20 research outputs found

    Comment on "Negative refraction in 1D photonic crystals" [Solid State Communications 147 (2008) 157-160]

    Get PDF
    International audienceIt can be shown that negative refraction cannot occur in one-dimensional photonic crystals oriented as in [1]

    Simulation and analysis of exotic non-specular phenomena

    Get PDF
    Le journal, Open Access, demande à ce qu'on ne dépose pas d'exemplaire du papier sur un autre serveur. https://www.jeos.org/index.php/jeos_rp/article/view/10025International audienceWhen coupled modes are excited in a multilayered structure, the profile of the reflected beam presents exotic characteristics like unexpectedly large lateral shifts or beam enlargment. These results are surprising because they are not accounted for by classical approaches (Artmann's formula or Tamir's description of the reflected beam's profile). Studying such situations requires reliable numerical tools - that is why our programmes are published with this paper. Such tools can be used to understand the behaviour of any multi-layered structure

    Large negative lateral shifts due to negative refraction

    Get PDF
    When a thin structure in which negative refraction occurs (a metallo-dielectric or a photonic crystal) is illuminated by a beam, the reflected and transmitted beam can undergo a large negative lateral shift. This phenomenon can be seen as an interferential enhancement of the geometrical shift and can be considered as a signature of negative refraction

    Mesoscopic self-collimation and slow light in all-positive index layered photonic crystals

    Full text link
    We demonstrate a mesoscopic self-collimation effect in photonic crystal superlattices consisting of a periodic set of all-positive index 2D photonic crystal and homogeneous layers. We develop an electromagnetic theory showing that diffraction-free beams are observed when the curvature of the optical dispersion relation is properly compensated for. This approach allows to combine slow light regime together with self-collimation in photonic crystal superlattices presenting an extremely low filling ratio in air.Comment: 4 pages, 4 figure

    Evolutionary algorithms converge towards evolved biological photonic structures

    Full text link
    Nature features a plethora of extraordinary photonic architectures that have been optimized through natural evolution in order to more efciently refect, absorb or scatter light. While numerical optimization is increasingly and successfully used in photonics, it has yet to replicate any of these complex naturally occurring structures. Using evolutionary algorithms inspired by natural evolution and performing particular optimizations (maximize refection for a given wavelength, for a broad range of wavelength or maximize the scattering of light), we have retrieved the most stereotypical natural photonic structures. Whether those structures are Bragg mirrors, chirped dielectric mirrors or the gratings on top of Morpho butterfy wings, our results indicate how such regular structures might have spontaneously emerged in nature and to which precise optical or fabrication constraints they respond. Comparing algorithms show that recombination between individuals, inspired by sexual reproduction, confers a clear advantage that can be linked to the fact that photonic structures are fundamentally modular: each part of the structure has a role which can be understood almost independently from the rest. Such an in silico evolution also suggests original and elegant solutions to practical problems, as illustrated by the design of counter-intuitive anti-refective coatings for solar cells

