21 research outputs found

    Measurement of Ultrafine Particles and Other Air Pollutants Emitted by Cooking Activities

    Get PDF
    Cooking emissions show a strong dependence on cooking styles and parameters. Measurements of the average ultrafine particle (UFP) concentration, PM2.5 and black carbon concentrations emitted by cooking activities ranged from 1.34 × 104 to 6.04 × 105 particles/cm3, 10.0 to 230.9 μg/m3 and 0.1 to 0.8 μg/m3, respectively. Lower UFP concentrations were observed during boiling, while higher levels were emitted during frying. The highest UFP concentrations were observed when using a gas stove at high temperature with the kitchen exhaust fan turned off. The observed UFP profiles were similar in the kitchen and in another room, with a lag of approximately 10 min

    Changes in Synaptic Transmission, Calcium Current, and Neurite Growth by Perfluorinated Compounds Are Dependent on the Chain Length and Functional Group

    No full text
    Scientific and public concerns on perfluorinated compounds (PFCs) are increasingly growing because of their environmental persistency, bioaccumulation, and extensive distribution throughout the world. Little is known about the effects of PFCs on neural function and the underlying mechanisms. Recent evidence suggests that the toxicological effects of PFCs are closely correlated with their carbon chain lengths. In this present work, the actions of PFCs with varying chain length on cultured rat hippocampal neurons and possible action patterns were examined. Increases in the frequencies of spontaneous miniature postsynaptic current (mPSC) were commonly found in cultured neurons when perfused with PFCs. The increase of mPSC frequency was in proportion to the carbon chain length, and the potency of perfluorinated carboxylates was less pronounced than that of perfluorinated sulfonates. A comparable but less perceptible trend was also found for the amplitudes of voltage-dependent calcium current (I-ca). No regular change in pattern was observed for the effects of PFCs on activation and inactivation kinetics of I-Ca. Furthermore, prolonged treatment of PFCs inhibited the neurite growth of neurons to various degrees. Comparisons between nonfluorinated and perfluorinated analogues demonstrated that the fluorination in alkyl chain exerts stronger actions on neurons as compared to the surfactant activity. This study shows that PFCs exhibit adverse effects on cultured neurons to various extents, which is dependent on the carbon chain length and functional group attached to the fully fluorinated alkyl chain

    Mechanism and Substrate-Dependent Rate-Determining Step in Palladium-Catalyzed Intramolecular Decarboxylative Coupling of Arenecarboxylic Acids with Aryl Bromides: A DFT Study

    No full text
    The mechanism of palladium-catalyzed intramolecular decarboxylative coupling of arenecarboxylic acids with aryl bromides has been studied computationally with the aid of density functional theory. Full free-energy profiles have been computed for all ether- and amine-containing substituted substrates. The calculations indicate that the rate-determining step is indeed substrate dependent, as reflected in free energy profiles; the oxidative addition, decarboxylation, or reductive elimination step can become the rate-determining step for the full catalytic cycle due to the different substituents on the substrates. In addition, we also demonstrate the preference of NCH<sub>3</sub>- over NH-containing amine substrates for the decarboxylation process. The calculations are in good agreement with the experimental observations

    Graphene Enhances Cellular Proliferation through Activating the Epidermal Growth Factor Receptor

    No full text
    Graphene has promising applications in food packaging, water purification, and detective sensors for contamination monitoring. However, the biological effects of graphene are not fully understood. It is necessary to clarify the potential risks of graphene exposure to humans through diverse routes, such as foods. In the present study, graphene, as the model nanomaterial, was used to test its potential effects on the cell proliferation based on multiple representative cell lines, including HepG2, A549, MCF-7, and HeLa cells. Graphene was characterized by Raman spectroscopy, particle size analysis, atomic force microscopy, and transmission electron microscopy. The cellular responses to graphene exposure were evaluated using flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and alamarBlue assays. Rat cerebral astrocyte cultures, as the non-cancer cells, were used to assess the potential cytotoxicity of graphene as well. The results showed that graphene stimulation enhanced cell proliferation in all tested cell cultures and the highest elevation in cell growth was up to 60%. A western blot assay showed that the expression of epidermal growth factor (EGF) was upregulated upon graphene treatment. The phosphorylation of EGF receptor (EGFR) and the downstream proteins, ShC and extracellular regulating kinase (ERK), were remarkably induced, indicating that the activation of the mitogen-activated protein kinase (MAPK)/ERK signaling pathway was triggered. The activation of PI3 kinase p85 and AKT showed that the PI3K/AKT signaling pathway was also involved in graphene-induced cell proliferation, causing the increase of cell ratios in the G2/M phase. No influences on cell apoptosis were observed in graphene-treated cells when compared to the negative controls, proving the low cytotoxicity of this emerging nanomaterial. The findings in this study revealed the potential cellular biological effect of graphene, which may give useful hints on its biosafety evaluation and the further exploration of the bioapplication
    corecore