabled instrument by issuing a PUCK "soft break" command. If
the host receives a PUCK response from the serial port, the host retrieves the 96-byte
PUCK datasheet and examines the UUID to determine if a new instrument has been
installed (the UUID is guaranteed unique to each instrument). If so, the host retrieves the
SensorML and IEEE 1451 TEDS description from the instrument’s PUCK payload, loads
an appropriate driver and configures the newly detected instrument. Finally the driver
begins retrieving data samples from the instrument at some interval ISAMPLE. If ISAMPLE is
greater than the time needed to query an instrument for its PUCK datasheet (TPUCK-

CHECK), then the instrument driver will attempt to read the PUCK datasheet before each
sample, thus detecting when the instrument has been removed or replaced with another. If
on the other hand ISAMPLE is shorter than TPUCK-CHECK, then the host checks the serial port
for a PUCK response only if an error is encountered when attempting to communicate

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 14

with the instrument. This algorithm presumes that replacing a fast-sampling instrument
with another will always result in a communications error. However note that if the
instrument is quickly replaced with another of the same model, a communications error
might not occur and hence the host would not be aware that the instrument was replaced.
Thus subsequent data samples would not be associated with the correct instrument and
metadata. Therefore users must be aware that when swapping fast-sampling instruments
of the same make and model they should leave the instrument port empty for at least
ISAMPLE to ensure that the algorithm will properly detect the new instrument.

Figure PUCK-5: Automated instrument detection algorithm developed at UPC-SARTI .

3.7 Effort required to integrate PUCK
Teams report a variety of effort required to integrate PUCK protocol into their
observatory test-beds, using a variety of approaches:

SmartBay-Axys - Modified Axys Watchman500 buoy controller to automatically detect
PUCK-enabled instruments and utilize PUCK datasheet to load appropriate instrument

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 15

drivers from onboard library when controller reboots. Required effort: approximately 10
engineering days, including testing and interfacing with sensors to ensure correct and
seamless operation. Beyond this, support is currently being provided for the integration
of the first operational buoy.

Christian Albrechts University at Kiel - Detect instrument plug-in, retrieve, verify, and
utilize driver code from PUCK payload. Required effort: approximately 3 engineering
days.

UPC-SARTI Vilanova - Automatically detect instrument installation, retrieve IEEE 1451
TEDS and SensorML from instrument, instantiate and configure instrument driver
accordingly. Make data accessible to IEEE-1451 server as well as SWE Sensor
Observation Service. Utilized payload tags for instrument interoperability between
observatories. Required effort: approximately 9 engineering days.

Compusult Ltd: Developed SOS-SIAM "adapter" component that maps between Sensor
Observation Service protocol and MBARI's SIAM middleware protocol (SIAM service
code and SensorML installed via PUCK protocol). Required effort: about 7 days.

3.8 Recommendations
The OSIE-2 PUCK project has resulted in a few suggested modifications to MBARI
PUCK protocol v1.3, including the following:

1. Standardized PUCK payload tags: As described above, we investigated storage of
multiple payloads components within a single instrument, thus enabling that
instrument to be used within several different observatory architectures. We
recommend that the PUCK v1.3 specification be amended to define standard tag
format, elements, and type names.

2. Relaxation of PUCK protocol timing requirements: the current PUCK v1.3
specification is rather rigid with respect to timing requirements of the PUCK "soft
break" command and timeouts for other PUCK protocol commands. The team's
experience with instruments accessed across a network through serial-to-Ethernet
adapters indicates that these timing requirements should be relaxed to some extent.
E.g. the document currently specifies a 750 millisecond pause between PUCK soft
break components; this could be relaxed to something like "between 750 millseconds
and 1 second". Further tests are needed to determine reasonable bounds on these
timing requirements.

We also have some recommendations regarding future OGC SWE experiments and
implementation approaches:

a) Automatic instrument registration: MBARI PUCK now provides an automated
method to install SensorML onto an instrument host, for distribution to the
broader sensor network. A logical next step is to develop and refine techniques for
automated registration of the instrument with a catalog service immediately after
the SensorML has been retrieved from the instrument.

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 16

b) Storage and retrieval of geolocation data: The SensorML describing an instrument
and its capabilities can now be stored and retrieved from the instrument itself.
Ideally, we believe that instrument manufacturers should deliver the SensorML
with the instrument. SensorML can encode instrument geolocation, and clients
commonly depend on this. However in many cases the instrument manufacturer
will not know where the instrument will be used, and so the geolocation must be
omitted from the manufacturer-provided SensorML. In other cases the user may
use the instrument for a while in one location, then move it – thus someone must
update the instrument’s PUCK payload with the new location, if the system relies
on the SensorML’s geolocation element. Perhaps an observatory software
component could determine location from GPS or other means, and dynamically
insert location into the SensorML when requested by a client. Alternatively,
clients could rely on geolocation observation data rather than SensorML. We
recommend that various approaches be explored further.

4. Topic: Linking data from SOS to out-of-band offerings.

4.1 Goals
This team had the following goals:

Advance the understanding and intent of the out-of-band mode in SOS

Compare existing distributed systems for real time (RT) data distribution

4.2 Motivation
The OGC SOS specification talks about an "out-of-band" option, which has not been
implemented in the majority of SOS Services. For example, the oceanographic
community was not aware of an SOS implementing using the out-of-band option. The
precise intent of the out-of-band option is not very clear. For example, it can be an SOS
server offering a file that can be downloaded form a server or a connection to a real-time
message queue endpoint.

The team for this topic was concerned about performance characteristics when
integrating distributed systems. These characteristic include Quality of Service (QoS),
frequency, and asynchronous push capabilities. Components in this system integration
include OGC SOS, MBARI PUCK, Unidata IDD, NSF DataTurbine and OMG Data
Distribution Service (DDS). There is a benefit if implementers can have the ability to
share common practices and identify gaps in the OGC SOS specification in regard to
common issues such as how to specify and deliver real-time qualities of service.

4.3 Participants
Dave Coyle (USGS)
Ben Domenico (UNIDATA)
Sameer Tilak (UCSD)

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 17

4.4 Discussion

4.4.1 SOS XML and REST
The OGC has defined the SOS protocol and related schemas in terms of primarily XML
and Web technologies. While it is understood that the core model is a conceptual model
(in fact UML is used in the specification), the de-facto implementation has been based on
XML and the W3C XML Schema Language (XSDL). As a result of this evolution,
implementers tend to make the assumption that SOS must be implemented using XML.
This is an important system design consideration when planning to integrate SOS into a
scalable distributed system with "near real-time" capabilities. The OGC has addressed
this concern in part by bringing forward efficient XML technologies; however, efficient
XML does not provide all of the technical answers. The key remaining issues are: how to
provide content-based routing; how to provide near real-time qualities of service; how to
implement the core, edge, and end-point integrations.

The OGC protocols were originally based on IETF POST. The OOSTethys group and
others have now tied the SOS protocol to IETF HTTP-1.1 GET. This is also known as
REST web services. HTTP POST and GET are synchronous request/response protocols.
This fact brings forward the folowing questions: How does REST tie in to a real-time
distributed system? Is it possible to use SOS over REST and yet somehow achieve
asynchronous notification services? Is SOS REST suitable as a gateway into a real-time
asynchronous notification based system? If so what is missing from the SOS REST
protocol? Even if we use a SOS/REST adapter (e.g. using the Atom Publishing Protocol
or polling/token), how does this integrate with the core distributed system architecture
(e.g. a message-queue based system).

In the classic SOS/REST style web-service, the HTTP Client is always the initiator (recall
that HTTP is strictly a request/response protocol). If the OGC SOS specification is tied to
HTTP GET then by definition the system is limited by this request/response message
exchange pattern. The same case is true for HTTP POST from the original OGC
specification. So the problem is how can implementers of SOS services go beyond the
limits of SOS/REST to achieve a push model. A related question is how do we realize
near real time "qualities of service", such as reliability, durability, frequency, and
liveliness. The answer is that we must derive these factors from existing real-time
distributed systems. Some of the systems considered in this report are: OMG DDS,
Unidata IDD, and NSF DataTurbine.

