We report on the transfer of coherence from a quantum-well electron-hole
condensate to the light it emits. As a function of density, the coherence of
the electron-hole pair system evolves from being full for the low density
Bose-Einstein condensate to a chaotic behavior for a high density BCS-like
state. This degree of coherence is transfered to the light emitted in a damped
oscillatory way in the ultrafast regime. Additionally, the photon field
exhibits squeezing properties during the transfer time. We analyze the effect
of light frequency and separation between electron and hole layers on the
optical coherence. Our results suggest new type of ultrafast experiments for
detecting electron-hole pair condensation.Comment: 4 pages,3 figures, to be published in Physical Review Letters. Minor
change