    Structures exotiques en nanophotonique, théorie et approche numérique

    Get PDF
    In the perspective of an ultimate control of light, the recent arrivals of photonic crystals and metamaterials are major advances. These nano-structured materials with unusual optical properties are opening a whole range of possibilities still unexplored. In particular, negative index media have became conceivable. The aim of this thesis is to study, with an electromagnetic point of view, the behavior of light in these exotic structures, using analytical and numerical tools. We study the light wheels, which are localized modes of a multi-layer structure, emerging from the contra-directional coupling between two separate waveguides. A physical analysis is proposed and a model, based on the coupled mode theory, is developed. This allows us to accurately describe the excitation of a light wheel by a source, and to consider applications for beam shaping. In a second part, we study one-dimensional photonic crystals combining positive and negative index layers whose the average index is equal to zero. A band gap, called zero-n gap, appears and presents new properties that we detail. Index dispersion is shown to broaden the resonant frequencies creating then a conduction band lying inside the zero-n gap. Self-collimation and focusing effects are in addition demonstrated in zero-average index crystals supporting defect modes. This beam shaping is explained in the framework of a beam propagation model by introducing an harmonic average index parameter.Dans la perspective d’un contrôle ultime de la lumière, les arrivées récentes des cristaux photoniques et des métamatériaux constituent des avancées majeures. Ces matériaux nano-structurés présentant des propriétés optiques inédites nous ouvrent tout un champ de possibilités encore inexploré. En particulier, des milieux d’indice effectif négatif sont rendus concevables. L’objectif de cette thèse est d’étudier d’un point de vue électromagnétique, à l’aide d’outils analytiques et numériques, le comportement de la lumière dans ces structures exotiques. Nous nous penchons sur les boucles de lumières, qui sont des modes localisés d’une structure multi-couches, émergeant du couplage contra-directionnel entre deux guides distincts. Une analyse physique est proposée et un modèle basé sur la théorie des modes couplés est développé. Cela nous permet de décrire avec précision l’excitation d’une boucle de lumière par une source lumineuse, et d’envisager des applications pour la mise en forme de faisceau. Dans une seconde partie, nous étudions des cristaux photoniques unidimensionnels formés par une alternance de milieux d’indices positif et négatif. Lorsque l’indice moyen est nul, une bande interdite aux propriétés nouvelles apparait. Nous montrons que le caractère dispersif des milieux transforme des pics étroits de transmission en larges bandes. Pour caractériser la propagation d’un faisceau dans un tel cristal, nous développons et validons alors un modèle qui nous permet de démontrer le potentiel en matière de mise en forme de faisceau (auto-collimation, focalisation)

    Exotic structures in nanophotonics, theory and numerical approach

    No full text
    Dans la perspective d’un contrôle ultime de la lumière, les arrivées récentes des cristaux photoniques et des métamatériaux constituent des avancées majeures. Ces matériaux nano-structurés présentant des propriétés optiques inédites nous ouvrent tout un champ de possibilités encore inexploré. En particulier, des milieux d’indice effectif négatif sont rendus concevables. L’objectif de cette thèse est d’étudier d’un point de vue électromagnétique, à l’aide d’outils analytiques et numériques, le comportement de la lumière dans ces structures exotiques. Nous nous penchons sur les boucles de lumières, qui sont des modes localisés d’une structure multi-couches, émergeant du couplage contra-directionnel entre deux guides distincts. Une analyse physique est proposée et un modèle basé sur la théorie des modes couplés est développé. Cela nous permet de décrire avec précision l’excitation d’une boucle de lumière par une source lumineuse, et d’envisager des applications pour la mise en forme de faisceau. Dans une seconde partie, nous étudions des cristaux photoniques unidimensionnels formés par une alternance de milieux d’indices positif et négatif. Lorsque l’indice moyen est nul, une bande interdite aux propriétés nouvelles apparait. Nous montrons que le caractère dispersif des milieux transforme des pics étroits de transmission en larges bandes. Pour caractériser la propagation d’un faisceau dans un tel cristal, nous développons et validons alors un modèle qui nous permet de démontrer le potentiel en matière de mise en forme de faisceau (auto-collimation, focalisation).In the perspective of an ultimate control of light, the recent arrivals of photonic crystals and metamaterials are major advances. These nano-structured materials with unusual optical properties are opening a whole range of possibilities still unexplored. In particular, negative index media have became conceivable. The aim of this thesis is to study, with an electromagnetic point of view, the behavior of light in these exotic structures, using analytical and numerical tools. We study the light wheels, which are localized modes of a multi-layer structure, emerging from the contra-directional coupling between two separate waveguides. A physical analysis is proposed and a model, based on the coupled mode theory, is developed. This allows us to accurately describe the excitation of a light wheel by a source, and to consider applications for beam shaping. In a second part, we study one-dimensional photonic crystals combining positive and negative index layers whose the average index is equal to zero. A band gap, called zero-n gap, appears and presents new properties that we detail. Index dispersion is shown to broaden the resonant frequencies creating then a conduction band lying inside the zero-n gap. Self-collimation and focusing effects are in addition demonstrated in zero-average index crystals supporting defect modes. This beam shaping is explained in the framework of a beam propagation model by introducing an harmonic average index parameter
    corecore