OGC has defined specification and protocols such as Transducer ML; however, these
efforts have seen low levels of activity and interest. As mentioned above, the answer lies
in building effective integrations with existing specifications such as the OMG DDS, or
with existing systems such as the Unidata IDD. Another interesting integration along
these lines is the IEEE 1451 PUCK protocol , discussed in the previous section.

Should there be a core SOS specification for RT-SOS that is "protocol agnostic"? The
answer is most likely negative in this case. That said, each implementor should attempt to
share with OOSTethys and other groups as he or she integrates the SOS model with the
target system's QoS and Routing features. By sharing ideas and building a community
going forward, we can discover the key use-cases for RT-SOS. Should new SOS

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 18

asynchronous streaming message types be added? In the original SOS Spec HTTP POST
was used to define messages. It will be important to ensure that the REST mapping does
not impose a request-response bias on the SOS protocol. A clearly defined streaming SOS
protocol is needed.

It is possible that SOS asynchronous streaming message types should be added. Once this
is done system designers can use the SOS message types to build non-HTTP based
solutions. Some of the solutions we have discussed are: Unidata IDD , OOI-CI , NSF
DataTurbine, and OMG DDS. Each of these systems has similarities and differences;
however, the question is the same: what is the unifying data model for building OGC
SOS distributed systems?

As mentioned the question originated in the course of discussions in the OOSTethys
group, in which it was speculated that the SOS "out-of-band" feature of the OGC Sensor
Observation Service implies a sort of escape mechanism from the restrictions of HTTP
GET. This distinction may refer to the HTTP return channel, or perhaps it refers to the
OGC/O&M "result" mechanism, or the HTTP Content-Type. It may even refer to the
request/reply message exchange pattern; at least the discussion brought this question
forward.

4.4.2 HTTP GET
There are several conflated issues here. These issues must be cleared before we can
continue with question of real-time and push RT-SOS services. The first issue to address
is the definition of HTTP GET or "REST web services" (which is evolving as a common
practice). In terms of SOS as an HTTP GET (REST) web service, what is the meaning of
the OGC "out-of-band" property? The following issues should be addressed in this
context:

Does this refer to the OGC/O&M "result" mechanism? If so what is the definition
of this concept?
Is this the web version of the classic "protocol bootstrap mechanism"; i.e., similar
to JINI?
Is this different from HTTP GET and IANA MIME/Content-Types? If so, is this
in opposition to emerging REST recommended practices?

The IETF HTTP-1.1 standard specified that the (SOS) HTTP GET response is requested
as a IANA MIME Media Type, and that the correct Content-Type is returned according to
the specified matching rules. Therefore in principle the SOS out-of-band cannot be
meaningful in this context, unless it is simply an "indicator tag" that is used in the OGC
SOS GetCapabilities document.

In terms of the Media Type and returned Content-Type, it is suggested that OOSTethys
and other SOS implementers should register one or more new IANA Mime-Types. The
first Mime-Type might specify the XML SOS response. In terms of RT-SOS, perhaps
there is justification for additional Content-Types that defines the stream-based protocol.
This may be stating the obvious but perhaps it should be brought forward for more

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 19

focused discussions. This change would address the required questions about content-
encoding and security. In other words, content negotiation is done by the HTTP-1.1 layer.

4.4.3 Real Time
The question of HTTP GET (REST) is an inevitable distraction to the more important
core question how to build effective real-time solutions. The answer is that both channels
are needed. HTTP GET may have a role to play in service discovery or possibly as a
gateway or protocol bootstrap mechanism. Implementors should consider internal system
goals but also OGC interoperability. The choice of the core software for data distribution
is contingent on the deployment environment. Within these core architectures,
implementers may need to encode the SOS/O&M content models in more efficient forms
such as IDL, ASN.1 PER encodings, or a combination of encodings (e.g., some string
metadata should be retained for real-time content-based routing purposes). The type of
network deployment is a critical decision. The OMG DDS offers a flexible software
architecture that can be used in any network deployment. This flexibility may provide
value for the organization building the given SOS-capable distributed system. Quality of
Service (QoS) and Service Level Agreement (SLA) are terms that apply to distributed
systems. These QoS terms are absent from the OGC SOS standard specification. There
may be a good case to be made for some real-time QoS properties to be added to the
OGC SOS standard, for example in the GetCapabilities document and in the
GetObservations response specification. Quality of Service (QoS) is the key term that
applies when the goal is to build a so-called "real-time" or "near-real-time" Sensor
Observation Service (SOS). The SOS can be a stand-alone solution or a gateway into an
existing solution. The Unidata IDD is an example of a near-real-time service that is
actually a gateway into an existing real-time deployed solution.

4.4.4 Network Deployment Scales
In all cases it is important to understand the separation of concerns in at least three scales
of network deployment implementation:
1. On Wide Area Network (WAN) deployments it is doubtful that SLAs and effective
QoS can be realized. In principle it is possible on traditional carrier scale networks such
as ATM (Asynchronous Transfer Mode) over fiber optic fabric with LANs as edge-
devices. For example, ATM has the ability to do "qos reservations". The point is that it
depends on the network.
2. QoS is possible on the Local Area Network (LAN). For example, the OMG DDS is
being used on specialized LAN networks such as in financial trading systems, ship-board
systems, and in other military and industrial applications.
3. QoS is certainly possible in the case of Embedded Systems. In practice the data will be
internally handled as an alternate encoding. Of course this may be where PUCK and
similar solutions enter into the picture. It may be that embedded systems have no
relationship with OGC SOS beyond the fact that it is an integration problem.

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 20

4.5 Comparison of Distributed Systems
 As described the previous section, implementers of distributed and embedded systems
that interface with SOS should try to ensure they provide sufficient SOS data and meta-
data artifacts. In most cases this integration must be performed manually. In some OMG
DDS implementations, the SOS and OGC Observations and Measurements data models
can be automatically mapped to efficient and routable IDL data structures. This approach
ensures both compliance and scalability. This section provides details about some of the
systems considered and for which OGC SOS integration work may be in progress.

4.5.1 UniData IDD and LDM
Implementers who prefer to use an existing system may have some good choices. It is
possible to integrate the existing Unidata IDD system with an SOS gateway or “edge-
service” in the form of an SOS HTTP GET web service endpoint. This is done by
implementing an IDD/LDM (Local Data Manager). Since Unidata IDD is in fact an
existing globally deployed and scalable real-time system – this could be an excellent
option if it is practical to do so. For example, Tony Cook (TAMU) has developed a
working integration between IDD/LDM and SOS.

The Unidata community of over 400 university departments is building a system for
disseminating near real-time earth observations via the Internet. Unlike other systems,
which are based on data centers where the information can be accessed, the Unidata IDD
is designed so a university can request that certain data sets be delivered to computers at
their site as soon as they are available from the observing system. The IDD system also
allows any site with access to specialized observations to inject the dataset into the IDD
for delivery to other interested sites.

The Unidata Local Data Manager (LDM) is a collection of cooperating programs that
select, capture, manage, and distribute arbitrary data products. The system is designed for
event-driven data distribution, and is currently used in the Unidata Internet Data
Distribution (IDD) project. The LDM system includes network client and server
programs and their shared protocols. An important characteristic of the LDM is its
support for flexible, site-specific configuration.

4.5.2 OOI-CI
OOI CI is incorporating much of the design requirements of IDD but the underlying push
mechanism, the OOI Messaging Service, is built on a newer generation of Inter-Process
Communication (IPC) technologies that are based on set of open standards, AMQP
(reliable asynchronous multi-party messaging), FIPA (extensive message header
specification that spans conversation, semantic, syntactical and encoding tagging) and
ASN1/PER (encoding rules for packed binary transfers - this one is still under
investigation - we have reviewed a good number of specs).

