77 research outputs found

    Antagonistic control of muscle cell size by AMPK and mTORC1.

    Get PDF
    7 pages (2640-2646)International audienceNutrition and physical activity have profound effects on skeletal muscle metabolism and growth. Regulation of muscle mass depends on a thin balance between growth-promoting and growth-suppressing factors. Over the past decade, the mammalian target of rapamycin (mTOR) kinase has emerged as an essential factor for muscle growth by mediating the anabolic response to nutrients, insulin, insulin-like growth factors and resistance exercise. As opposed to the mTOR signaling pathway, the AMP-activated protein kinase (AMPK) is switched on during starvation and endurance exercise to upregulate energy-conserving processes. Recent evidence indicates that mTORC1 (mTOR Complex 1) and AMPK represent two antagonistic forces governing muscle adaption to nutrition, starvation and growth stimulation. Animal knockout models with impaired mTORC1 signaling showed decreased muscle mass correlated with increased AMPK activation. Interestingly, AMPK inhibition in p70S6K-deficient muscle cells restores cell growth and sensitivity to nutrients. Conversely, muscle cells lacking AMPK have increased mTORC1 activation with increased cell size and protein synthesis rate. We also demonstrated that the hypertrophic action of MyrAkt is enhanced in AMPK-deficient muscle, indicating that AMPK acts as a negative feedback control to restrain muscle hypertrophy. Our recent results extend this notion by showing that AMPKα1, but not AMPKα2, regulates muscle cell size through the control of mTORC1 signaling. These results reveal the diverse functions of the two catalytic isoforms of AMPK, with AMPKα1 playing a predominant role in the control of muscle cell size and AMPKα2 mediating muscle metabolic adaptation. Thus, the crosstalk between AMPK and mTORC1 signaling is a highly regulated way to control changes in muscle growth and metabolic rate imposed by external cues

    Targeting the AMPK pathway for the treatment of Type 2 diabetes.

    Get PDF
    International audienceType 2 diabetes is one of the fastest growing public health problems worldwide, resulting from both genetic factors and inadequate adaptation to environmental changes. It is characterized by abnormal glucose and lipid metabolism due in part to resistance to the actions of insulin in skeletal muscle, liver and fat. AMP-activated protein kinase (AMPK), a phylogenetically conserved serine/threonine protein kinase, acts as an integrator of regulatory signals monitoring systemic and cellular energy status. The growing realization that AMPK regulates the coordination of anabolic and catabolic metabolic processes represents an attractive concept for type 2 diabetes therapy. Recent findings showing that pharmacological activation of AMPK improves blood glucose homeostasis, lipid profile and blood pressure in insulin-resistant rodents suggest that this kinase could be a novel therapeutic target in the treatment of type 2 diabetes. Consistent with these results, physical exercise and major classes of antidiabetic drugs have recently been reported to activate AMPK. In the present review, we update these topics and discuss the concept of targeting the AMPK pathway for the treatment of type 2 diabetes

    Varga et al.: Macrophage PPARÎł, a Lipid Activated Transcription Factor Controls the Growth Factor GDF3 and Skeletal Muscle Regeneration Immunity. 2016 Nov 15;45(5):1038-1051. doi: 10.1016/j.immuni.2016.10.016.

    Get PDF
    Tissue regeneration requires inflammatory and reparatory activity of macrophages. Macrophages detect and eliminate the damaged tissue and subsequently promote regeneration. This dichotomy requires the switch of effector functions of macrophages coordinated with other cell types inside the injured tissue. The gene regulatory events supporting the sensory and effector functions of macrophages involved in tissue repair are not well understood. Here we show that the lipid activated transcription factor, PPARγ, is required for proper skeletal muscle regeneration, acting in repair macrophages. PPARγ controls the expression of the transforming growth factor-β (TGF-β) family member, GDF3, which in turn regulates the restoration of skeletal muscle integrity by promoting muscle progenitor cell fusion. This work establishes PPARγ as a required metabolic sensor and transcriptional regulator of repair macrophages. Moreover, this work also establishes GDF3 as a secreted extrinsic effector protein acting on myoblasts and serving as an exclusively macrophage-derived regeneration factor in tissue repair

    Les jeunes chercheurs à l’honneur

    No full text
    • …
    corecore