2,269 research outputs found

    Restrictions on the coherence of the ultrafast optical emission from an electron-hole pairs condensate

    Full text link
    We report on the transfer of coherence from a quantum-well electron-hole condensate to the light it emits. As a function of density, the coherence of the electron-hole pair system evolves from being full for the low density Bose-Einstein condensate to a chaotic behavior for a high density BCS-like state. This degree of coherence is transfered to the light emitted in a damped oscillatory way in the ultrafast regime. Additionally, the photon field exhibits squeezing properties during the transfer time. We analyze the effect of light frequency and separation between electron and hole layers on the optical coherence. Our results suggest new type of ultrafast experiments for detecting electron-hole pair condensation.Comment: 4 pages,3 figures, to be published in Physical Review Letters. Minor change

    Quantum Phase Transitions detected by a local probe using Time Correlations and Violations of Leggett-Garg Inequalities

    Full text link
    In the present paper we introduce a way of identifying quantum phase transitions of many-body systems by means of local time correlations and Leggett-Garg inequalities. This procedure allows to experimentally determine the quantum critical points not only of finite-order transitions but also those of infinite order, as the Kosterlitz-Thouless transition that is not always easy to detect with current methods. By means of simple analytical arguments for a general spin-1/21 / 2 Hamiltonian, and matrix product simulations of one-dimensional XXZX X Z and anisotropic XYX Y models, we argue that finite-order quantum phase transitions can be determined by singularities of the time correlations or their derivatives at criticality. The same features are exhibited by corresponding Leggett-Garg functions, which noticeably indicate violation of the Leggett-Garg inequalities for early times and all the Hamiltonian parameters considered. In addition, we find that the infinite-order transition of the XXZX X Z model at the isotropic point can be revealed by the maximal violation of the Leggett-Garg inequalities. We thus show that quantum phase transitions can be identified by purely local measurements, and that many-body systems constitute important candidates to observe experimentally the violation of Leggett-Garg inequalities.Comment: Minor changes, 11 pages, 11 figures. Final version published in Phys. Rev.

    Crossover between the Dense Electron-Hole Phase and the BCS Excitonic Phase in Quantum Dots

    Full text link
    Second order perturbation theory and a Lipkin-Nogami scheme combined with an exact Monte Carlo projection after variation are applied to compute the ground-state energy of 6N2106\le N\le 210 electron-hole pairs confined in a parabolic two-dimensional quantum dot. The energy shows nice scaling properties as N or the confinement strength is varied. A crossover from the high-density electron-hole phase to the BCS excitonic phase is found at a density which is roughly four times the close-packing density of excitons.Comment: Improved variational and projection calculations. 17 pages, 3 ps figures. Accepted for publication in Int. J. Mod. Phys.

    Cannabis y sus productos : marihuana y otras yerbas

    Get PDF
    Fil: Villaamil Lepori, Edda C. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Centro de Asesoramiento Toxicológico Analítico; ArgentinaFil: Quiroga, Patricia N. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Centro de Asesoramiento Toxicológico Analítico; ArgentinaEl Cannabis sigue siendo la droga ilícita que más se produce, trafica y consume en el mundo. La\nmarihuana, producto del Cannabis, es una droga de abuso de consumo importante en nuestra sociedad,\nespecialmente en algunos sectores juveniles

    Analytic results for NN particles with 1/r21/r^2 interaction in two dimensions and an external magnetic field

    Full text link
    The 2N2N-dimensional quantum problem of NN particles (e.g. electrons) with interaction β/r2\beta/r^2 in a two-dimensional parabolic potential ω0\omega_0 (e.g. quantum dot) and magnetic field BB, reduces exactly to solving a (2N4)(2N-4)-dimensional problem which is independent of BB and ω0\omega_0. An exact, infinite set of relative mode excitations are obtained for any NN. The N=3N=3 problem reduces to that of a ficticious particle in a two-dimensional, non-linear potential of strength β\beta, subject to a ficticious magnetic field BficJB_{\rm fic}\propto J, the relative angular momentum.Comment: To appear in Physical Review Letters (in press). RevTeX file. Two figures available from [email protected] or [email protected]

    First all-sky search for continuous gravitational waves from unknown sources in binary systems

    Get PDF
    Paper producido por "The LIGO Scientific Collaboration and the Virgo Collaboration". (En el registro se mencionan solo algunos autores de las decenas de personas que participan).We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO science run and the second and third Virgo science runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ∼2; 254 h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semimajor axes of the orbit from ∼0.6 × 10−3 ls to ∼6; 500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3 × 10−24 at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz.http://journals.aps.org/prd/abstract/10.1103/PhysRevD.90.062010publishedVersionFil: Maglione, C. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Maglione, C. Argentinian Gravitational Wave Group; Argentina.Fil: Quiroga, C. Argentinian Gravitational Wave Group; Argentina.Fil: Aasi, J. LIGO. California Institute of Technology; Estados Unidos de América.Física de Partículas y Campo

    Caracterización de semillas blancas y negras de Salvia hispanica L. (Lamiaceae)

    Get PDF
    Caracterización de semillas blancas y negras de Salvia hispanica L. (Lamiaceae)Fil: Bueno, Mirian. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentin
    corecore