The OOI IPC infrastructure can be tuned for a wide range of communication
environments; from intermittent satellite communications, to standard public internet, to
high bandwidth wide are lambda circuits, to RDMA and to internal shared-memory
multi-core processing systems.

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 21

4.5.3 GTS and NOAAPORT
The Unidata IDD provides GTS data which can be accessed via a local LDM adapter
implementation. Several organizations are interested in accessing IDD data products on
the GTS. Unfortunately funding is not always available to support these implementations.
For example, the IDD contains all of the GTS data that the NWS considers necessary for
its operational use. This is not the entire GTS data stream, but it is quite a bit of it. You
can check the contents of the IDS|DDPLUS data stream available in the NOAAPORT
broadcast/IDD. Here are some pointers of interest.

http://weather.unisys.com/noaaport/NOAAPORT_Channel_Content.html
http://www.nws.noaa.gov/om/marine/noaaport.htm
http://www.nws.noaa.gov/om/marine/home.htm#observations
http://www.unidata.ucar.edu/support/help/MailArchives/idd/msg04361.html

4.5.4 DataTurbine

The DataTurbine software emerged as a commercial product in the 1990s from
collaborations between NASA and private industry. In October 2007, a grant from the
USA National Science Foundation (NSF) Office of Cyberinfrastructure allowed the
developers to transition DataTurbine from a proprietary software product into the NSF
Open Source DataTurbine Initiative (http://www.dataturbine.org).

DataTurbine satisfies a core set of critical infrastructure requirements that are common
across a number of observing systems initiatives, including reliable data transport, the
promotion of sensors and sensor streams to first-class objects, a framework for the
integration of heterogeneous instruments, and a comprehensive suite of services for data
management, routing, synchronization, monitoring, and geo-spatial data visualization. It
is an open source streaming data middleware, released under Apache V2 license. This
allows implementers to get access to stream handles and execute functions directly on
streams.

Since the OSDT product is written in Java, DataTurbine is highly portable and is
available for many platforms, from 64-bit multi-core machines and desktop systems to
handheld and embedded devices. As a concrete example, performance of DataTurbine
was tested on a 8 core Sun Fire T2000 Server (16 GB memory, runs Solaris OS and is
connected to a 9 TB storage (RAID), Dual-core Linux servers, to Gumstix devices, and
cell phones.

The OSDT has support for in-network processing and time synchronization. It also has a
support for Spatial Data and Visualization Services. For example, Google Earth
integration with DataTurbine can be used to visualize real-time sensor data. The OSDT
supports coupling sensor data with modeling tools. For example, it is possible to meld the
rich image and numeric toolkits of Matlab with the real-time data streams from the
DataTurbine. Matlab support exists out of the box.

The OSDT has been deployed in a variety of real-world streaming data applications such
as coral reef monitoring, lake monitoring, animal tracking, airborne environmental

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 22

monitoring, animal tracking, earthquake engineering, and environmental sustainability to
name a few.

4.5.5 OMG Data Distribution Service
The OMG Data Distribution Service (DDS) is a real-time middleware software
component. The OMG DDS is similar in concept to the NSF DataTurbine product which
is also described in this document. Similar to the NSF DataTurbine, the OMG DDS is a
“real-time” middleware software component. The OMG DDS is based on the DDS
standard and the DDSI protocol specification.

There is no existing deployment of the OMG DDS for the purpose of a real-time RT-SOS
system. Such a system could be built using one of the commercial or open-source
implementations. The proposed OMG DDS based distributed system could integrate with
the OGC SOS protocol. This section provides some details about how this integration
could be done. The value proposition for the OMG DDS is explained in some detail.
The OMGS DDS could be used as the core component in an advanced real-time capable
Sensor Observations Service “out-of-band” asynchronous systems architecture. Most of
the solution architectures we will evaluate do not directly address the question of real-
time in terms of issues such as quality of service. When they do address these concerns,
the implementation is proprietary or the solution is not fully specified. The OMG Data
Distribution Service (DDS) addresses these concerns.

The OMG DDS is a fully specified system. That is, the system definition is fully
specified both in terms of software architecture and in terms of the wire protocol. The
later is important for for vendor interoperability and for security assurance.

In addition the open-source implementation there are two principle vendors. The
PrismTech OpenSlice product is an open-source commercial DDS product. The RealTime
Innovations (RTI) RTIDDS product is a closed source commercial DDS product.

OMG DDS can be a solution for the near-real-time SOS requirement. A lighter weight
and possibly more constructive approach might be to take in the lessons learned from a
system such as the OMG DDS which has been designed by experienced engineers and
developed within highly evolved and tested industrial quality products.

The OMG DDS provides the choice of a low-level API or a higher-level API which
appears to the user as a real-time database system. Most developers use the lower level
API. The higher-level API is called the DLRL, or Data Local Reconstruction Layer.
Based on the DLRL, the OMG DDS can also be used by application developers as the
equivalent of a real-time object-oriented database. The DDS can also be used as the data
distribution solution in combination with a Postgres, MySql, or other database (i.e. based
on triggers).

The OMG DDS could serve as an OOSTethys-endorsed best-practice solution for near-
real-time data-consumer endpoints on a WAN-based network, or as a real-time solution in
suitable closed environment such as on ship-board network or data-center network
system. The OMG DDS solution has a wide range of applicability and will provide the

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 23

ability to build systems that are reliable, scalable, near-real-time or real-time in terms of
quality of service.

The OMG DDS is extremely scalable due to its defined DDSI protocol and its peer-to-
peer network architecture. The implementer can operate the DDS nodes on one or more
networks. A point-to-point network functions in a similar way to most point-to-point
message-oriented systems. In this deployment scheme the DDS offers some QoS
features. If the implementer requires true real-time QoS features, then to fully realize the
power of DDS - a UDP based network is required. In effect there are three schemes that
can be operated over one or more network segments; these options are listed in the least
to the most scalable in terms of real-time capabilities:

TCP/IP point-to-point between peers
UDP point-to-point between peers
UDP multicast between peers

The mechanism to integrate OMG with SOS is to use the SOS or
SensorML/Observations and Measurements schema to generate IDL (native DDS format)
using tools. Alternatively we can embed the SOS XML into the payload directly or using
a compressed encoding scheme such as FastInfoSet, ASN.1 PER, or a similar XML
encoding technology. Note that some of the metadata must remain visible as strings to
enable a feature called content-based routing and certain types of query-based topics. To
the extent that the SOS data is visible to the IDL data structure DDS supports these
advanced features.

The provision of QoS on a per-entity basis is a significant capability provided by DDS.
Being able to specify different QoS parameters for each individual Topic, Reader or
Writer gives developers a large palette from which to design their system. This is the
essence of data centricity within DDS.

4.6 Recommendations and Conclusions
Implementers of distributed and embedded systems that interface with SOS should try to
ensure they provide sufficient SOS data and meta-data artifacts. In most cases this
integration must be performed manually. In some OMG DDS implementations, the SOS
data models such as the OGC Observations and Measurements and OGC SensorML data
models can be automatically mapped to efficient and routable IDL data structures. This
approach ensures both compliance and scalability.

Implementers who are building a new system have several choices. The NSF
DataTurbine software can be used to build a high-performance distributed system with
asynchronous push capabilities. The implementer should consider the role of SOS HTTP
GET (REST) integration and the role of specialized channels for real-time SOS data
using the native protocol.

The OMG DDScan be used to build high-performance distributed system or even an
embedded system. DDS is used in a wide range of applications from embedded ship-
board and avionics, robotics, industrial control, radar tracking, etc. DDS Tools can be

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 24

used to translate the OGC XML-Schema based content model into Interface Definition
Language (IDL) to provide a more efficient and routable encoding mechanism.

Distributed Systems Links:

1. OGC SOS: http://www.opengeospatial.org/standards/sos

2. IANA MIME Media Types: http://www.iana.org/assignments/media-types/

3. Unidata IDD: http://www.unidata.ucar.edu/software/idd/

4. OOI CI: http://oceanobservatories.org

5. NSF DataTurbine: http://www.dataturbine.org/

6. OMG DDS: http://www.omg.org/spec/DDS/

7. JINI: http://www.jini.org/wiki/Main_Page

8. Roy Fielding, 2008-10-20, http://roy.gbiv.com/untangled/2008/rest-apis-must-be-
hypertext-driven

9. Tony Cook, UAH, Unidata IDD/LDM SOS Integration, http://sos-
ws.tamu.edu/tethys/tabs?request=GetCapabilities&service=SOS&version=1.0.0

5. Topic: CSW Registry

5.1 Goal
This team had the following goal of implementing a standardized OGC Catalog Service
for Web (CSW) to provide registration for SOS services, with the following objectives:

Creation of ISO19115 / ISO19139 metadata profile for SOS implementations.
Automatic harvesting of SOS service metadata via GetCapabilities.
A web interface for registration by only submitting the SOS get Capabilities.
Incorporation of testing functionality while registering and SOS.

5.2 Motivation
The marine community has not yet standardized on a standard registry component.
OOSTethys defined a registry component and implemented one in Phase I, but it was not
based on standards. Participants at the GEOSS Implementation pilot project were
implementing a CSW. In Phase II OOSTethys members wanted to advance a CSW
implementation that will facilitate to register SOS, since there was not one available, and
other projects were advancing standards that can served as a reference.

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 25

5.3 Participants
UAH - Manil Maskey

SURA - Luis Bermudez

GOMOOS - Eric Bridger

5.4 Discussion
This section describes the work advance at the Oceans IE Phase II related to CSW
service registry. This particular implementation of the CSW standard shields service
providers from being burdened with learning complex XML specifications; hence,
making the registration process very easy for them in addition to provide a robust
validation process. The two components that we have implemented are XSLT
transformation from SOS metadata to ISO 19119 and incorporation of testing via TEAM
Engine integration.

5.4.1 SOS Metadata to ISO 19119
The team decided to use Deegree (http://www.deegree.org/) as the implementation for
implementation of the catalog service for web (CSW). The CSW transaction method only
accepts ISO 19119 service metadata record for registration. We use XSLT transformation
to automatically harvest of all necessary information from the SOS GetCapabilities
response into the registry to ISO 19119,

5.4.2 TEAM Engine integration

OGC has developed a test suite TEAM Engine for validation of OGC service
specifications. It is available as an opens ource sfotware at the OGC web site
(http://cite.opengeospatial.org/). TEAM Engine was slightly modified and integrated
integrate into the registry. This integration allows for a robust validation of the SOS
during registration. The web interface notifies the service providers whether their service
is compliant with OGC SOS specifications. The CSW Registry – 1 Figure sumamrised
the process.

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 26

Figure [CSW Registry - 1]. This figure illustrates the current mechanism for registering
an SOS in the OOSTethys/OceansIE registry.

5.5 Recommendations and Conclusions
Services should be tested and validated at the moment of registration.

The metadata required to publish a CSW can be extracted from the SOS
getCapabilities document; furthermore, if metadata is missing to created the CSW
it should be added to the getCapabilities metadata.

6. Topic: Semantic Registry and Services

6.1 Goals
This team had the following goals:

Determine and implement features at the MMI Ontology Registry and Repository
that exploit the semantic information associated with data registry and observation
services.

Determine required vocabularies/ontologies to support the association of
references to corresponding definitions in SWE documents.

6.2 Motivation
Semantic mediation is a required mechanism to allow system interoperability and data
integration. Such mechanism comprises a set of key operations including controlled
vocabulary definition and maintenance, terminology mappings, and inference, among
others. The Marine Metadata Interoperability Project has advanced the MMI Ontology
Registry and Repository (MMI ORR), a system that provides semantic services for the
marine and earth science communities.

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 27

In Oceans IE Phase I, semantic mediation was demonstrated by providing a searching
capability via general categories for phenomena (See Figure: Semantic Registry and
Services-1). Using semantic web technology services were categorize appropriately.

A complementary MMI service provides URI resolution for both vocabularies and
individual entities defined within. This team focused on enhancing services at the MMI
ORR to enable semantic information in data registry and observation services. Two main
components–URN support and web resolution; and semantically-enabled generation of
sensor system formal descriptions–are described below.

Figure [Semantic Registry and Services-1]. Categorization of SOS services. This example
demonstrates the categorization of services which were tagged with terms narrower or
same-as Sea Water Temperature.

6.3 Participants
MBARI/MMI: Carlos Rueda

MMI: John Graybeal

SURA: Luis Bermudez

GoMOOS: Eric Bridger

NOAA: Jeff DLB

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 28

UAH: Tony Cook

6.4 Discussion

6.4.1 Support for Uniform Resource Names and web resolution
Uniform Resource Identifiers (URIs) are one of the key enabling technologies for the
semantic web, which is a core technology used by the MMI ORR. Vocabulary terms and
their relationships are identified with URIs so they can be used and interlinked globally.
There are two URI subcategories: Uniform Resource Locators (URL), which, besides
being identifiers, are in principle also intended to provide a mechanism to access the
identified resource; and Uniform Resource Names (URN), whose main purpose is to
identify but not necessarily to locate resources. The MMI ORR was providing only
support for URLs as the preferred identification mechanism (since an important feature is
that the generated identifiers be also immediately resolvable). However, there was a need
to also support URNs, which are used by some communities, (e.g. OGC). Since URNs
are not self-resolvable, a mechanism for their resolution was needed. The implemented
mechanism is described below.

The MMI ORR allows to create an ontology from a table of definitions, for example:

name description
foo foo description ...
baz baz description ...

The table can be populated by importing text in CSV format. The first row specifies
properties for the terms in the subsequent rows. First column is special in that it is used to
create the URI for the term in each row. Assuming the URI of the vocabulary as a whole
is http://mmisw.org/ont/myvocab, then the final URI for the "foo" term will be
"http://mmisw.org/ont/myvocab/foo". In this example, once the vocabulary is registered
at the ORR, all these URIs will be directly resolvable.

For the Oceans IE Phase II, the following mechanism was implemented to allow the user
to completely specify the final URI (URL or URN) for each term. If the header label of
the first column in the term table is "URI", then the values in the column will be used
exactly as given. In this case no automatic creation of URIs will be performed by the
MMI OOR. For example:

URI description
http://mydomain.xyz/abcd/foo foo description ...
http://other.xyz/baz baz description ...

In particular, the given URIs can be URNs, for example:

URI description
urn:ogc:def:crs:ogc:1_3:crs27 NAD27 longitude-latitude B.5 in

OGC 06-04

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 29

As noted above, any ORR-generated URLs for terms and vocabularies are directly
resolvable. Another provided mechanism to resolve any registered URI, which is
particularly useful for URNs, is via an HTTP request with the “uri” parameter to the
http://mmisw.org/ont service, for example:
http://mmisw.org/ont?uri=urn:ogc:def:crs:ogc:1_3:crs27

By default, the format of the response will be determined according to content
negotiation, for example, in RDF/XML if the client indicates "application/rdf+xml" as the
preferred format. A 'form' parameter can also be used to explicitly request a particular
format, for example:

http://mmisw.org/ont?uri=urn:ogc:def:crs:ogc:1_3:crs27&form=rdf
 http://mmisw.org/ont?uri=urn:ogc:def:crs:ogc:1_3:crs27&form=html

6.4.2 Semantically-enabled generation of sensor system descriptions
Sensor Observation Services (SOS), developed by the OGC Sensor Web Enablement
(SWE) initiative, provides an interface for discovering, binding to, and interrogating
individual sensors, instruments, platforms, and systems. Soft-typing characteristics of the
associated SWE model languages offer a means to augment the descriptions with rich
semantics. Figure [Semantic Registry and Services-2] is a SensorML document fragment
showing an observation offering with embedded URIs. Each URI corresponds to a
concept defined in an ontology and available through MMI ORR services. When
resolved, these URIs provide rich semantics to the corresponding elements in the
offering.

Figure [Semantic Registry and Services-2]. Example of a SOS observation offering with
embedded URIs for semantic augmentation of the described service.

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 30

Once these descriptions are in place, both syntactic and semantic interoperability are
facilitated. However, integrating the necessary elements during the creation of these
descriptions is a challenging task for many data managers and users. The goal of this
component was to implement a web tool to facilitate the creation of these formal
documents, in particular SensorML, with seamsless integration of semantic definitions
from the MMI ORR.

APIs were developed on the MMI ORR to support the development of semantically-
enabled tools. With these interfaces, we developed a simple SensorML web Generator,
available at http://mmisw.org/smlmor. The user indicates the structure of the sensor
system (system type, variables, and subsystems) while being able to choose URIs via
drop-down lists containing standard entries for sensor types and variables. The drop-
down lists are populated with definitions registered in the MMI ORR. Figure [Semantic
Registry and Services-3] illustrates the basic interaction with the definition of an output
variable. The user clicks a button to select an appropriate definition from the NetCDF
Climate and Forecast (CF) Metadata Convention standard name vocabulary (http://cf-
pcmdi.llnl.gov/). A similar selection mechanism is available for sensor types. The tool
allows the description to include nested subsytems, each with the corresponding
variables. Once the desired structure has been completed, the "Generate SensorML"
button creates the resulting SensorML definition.

Figure [Semantic Registry and Services-3]. Interaction mechanism with the MMI ORR in
the SensorML Generator interface.

6.5 Recommendations and Conclusions
The MMI Ontology Registry and Repository (Rueda et al, 2009), provides a key support
for semantic interoperability, including term mappings, semantic queries and inferencing.
Two functionalities were advance in Oceans IE Phase II: URI resolution for non URLs
and a web tool to create standard documents with semantic annotations available at MMI
OOR. This way OGC Sensor Web Enablement services can be enriched with semantic

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 31

references that are resolvable against the MMI ORR. The vocabularies used during the
experiment (although some of them still in preliminary form) demonstrated the benefits
of easily linking semantic information to sensor descriptions.

Concrete recommendations are as follows:

Data and sensor managers should continue evaluating existing vocabularies and
determining needs toward agreed upon definitions according to their metadata
management requirements. For example, sensor and platform types.

Workshops and other forms of training and outreach should be offered to data
users and managers to promote the use of semantic web technologies, and
demonstrate its benefits especially in terms of interoperability to the community
at large.

Ontology registries like the MMI ORR and similar vocabulary servers should be
leveraged, supported, and advertised to gain broader exposure and thus get
valuable feedback for continued improvement.

Rather than technical, a main challenge remains regarding the engagement of various
communities around common semantic approaches and unified strategies. Key aspects
include semantic registries, federated vocabulary repositories, and common APIs across
diverse ontology and vocabulary servers. We finally recommend that immediate efforts
continue to address these challenges, ideally in as a comprehensive way as possible.

More information about the MMI Ontology Registry and Repository and its associated
semantic services can be found at http://marinemetadata.org/mmiorrusrman/.

References

Rueda, C., Bermudez, L., Fredericks, J. The MMI Ontology Registry and Repository: A
Portal for Marine Metadata Interoperability. MTS/IEEE Oceans'09. Biloxi, Mississippi.
October, 2009.

7. Topic: Complex Systems

7.1 Goals
This team had the following goal:

Advance SOS encoding for systems that contain other systems. In particular, collection of
stations (could be heterogeneous), and platforms containing multiple sensors. The
encoding/ serving mechanism should allow to perform time-spatial queries over these
complex system and provide the relation of the system to its components.

7.2 Motivation
An ocean observing system could be defined as a set of independent elements that
interact to form a whole for the purpose of observing ocean data. SensorML defines that a
sensor is a system. Therefore it is possible for and SOS to provide system observations.
Questions that can arise when trying to implement and SOS are: Is a buoy a system? Is a
collection of stations a system? This topic clarifies the concept of “systems” and
provides recommendations about how to encode complex systems.

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 32

7.3 Participants
SURA - Luis Bermudez

dBscale Sensing Technologies - Eric Delory

MBARI - Tom O’Reilly

Technical University of Catalonia - Joaquin del Rio Fernandez

7.4 Discussion
This topic discuses several observing system components and their relation. The
definition and the relation to the SensorML system conceptual model are provided in this
section. The relationship between different components are depicted in Figure [Complex
Systems-1], and the remainder of the section provides the definition for each component
in the figure.

Figure [Complex Systems-1]. Simple UML for systems components. The top classes
depict the SensorML conceptual model where a system is a procedure. And a system has
components.

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 33

7.4.1 Sensor
Based on the IEEE 1451 definition, a sensor is a device that converts a physical,
chemical, or biological parameter into an electrical signal, which is ultimately output to
an observing system as data. Common examples include temperature, conductivity, or
solar radiation sensors.

A sensor is the most basic unit. It does not contain other systems. The description of a
sensor requires one system description within a SensorML document. The description of
a sensor in IEEE 1451 take place in the Transducer Electronic Data Sheet (TEDS).
Metadata information about the sensor could be transmitted to SOS enabled services by
extracting the information from an STWS. SensorML or TEDS definitions could be
updated on the instrument using PUCK.

The observation offering of a sensor is composed of the output of the sensor channel. It
represents the value of one parameter. The location and time of the observation is inherit
from the instrument / platform where this sensor is located.

7.4.2 Instrument
An instrument is a physical collection of multiple sensors that a manufacturer has
integrated into a single device. For example a CTD aggregates conductivity, temperature,
and depth sensors. The instrument has an external physical interface through which the
instrument and its sensors can be operated and the sensor data retrieved.

The instrument metadata requires that various components are specified within
SensorML. All the components could be describe in one SensorML or several SensorML
documents. However the description of the instrument must specify the containment of
the other components, either pointing to external SensorML or to other parts of the same
SensorML document.

An instrument could advertise one observation offering per sensor and additionally one
observation offering that aggregates all the sensor offerings. Similarly to the sensor,
some instruments have no location and time sensors. For such sensors to advertise an
instrument offering, it is necessary to get the location and time data from another
instrument in the platform within the same context (e.g., a GPS).

7.4.3 Platform
A platform physically aggregates multiple instruments and interacts with them through
their interfaces. The platform is usually integrated by the organization that deploys it, and
can also provide infrastructure for instrument power, data storage and telemetry, and
other functions. Platforms can be stationary (e.g. a seafloor observatory node), may drift
(e.g. a mooring) or may be actively mobile (e.g. an autonomous underwater vehicle).
The description of the platform in SWE uses the same pattern as previously described for
an instrument.

When advertising observations for a platform one observation could exist aggregating all
the output of all the instruments that are important to the end user. For example, an

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 34

offering could have time-interpolated values for different instruments. Also, other
offerings could exist, one for each instrument and also one for each sensor.

7.4.4 Regional Observing System
Finally, a regional observing system is comprised of multiple platforms in a defined
region, and often defines common protocols and procedures to operate the constituent
platforms and instruments as well as process the instrument data. That is, instruments
within an observing system may be interoperable with one another.

This is the most complex system. Composition could be handled the same way as
described for instruments and platforms. In this case the location of the system is usually
described as the bounding box that covers the entire area of all the platforms it contains.
Similar patterns as described in the platform use case apply to regional observing systems
when using SensorML and configuring observation offerings.

There could be different types of regional Observing Systems. For example there could
be a coastal observatories (e.g. MBARI, LEO-15 or MBARI's MOOS), a Regional
Association (e.g.,CenCOOS), or the U.S. (IOOS).

7.5 Recommendations and Conclusions
The results of this group were published and presented at the Oceans 2009 conference
(Bermudez, et. al., 2009). The concrete recommendations are as follows:

In the getCapabilities create an offering per instrument (e.g. CTD. MetSYS, etc..)
In the getCapabilities create an offering that logically aggregates the observations
(e.g Mooring). It should contain the extended BBOX and should describe all the
outputs.
Create a SensorML per instrument (e.g. CTD).
Create a SensorML per platform, and describe the grouping (Mooring has CTD,
Mooring has MetSYS, etc..).
If proving a regional system, create a SensorML per region, grouping the
platforms, within the region.
The getObservation respond for a complex system (e.g. platform) will be an
observation collection, where each observation member is an observation per
instrument.
To enable a query containing latitude longitude and time for all the observations
of an observatory just put in one offering all the observatory observations as a
complex system.

8. Topic: Large number of Observation Offerings

8.1 Goals
Create an implementation of a complex system with large number of offerings.

8.2 Motivation
Querying an entire region for observations of interest can be complicated if the region
contains large number of sensors. Even though a system can be offered as a one complex

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 35

system, as discussed in section 9, it is also useful to provide individual offerings per
sensor. We wanted to test performance issues encountered when dealing with large
numbers of offerings.

8.3 Participants
SURA - Luis Bermudez

UAH - Tony Cook

8.4 Discussion
METAR is a standard format used worldwide for reporting meteorlogical data from
weather stations. The station data may be augmented by trained human observers as
well. Reports are typically issued hourly, but may be updated more frequently if
conditions change rapidly, or unusual weather occurs. The number of potential reporting
stations is quite large (8,394 at the time of the initial SOS deployment). A list of stations
is maintained at the following URL:

http://www.rap.ucar.edu/weather/surface/stations.txt

Texas A&M receives raw METAR observations via a Unidata IDD feed. The METAR
records are parsed and recorded into a PostgreSql Database. When designing the SOS
for serving this data, one of the first concerns was how to structure the
ObservationOfferings. A brief synopsis of possibilities and their advantages and
disadvantages follow.

One ObservationOffering per station: One SOS- In this approach, every station
is an ObservationOffering in a single SOS. Stations can be queried individually,
and spatial queries can be performed for all stations in a requested geographic
bounding box. Individual ObservedProperties can also be queried for any station.
However, for a large number of stations, the size of the SOS Capabilities
document can grow prohibitively large. A simple Capabilities file created using
all 8,394 stations in the above URL was over 12 Megabytes.

Geographically-grouped stations: One SOS – In this approach, sets of
geographically proximal stations can be grouped into individual
ObservationOfferings. For instance, there could exist 50 ObservationOfferings in
an SOS for US Metar data, where each offering contains all the stations in a state.
The resulting Capabilities document is on the order of a few hundred kilobytes,
which is much more manageable from both client and server perspective. The
drawback to this approach that individual stations cannot be queried.

8.5 Recommendations and Conclusions
The recommendation from this group is to provide one Observation Offering per station
and one observation offering grouping multiple geographically-related stations.

 This is a hybrid approach between the two discussed in the previous section. Here,
different SOS endpoints would exist for different geographic regions, with a manageable
number of stations grouped into each instance. Each station is then packaged as an
individual ObservationOffering. For example, there could be one SOS for serving
Southeast U.S. Stations, which would contain a few hundred stations. Any individual

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 36

station is then queryable. The maintenance of multiple SOS instances is a small
complicating factor for the provider, but should be manageable.

9. Topic IEEE 1451- OGC SWE Harmonization

9.1 Goals
Within the IEEE1451-OGC/SWE integration workplan, the task reported in this chapter
is to evaluate and refine integration of IEEE 1451-TEDS and OGC SML. TEDS and
SML are respectively the sensor/instrument metadata containers of both suites of
standards. Outcome will include recommendations to revise IEEE145-TEDS XML and
OGC-SML specifications, or both.

9.2 Motivation
A IEEE1451 – SWE integration testbed was collaboratively developed by ESONET,
NIST, OGC, MBARI, Northrop Grumman, Compusult, GoMOOS. Development of that
testbed identified several areas that should be addressed, including Item 1. Integration of
IEEE-1451 TEDS and SensorML, and Item 2. Asynchronous event notification between
IEEE-1451 and OGC-SWE. The work implies collaboration of developers and the
respective standard editing teams. In the OIE phase 2 was initiated item 1., with the
motivation to progressively respond to other harmonizing needs in future experiments.

9.3 Participants
ESONET: Eric Delory
dBscale Sensing Technologies: Jose Mendoza
UPC: Joaquin Del Rio (
University of Münster: Simon Jirka
U. Bremen/MARUM: Christoph Waldmann
NIST: Kang Lee, Yuyin Song
MBARI: Tom O'Reilly
SURA: Luis Bermudez

9.4 Discussion
The harmonization was performed using X queries that created a SensorML from IEE
1451 documents. Details are available in 9.4.2. Section 9.4.1 presents a discussion of one
of the Units of Measure harmonization, to exemplify the type of output that is looked
forward in this task

9.4.1 TEDS-SML harmonizing: Example of Units of Measure

SensorML

Quantity and count are the two objects to include a uom property for specifying units of
measure. One can specify units of measure in one of three ways. The first is to use the
xlink:href attribute to reference known unit definitions that have been defined online
using gml:UnitDefinition, as in the following example for parts-per-million.

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 37

<swe:uom xlink:href="urn:ogc:def:unit:OGC:ppm"/>

The second is to utilize the gml:UnitDefinition object to define the units inline. This
would typically be used when one wishes to define a complex unit of measure that is
perhaps not available in a standard unit dictionary, as in the following example for slugs
per foot-second.

<gml:ConventionalUnit gml:id="slug_fts">
 <gml:name>slugs/foot-second</gml:name>
 <gml:name codeSpace="urn:ogc:tc:arch:doc-rp(05-010)">
urn:ogc:def:uom:OGC:slug_fts</gml:name>
 <gml:quantityType>dynamic viscosity</gml:quantityType>
 <gml:catalogSymbol>slug/fts</gml:catalogSymbol>
 <gml:conversionToPreferredUnit uom="#Pa.s">
 <gml:factor>47.9</gml:factor>
 </gml:conversionToPreferredUnit>
 <gml:derivationUnitTerm uom=" urn:ogc:def:unit:OGC:slug" exponent="1"/>
 <gml:derivationUnitTerm uom=" urn:ogc:def:unit:OGC:ft" exponent="-1"/>
 <gml:derivationUnitTerm uom=" urn:ogc:def:unit:OGC:s" exponent="-1"/>
</gml:ConventionalUnit>

The third option for specifying units of measure is to utilize the Unified Code for Units of
Measure (UCUM) within the code attribute of uom, as in the following example for
centimeter-squared per second.

<swe:uom code="cm2.s-1"/>

IEEE1451

In IEEE1451, there seems to be no currently publically available examples of TEDS that
include a clear description of the syntax to encode units of measure in XML TEDS
(schema is available for base units here:
http://grouper.ieee.org/groups/1451/0/1451HTTPAPI/SmartTransducerDataModel.xsd)

Though Unit expressions leave no room for ambiguity in the 1451.0 standard as they
shall in all possible cases be based on SI base and derived units (ISO 1000), that is, when
possible, as some units may not be derivable from that set.

“Derived units are expressed algebraically in terms of base units. […] The symbols for
derived units are obtained by means of the mathematical operations of multiplication and
division. For example, the derived unit for molar mass (mass divided by amount of
substance) is the kilogram per mole that has the symbol kg/mol.”

Although units can also be extended by a Units Extension Data Block, this is to provide
more detailed information on what is being measured, so this is irrelevant here as this
block does not provide a description or definition of the unit itself.

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

© 2011 Open Geospatial Consortium 38

It appears that machine-readability of SML and TEDS instances suffer from the diversity
of structure (parsing issues), and naming possibilities, but in both standards there is in
most cases a way to encode units from SI base units (through mandatory derivations in
IEEE1451 and UCUM in SWE Common). This is the most adequate approach so long as
both types of standard instances provide a description of derivations. As UCUM (used in
SWE common and SML through the code attribute) is also used in ISO 19136 and ISO
19136 includes SI base unit derivation we hereby recommend to use the ISO19136
schema for units available here:

http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19136_Schemas//units.xsd

or up to now, a.k.a

http://schemas.opengis.net/gml/3.2.1/units.xsd

According to S@NY D.2.2.1 's Sensor Taxonomy: "The Unified Code for Units of
Measure (UCUM) from Gunther Schadow at the Regenstrief Institute for Health Care
and Indiana University School of Medicine proposes both case-sensitive and case-
insensitive symbols for a large suite of units of measure. In general these follow the
precedents set by earlier standards (e.g. ISO 31, NIST Special Publication 811, ISO 2955,
ANSI X3.50), with a small number of adjustments to remove ambiguities. All base and
derived SI units have their usual symbol (e.g. meter = m, second = s, watt = W plus
prefix: mW, uA, ns, mrad)."

9.4.2 TEDS-SML Mapping
Once harmonizing issues are resolved, a mapping can be performed. Following illustrates
the mapping of TEDS XML to SensorML for a CTD, using xquery. This xquery file can
be easily embedded in a java code for example.

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

Xquery example of TEDS to SML instance mapping for a CTD Instrument:

declare namespace a = "http://www.opengis.net/sensorML/1.0.1";
declare namespace b = "http://www.opengis.net/gml";
declare namespace c = "http://www.opengis.net/swe/1.0.1";

<a:SensorML>
 <a:member>
 <a:System>
 <b:description>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/ProductDescription/text()
 }
 </b:description>
 <a:keywords>
 <a:KeywordList>
 {
 for $Keyword1 in doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Keywords/Keyword
 return
 <a:keyword/>
 }
 </a:KeywordList>
 </a:keywords>
 <a:identification>
 <a:IdentifierList>
 <a:identifier name="UID">
 <a:Term definition="urn:ogc:def:identifier:OGC:uuid">
 <a:value>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/timId/text()

39

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

 }
 </a:value>
 </a:Term>
 </a:identifier>
 <a:identifier name="Short Name">
 <a:Term definition="urn:ogc:def:identifier:OGC:shortName">
 <a:value>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/GroupName/text()
 }
 </a:value>
 </a:Term>
 </a:identifier>
 <a:identifier name="Long Name">
 <a:Term definition="urn:ogc:def:identifier:OGC:longName"/>
 </a:identifier>
 <a:identifier name="Manufacturer Name">
 <a:Term definition="urn:ogc:def:identifier:OGC:manufacturerName">
 <a:value>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/ManufacterId/text()
 }
 </a:value>
 </a:Term>
 </a:identifier>
 <a:identifier name="Model Number">
 <a:Term definition="urn:ogc:def:identifier:OGC:modelNumber">
 <a:value>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/ModelNo/text()
 }
 </a:value>

40

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

 </a:Term>
 </a:identifier>
 <a:identifier name="Serial Number">
 <a:Term definition="urn:ogc:def:identifier:OGC:serialNumber">
 <a:value>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/SerialNo/text()
 }
 </a:value>
 </a:Term>
 </a:identifier>
 <a:identifier name="Device ID">
 <a:Term definition="urn:ogc:def:identifier:ESONET:deviceID"/>
 </a:identifier>
 </a:IdentifierList>
 </a:identification>
 <a:validTime>
 <b:TimePeriod>
 <b:beginPosition>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/PeriodTime/BeginDate/text()
 }
 </b:beginPosition>
 <b:endPosition>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/PeriodTime/EndDate/text()
 }
 </b:endPosition>
 </b:TimePeriod>
 </a:validTime>
 <a:capabilities name=""/>
 <a:contact arcrole="urn:ogc:def:classifiers:OGC:contactType:manufacturer">

41

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

 <a:ResponsibleParty>
 <a:organizationName>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/contacts/manufacturer/OrganizationName/text()
 }
 </a:organizationName>
 <a:contactInfo>
 <a:phone>
 <a:voice>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/contacts/manufacturer/PhoneVoice/text()
 }
 </a:voice>
 <a:facsimile>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/contacts/manufacturer/Facsimile/text()
 }
 </a:facsimile>
 </a:phone>
 <a:address>
 <a:deliveryPoint>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/contacts/manufacturer/DeliveryPoint/text()
 }
 </a:deliveryPoint>
 <a:city>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/contacts/manufacturer/City/text()
 }
 </a:city>
 <a:administrativeArea>
 {

42

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/contacts/manufacturer/AdministrativeArea/text()
 }
 </a:administrativeArea>
 <a:postalCode>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/contacts/manufacturer/PostalCode/text()
 }
 </a:postalCode>
 <a:country>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/contacts/manufacturer/Country/text()
 }
 </a:country>
 <a:electronicMailAddress>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/contacts/manufacturer/email/text()
 }
 </a:electronicMailAddress>
 </a:address>
 <a:onlineResource
href="{doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/contacts/manufacturer/OnlineResource}"/>
 </a:contactInfo>
 </a:ResponsibleParty>
 </a:contact>
 <a:contact arcrole="urn:ogc:def:classifiers:OGC:contactType:owner">
 <a:ResponsibleParty>
 <a:organizationName>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/contacts/owner/OrganizationName/text()
 }
 </a:organizationName>
 <a:contactInfo>

43

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

 <a:phone>
 <a:voice>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/contacts/owner/PhoneVoice/text()
 }
 </a:voice>
 <a:facsimile>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/contacts/owner/Facsimile/text()
 }
 </a:facsimile>
 </a:phone>
 <a:address>
 <a:deliveryPoint>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/contacts/owner/DeliveryPoint/text()
 }
 </a:deliveryPoint>
 <a:city>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/contacts/owner/City/text()
 }
 </a:city>
 <a:administrativeArea>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/contacts/owner/AdministrativeArea/text()
 }
 </a:administrativeArea>
 <a:postalCode>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/contacts/owner/PostalCode/text()
 }

44

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

 </a:postalCode>
 <a:country>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/contacts/owner/Country/text()
 }
 </a:country>
 <a:electronicMailAddress>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/contacts/owner/email/text()
 }
 </a:electronicMailAddress>
 </a:address>
 <a:onlineResource href="{doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/contacts/owner/OnlineResource}"/>
 </a:contactInfo>
 </a:ResponsibleParty>
 </a:contact>
 <a:documentation>
 <a:Document>
 <b:description>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Documentation/Description/text()
 }
 </b:description>
 <a:date>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Documentation/Date/text()
 }
 </a:date>
 <a:format>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Documentation/Format/text()
 }

45

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

 </a:format>
 <a:onlineResource>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Documentation/UrlDoc/text()
 }
 </a:onlineResource>
 </a:Document>
 </a:documentation>
 <a:position name="stationPosition">
 <b:Vector>
 <b:coordinate name="Latitude">
 <b:Quantity axisID="Y">
 <b:uom code="{doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Position/Latitude/UOM}"/>
 <b:value>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Position/Latitude/Value/text()
 }
 </b:value>
 </b:Quantity>
 </b:coordinate>
 <b:coordinate name="longitude">
 <b:Quantity axisID="X">
 <b:uom code="{doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Position/Longitud/UOM}"/>
 <b:value>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Position/Longitud/Value/text()
 }
 </b:value>
 </b:Quantity>
 </b:coordinate>
 <b:coordinate name="altitude">
 <b:Quantity>

46

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

 <b:uom code="{doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Position/Altitude/UOM}"/>
 <b:value>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Position/Altitude/Value/text()
 }
 </b:value>
 </b:Quantity>
 </b:coordinate>
 </b:Vector>
 </a:position>
 <a:interfaces>
 <a:InterfaceList>
 {
 for $Interface in doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Interfaces/Interface
 return
 <a:interface name="{$Interface/Name}">
 <a:InterfaceDefinition>
 <a:physicalLayer>
 <c:Category>
 <b:description>
 {
 $Interface/Description/text()
 }
 </b:description>
 </c:Category>
 </a:physicalLayer>
 </a:InterfaceDefinition>
 </a:interface>
 }
 </a:InterfaceList>
 </a:interfaces>
 <a:inputs>

47

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

 <a:InputList>
 <a:input>
 <b:ObservableProperty
definition="{doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Inputs/Temperature/Definition}">
 <c:description>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Inputs/Temperature/Description/text()
 }
 </c:description>
 <c:name>Temperature</c:name>
 </b:ObservableProperty>
 <b:ObservableProperty>
 <c:name>Conductivity</c:name>
 </b:ObservableProperty>
 </a:input>
 <a:input>
 <b:ObservableProperty
definition="{doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Inputs/Conductivity/Definition}">
 <c:description>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Inputs/Conductivity/Description/text()
 }
 </c:description>
 </b:ObservableProperty>
 </a:input>
 <a:input>
 <b:ObservableProperty
definition="{doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Inputs/Preassure/Definition}">
 <c:description>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Inputs/Preassure/Description/text()
 }

48

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

 </c:description>
 </b:ObservableProperty>
 </a:input>
 </a:InputList>
 </a:inputs>
 <a:outputs>
 <a:OutputList>
 <a:output>
 <b:Quantity definition="urn:ogc:def:property:OGC:temperature">
 <c:name>temperature</c:name>
 <b:uom>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Outputs/Temperature/uom/text()
 }
 </b:uom>
 <b:constraint>
 <b:AllowedValues>
 <b:interval>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Outputs/Temperature/interval/text()
 }
 </b:interval>
 </b:AllowedValues>
 </b:constraint>
 <b:value>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Outputs/Temperature/value/text()
 }
 </b:value>
 </b:Quantity>
 <b:Quantity definition="urn:ogc:def:property:OGC:conductivity">
 <c:name>conductivity</c:name>

49

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

 <b:uom>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Outputs/Conductivity/uom/text()
 }
 </b:uom>
 <b:constraint>
 <b:AllowedValues>
 <b:interval>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Outputs/Conductivity/interval/text()
 }
 </b:interval>
 </b:AllowedValues>
 </b:constraint>
 <b:quality>
 <b:Text>
 <b:value>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Outputs/Conductivity/value/text()
 }
 </b:value>
 </b:Text>
 </b:quality>
 </b:Quantity>
 <b:Quantity definition="urn:ogc:def:property:OGC:pressure">
 <c:name>pressure</c:name>
 <b:uom>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Outputs/Preassure/uom/text()
 }
 </b:uom>
 <b:constraint>

50

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

 <b:AllowedValues>
 <b:interval>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Outputs/Preassure/interval/text()
 }
 </b:interval>
 </b:AllowedValues>
 </b:constraint>
 <b:quality>
 <b:Quantity>
 <b:value>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Outputs/Preassure/value/text()
 }
 </b:value>
 </b:Quantity>
 </b:quality>
 </b:Quantity>
 </a:output>
 </a:OutputList>
 </a:outputs>
 <a:components>
 <a:ComponentList>
 <a:component>
 <a:Component
id="{doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Components/ComponentList/Component/Id}">
 <c:description>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Components/ComponentList/Component/Description/text()
 }
 </c:description>
 <a:inputs>

51

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

 <a:InputList>
 <a:input
name="{doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Components/ComponentList/Component/ComponentInputs/ComponentIn
put/Name}">
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Components/ComponentList/Component/Inputs/InputList
/Input/text()
 }
 <a:ObservableProperty
definition="{doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Components/ComponentList/Component/ComponentInputs/Compon
entInput/Property}"/>
 </a:input>
 </a:InputList>
 </a:inputs>
 <a:outputs>
 <a:OutputList>
 <a:output
name="{doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Components/ComponentList/Component/OutputsComponent/OutputCom
ponent/Name}">
 <c:Quantity>
 <c:uom>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Components/ComponentList/Component/Outputs/O
utputList/Output/Quantity/uom/text()
 }
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Components/ComponentList/Component/OutputsCo
mponent/OutputComponent/UOM/text()
 }
 </c:uom>
 <c:value>
 {

52

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Components/ComponentList/Component/Outputs/O
utputList/Output/Quantity/value/text()
 }
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Components/ComponentList/Component/OutputsCo
mponent/OutputComponent/Value/text()
 }
 </c:value>
 </c:Quantity>
 </a:output>
 </a:OutputList>
 </a:outputs>
 <b:parameters>
 <b:ParameterList>
 <b:parameter
name="{doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Components/ComponentList/Component/Parameters/Parameter/Name}">
 <a:QuantityRange
definition="{doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Components/ComponentList/Component/Parameters/Parameter/Data/
Field/Definition}">
 <c:name>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Components/ComponentList/Component/Parameters
/Parameter/Data/Field/UOM/text()
 }
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Components/ComponentList/Component/Parameters
/Parameter/Data/Field/Name/text()
 }
 </c:name>
 <a:uom>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Components/ComponentList/Component/Parameters

53

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

/Parameter/Data/Field/UOM/text()
 }
 </a:uom>
 <a:value>
 {
 doc('file:///c:/Teds2SML/ReadTEDSHTTPResponse.xml')/ReadTEDSHTTPResponse/teds/Components/ComponentList/Component/Parameters
/Parameter/Data/Field/Value/text()
 }
 </a:value>
 </a:QuantityRange>
 </b:parameter>
 </b:ParameterList>
 </b:parameters>
 </a:Component>
 </a:component>
 </a:ComponentList>
 </a:components>
 </a:System>
 </a:member>
</a:SensorML>

9.5 Recommendation
For the units harmonization the implementation can provide a reference to a unit of measure that is accessible externally or within the current
XML file which defines the unit of measure according to schema. As this option is indirectly stated in the SML specification, and does not appear
in the 1451.0 standard for general units of measurements (it does for CRS), we invite both specifications to advise the above for machine-
readable unit description across the two standards, independently of naming conventions, which should preferably be using UCUM.

For the general harmonization issue this group is still working on finalizing the details and results will be published in the following months.

54

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

10. Acknowledgements
The Oceans IE Team greatly appreciates the contributions of all the participants at OOSTethys. Some of them are listed as contributors if this
document (section 1.2). Other contributors to this activity include: Ben Domenico (UNIDATA/UCAR), Bill Howe (NANOOS), David Coyle
(USGS), Mark Wholey (ASA), Matthew Howard (TAMU), Jeremy Cothran (USC), Richard P. Signell (USGS), Paul Daisey (Image Matters
LLC), and Jeff deLaBeaujardiere (NOOA/IOOS).

This activity has been supported by the National Science Foundation under award number ATM-0447031; Southeastern Universities Research
Association (SURA) Monterey Bay Aquarium Research Institute and the David and Lucile Packard Foundation; Office of Naval Research,
Award N00014-04-1-0721; and, by NOAA Ocean Service Award NA04NOS4730254. Any Opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect those of the National Science Foundation.

REFERENCES

Bermudez L.E., E. Delory, T.C. O'Reilly, and J.D.R. Fernandez, “Ocean Observing Systems Demystified,”, Oceans'09 MTS/IEEE Biloxi, MS,
2009.

O’Reilly T., Headley, et al. “Instrument interfaces for interoperable sensor networks”, IEEE OCEANS 2009, May 2009.

O’Reilly T., K. Headley et al, “MBARI technology for self-configuring interoperable ocean observatories”, IEEE OCEANS 2006, 18-21 Sept.
2006, Page(s):1 – 6, Digital Object Identifier 10.1109/OCEANS.2006.306893.

55

OGC 09-156r2 - Ocean Science Interoperability Experiment Phase II

56

Song E., K. Lee, “Smart transducer Web services based on IEEE 1451.0 standard”, IMTC 2007-Instrumentation and Measurement Technology
Conference. WARSAW, POLAND, MAY 1-3, 2007, pp.1-6.

